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Abstract
Paragangliomas (PGLs) canbe associated with mutations ingenes of thetricarboxylic acid (TCA)

cycle. Succinate dehydrogenase (SDHx) mutations are the prime examples of genetically

determined TCA cycle defects with accumulation of succinate. Succinate, which acts as an

oncometabolite, can be detected by ex vivo metabolomics approaches. The aim of this study

was to evaluate the potential role of proton magnetic resonance (MR) spectroscopy (1H-MRS)

for identifying SDHx-related PGLs in vivo and noninvasively. Eight patients were prospectively

evaluated with single voxel 1H-MRS. MR spectra from eight tumors (four SDHx-related PGLs,

two sporadic PGLs, one cervical schwannoma, and one cervical neurofibroma) were acquired

and interpreted qualitatively. Compared to other tumors, a succinate resonance peak was

detected only in SDHx-related tumor patients. Spectra quality was considered good in three

cases, medium in two cases, poor in two cases, and uninterpretable in the latter case. Smaller

lesions had lower spectra quality compared to larger lesions. Jugular PGLs also exhibited a

poorer spectra quality compared to other locations. 1H-MRS has always been challenging in

terms of its technical requisites. This is even more true for the evaluation of head and neck

tumors. However, 1H-MRS might be added to the classical MR sequences for metabolomic

characterization of PGLs. In vivo detection of succinate might guide genetic testing,

characterize SDHx variants of unknown significance (in the absence of available tumor sample)

, and even optimize a selection of appropriate therapies.
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Introduction
Paragangliomas (PGLs) are slow-growing hypervascular

tumors arising from neural crest cell derivatives through-

out the body. PGLs are closely aligned with the distri-

bution of the autonomic nervous system and

preferentially arise in the adrenal medulla, along the

thoracoabdominopelvic sympathetic system, or in para-

sympathetic paraganglia that are mainly located in the

head and neck (Taieb et al. 2014a).

Approximately 30–40% of PGLs carry a germ line

mutation, which frequently occurs in one of the succinate

dehydrogenase (SDH) subunit genes (collectively referred

to as SDHx) (Baysal et al. 2002, Neumann et al. 2009,

Piccini et al. 2012, Martucci & Pacak 2014).

The SDH complex (also named mitochondrial

complex II) catalyzes the oxidation of succinate to

fumarate in the tricarboxylic acid (TCA) cycle and the

respiratory chain. Deleterious mutations in any of the

SDH genes (after biallelic inactivation) invariably result in

decreased SDH activity, with accumulation of succinate,

which acts as an oncometabolite (Selak et al. 2005).

We, and others, have recently shown that ex vivo

metabolomics studies are very reliable methods for classify-

ing various pheochromocytomas (PHEOs)/PGLs according

to their genetic background (Imperiale et al. 2013a, Richter

et al. 2014, Rao et al. 2015). Assessment of succinate

concentration and succinate:fumarate ratio can be clinically

relevant for discriminating SDHx-related tumors from

sporadic and other hereditary PHEOs/PGLs (Lendvai et al.

2014, Richter et al. 2014, Imperiale et al. 2015a). These

studies nicely pointed toward the importance of metabolite

profiling in the evaluation of these tumors.

In recent years, anatomic and functional imaging

techniques have gained an increasing role in the character-

ization of PHEOs/PGLs (Taieb et al. 2013, 2014a). The use

of magnetic resonance imaging (MRI) as a non-ionizing

technique is rapidly growing in the evaluation of PGLs

with clinical implementation of multiparametric

sequences that provide relevant biological information

(i.e., diffusion weighted imaging, dynamic contrast

enhancement, and spectroscopy). MR spectroscopy (MRS)

enables quantification of metabolites in tissues (Bruhn et al.

1989, King et al. 2010). MRS uses intrinsic MR proprieties

of some atomic nuclei (i.e., 1Hydrogen, 31Phosphorous,
19Fluorine, and 13Carbon) placed in a radiofrequency range

of magnetic fields (de Graaf 2008). Proton spectroscopy

(1H-MRS) is available in numerous magnetic field strengths

(currently from 1.5 to 7 Tesla) and has been evaluated in

the characterization of various brain (Fellah et al. 2013) and
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0246 Printed in Great Britain
extracerebral tumors (King et al. 2005, Jansen et al. 2012,

Abdel Razek & Poptani 2013).

Currently, there is a strong interest in i) assessing the

genetic and metabolomics backgrounds of tumors based

on their metabolomics profile using noninvasive tech-

niques that would not require obtaining additional tumor

samples (in some patients, especially those with metastatic

PHEO/PGL, it is difficult to obtain because biopsy may be

contraindicated); ii) decreasing radiation exposure of

cancer patients to the repeated use of anatomical and

functional modalities in assessing or monitoring thera-

peutic responses; iii) minimizing the cost to a patient as

well as the health care system by using multiple imaging

modalities; and iv) selecting appropriate treatment

options that are expected in the near future to be largely

based on the assessment of tumor metabolomics profiles

because metabolites are now considered as ‘first-line’

combat soldiers in a cancer cell.

Thus, the aim of the present study was to evaluate the

potential role of 3T proton MRS in identifying various

SDHx-related PGLs and then to compare those results to

other sporadic PGLs or non-PGL tumors.
Materials and methods

Patients

Eight consecutive patients with suspicion of either HNPGL

or a neck nerve sheath tumor were evaluated by 1H-MRS

in addition to conventional MR sequences. PGL patients

were included in a large prospective clinical trial

dedicated to positron emission tomography (PET) imaging

studies (NCT02186678) and were therefore evaluated

by 18F-FDOPA and 68Ga-DOTATATE PET/computed

tomography (CT) (patient nos 1–6) using low-dose CT

protocol. The remaining two patients gave their informed

consent for use of their personal data for scientific

purposes, in keeping with local institutional guidelines.
MRI protocol

MRI was performed on a 3T MR scanner (Magnetom Skyra,

Siemens Healthcare, Erlangen, Germany) equipped with

a 32-channel phased-array head coil. The signal of mono-

voxel MRS was collected following the unenhanced conven-

tional MR sequences (for head and neck regions: T1, T2, and

time of flight angiography (TOF)). The volume of interest

(VOI) was carefully positioned by a radiologist with 10 years’

experience (A Varoquaux). The VOI was adapted to the size
Published by Bioscientifica Ltd.
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and geometry and centered within the bulk tumor region,

excluding nearby bone structures. Six outer-volume lipid

suppression bands were used to suppress lipid contami-

nation, and pre-acquisition included shimming and water

suppression. Spectra were acquired with a point-resolved

spectroscopy sequence (PRESS; TE, 135 ms and repetition

time (TR), 2000 ms) using the manufacturer’s automated

shimming procedure. An H2O signal was acquired for

quantification purposes at the samelocation.Extra scanning

time, includingshimmingandacquisition(120excitations),

was 8 min.
Post processing

The MRS data were analyzed using a dedicated software

described elsewhere (Le Fur et al. 2010). After Fourier

transformation, the residual water signal was removed

using HLSVD (de Beer et al. 1992). Spectra was fitted using

HRQUEST (Ratiney et al. 2005) with a simulated database

that incorporated seven metabolites selected according

to the HRMAS spectrum (Imperiale et al. 2013a,b, 2015a):

acetate, alanine, glutamate, glutathione, lactate, meth-

ionine, and succinate.

Quality of the spectra were classified as follows: i) good:

thin resonances, good water suppression, and absence of

lipid signal contamination; ii) medium: broad resonances

but clearly distinguishable, acceptable water suppression,

and low lipid contamination; iii) poor: resonances hardly

distinguishable and/or bad water suppression and/or high

lipid signal; and iv) uninterpretable spectrum. MRS spectra

were interpreted by experts blinded to the SDH mutation

status and pathological findings.
Table 1 Patient and tumor characteristics, and imaging findings

Patient Diagnosis Status Focality

Location

of the

tumor

assessed

by MRS 18F-FDOPAa

1 PGL SDHD Multi Vagal C
2 PGL SDHD Multi Jugular C
3 PGL SDHB Uni Carotid

body
C

4 PGL SDHD Multi Carotid
body

C

5 PGL Sporadic Uni Jugular C
6 PGL Sporadic Uni Jugular C
7 Neurofibroma – Uni Vagal ND
8 Schwannoma – Uni Vagal ND

ND, not done.
a18F-FDOPA and 68Ga-DOTATATE findings in PGLs evaluated by MRS.
bTumor volumes were measured on contrast-enhanced T1-weighted MR image

http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0246 Printed in Great Britain
HRMAS MRS

HRMAS MRS was performed in three cases (carotid body

PGL (CBP) from patient nos 3 and 4 and one abdominal

extra-adrenal PGL from patient no. 1) from the analysis of

a frozen intact tumor sample of about 15 mg. Spectra were

acquired on a Bruker Avance III 500 Spectrometer

(500.13 MHz) (Bruker BioSpin, Wissembourg, France).

One-dimensional (1D) proton and two-dimensional (2D)

heteronuclear (1H-13C) experiments were recorded.

Selected metabolites were quantified according to our

previous reports (Imperiale et al. 2013b).
Gold standard

Pathological analysis of the tumor was considered the gold

standard for final diagnosis. When surgery was not

indicated or already performed, lesions were characterized

as PGL by tumor positivity on either 18F-FDOPA or
68Ga-DOTATATE in specific locations, regardless of

genetic background.
Results

Patients and tumors

Eight patients (two males and six females, age 30–73 years)

were included in the present study (Table 1). Final

diagnoses included six PGLs, one cervical schwannoma,

and one cervical neurofibroma. Pathological confirmation

was obtained in two PGL and two benign nerve sheath

tumors. In other PGLs, the diagnosis was based on findings
68Ga-

DOTATATEa

Tumor

volume

(cm3)b
Gold

standard

Spectra

quality Succinate

C 8.2 Pathology Good Detected
C 2.3 PET imaging Medium Detected
C 19.6 PET imaging Good Detected

C 4.4 Pathology Uninter-
pretable

NA

C 2.1 PET imaging Poor Not detected
C 1.5 PET imaging Poor Not detected
ND 24.9 Pathology Good Not detected
ND 6.7 Pathology Medium Not detected

s using OsiriX Software (v5.6, 64 bit, Geneva, Switzerland).

Published by Bioscientifica Ltd.

Downloaded from Bioscientifica.com at 12/09/2019 02:50:11PM
via Universite de Mediterranee

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-15-0246


A C DB

Original

Fitted
Macro

Residue

Succinate

3.00 2.00 1.00 0.00

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 ppm

ppm

Succinate

Figure 1

Multifocal SDHD-related PGLs (patient no. 1). (A) Axial 68Ga-DOTATATE PET

showing bilateral vagal PGL. (B) Axial plane of pre-acquisition VOI

adaptation before 1H-MRS PRESS, with manual placement of six saturation

bands (only four visible on image) to avoid lipid contamination from the

parapharyngeal space and spine. (C) The acquired spectrum, fitted

spectrum, fitted macromolecules, and residue (i.e., the acquired spectrum

minus the result of the fit) represented from top to bottom. The last line

shows the succinate signal as found by the quantification algorithm.

Other resonances are not shown for reason of clarity. It can be seen on the

residue that some signals are still visible. The metabolite(s) giving these

signals are still not assigned and therefore not present in the database.

(D) 1H-HRMAS MR spectra obtained from the analysis of an abdominal PGL

from this patient showing an obvious peak of succinate (singlet at

2.41 p.p.m.). A full colour version of this figure is available at http://dx.doi.

org/10.1530/ERC-15-0246.
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from images using various specific tracers. Genetic testing

was performed in all but one PGL and revealed SDHD

mutations in three cases (patient nos 1, 2, and 4) and SDHB

in one case (patient no. 3). Tumors evaluated by MRS were

localized to the jugular foramen in three cases, the

retrostyloid parapharyngeal space in three cases, and the

carotid body in two cases. Mean tumor volume was 8.7 ml

and ranged from 1.5 to 24.9 ml.
MRS findings

Spectra quality was considered good in three cases,

medium in two, poor in two, and uninterpretable in the

latter case due to motion artifacts. Smaller lesions had

lower spectra quality compared to larger lesions. Jugular
A B

O

R

Figure 2

Carotid body SDHB-related PGL (patient no. 3). (A) Axial 18F-FDOPA PET

showing a highly avid CBP. (B) VOI adaptation before 1H-MRS with manual

placement of six saturation bands (only four visible on image). (C) The last

line shows the succinate signal as found by the quantification algorithm.

http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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PGL also exhibited a poorer spectra quality compared to

vagal PGL and CBP. A succinate resonance peak was only

detected in SDHx-related tumor patients. Succinate was

detected in patient no. 3, who had a 2.3 ml jugular PGL

with medium quality spectra. Two examples of 1H-MR

spectra in comparison to HRMAS findings are presented

in Figs 1 and 2. A spectra without succinate is shown in

Supplementary Fig. 1 (see section on supplementary data

given at the end of this article).
Discussion

The present study demonstrates that 1H-MRS could enable

in vivo detection of succinate in SDHx-related tumors.

These results emphasize that, beyond its localization
C D

riginal
Fitted
Macro

esidue

Succinate

3.00 2.00 1.00

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 ppm

ppm

Succinate

(D) 1H-HRMAS MR spectra obtained from the analysis of the CBP showing

an important accumulation of succinate in tumoral tissue (singlet at

2.41 p.p.m.).
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value, this imaging modality provides unique opportu-

nities for better characterizing these tumors at a metabo-

lomic level that is uniquely linked to their molecular

signature, in these as well as other tumors. Thus, recently,

it has been proposed that ex vivo detection of succinate and

other metabolites could guide genetic testing (Lendvai

et al. 2014, Richter et al. 2014). In recent years, it has also

been demonstrated that immunohistochemistry using

specific antibodies against SDH subunits is a reliable

method for predicting SDH mutations (van Nederveen

et al. 2009). However, these and other ex vivo techniques

have some limitations because they are not applicable in

cases where PGLs are treated by repeated radiation, cannot

be removed surgically due to their unusual location or size,

and are unable to provide continuous specific metabolite

assessment that would be very useful for monitoring or

predicting changes in intratumoral metabolism, tumor

aggressiveness, resistant or responsive therapy, and meta-

static spread. Therefore, in vivo metabolomics character-

ization of any tumor is becoming of paramount interest

for guiding genetic, therapeutic, and outcome evaluation

of cancer patients.

Metabolomics or metabolite profiling is the youngest

sibling in the family of -omics fields and is growing up.

Maturing right behind genomics, transcriptomics, and

proteomics, metabolomics is the comprehensive analysis

of small molecule metabolites (Reitman et al. 2011).

Succinate is a component of the TCA cycle that serves as

an electron donor to complex II. Succinate is present in the

brain at w0.5 mmol/kg (Klunk et al. 1996). Although

presentat sucha lowconcentration, it contains four protons

from twomethylene groups that all contribute to a singlet at

2.39 p.p.m. In conventional in vivo 1D MRS experiments,

this signal overlaps with resonances of glutamate and

glutamine (Govindaraju et al. 2000). However, using

HRMSAS, we have previously shown that SDHx-associated

PGL exhibits a very low glutamate content (Imperiale et al.

2015a). Increased succinate has also been reported in

human brain abscesses (Shukla-Dave et al. 2001).

Pioneering studies or hypotheses from investigations

by Selak et al. (2005) showed the accumulation of succinate

in SDHx-tumors. Elevated plasma succinate has even been

proposed as a screening test for detecting SDHx mutation-

positive individuals (Hobert et al. 2012). Detection of

succinate has been also found to be very useful for

classifying SDH variants of unknown etiology as patho-

genic or depicting SDH deficiency without an SDHx

mutation such as an SDH promoter methylation that may

occur in some cases like Carney triad (Haller et al. 2014,

Imperiale et al. 2015a). More recently, a significantly
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0246 Printed in Great Britain
increased succinate:fumarate ratio has also been described

in SDHx-related PGLs and proposed as a new metabolic

marker of these tumors (Lendvai et al. 2014, Richter et al.

2014). Several studies have shown that succinate and

possibly other metabolites, the so-called PHEO/PGL meta-

bolomics milieu, play important and perhaps the most

crucial role in the pathogenesis, behavior, and outcome of

these tumors (Vicha et al. 2014). Thus, beyond SDHx

mutations, disruption of the TCA cycle has been described

for other mutations that predispose to PHEOs/PGLs such as

isocitrate dehydrogenase type 1 (Gaal et al. 2010), fumarate

hydratase (Castro-Vega et al. 2014), and the more recently

described malate dehydrogenase type 2 (Cascon et al.

2015). It is also expected that the detection of other TCA

enzyme mutations may play an important role in the

pathogenesis of PHEO/PGL, and the use of metabolomics to

uncover new PHEO/PGL-specific metabolomic profiles will

become crucial in novel discoveries of such mutations in

the very near future.

High MRS spectra quality, demonstrated by the ability

to separate resonances from important metabolites within

the tumor, depends on various technical aspects such as

voxel and pre-saturation band placement, pre-acquisition

shimming quality, acquisition parameters, water and fat

suppression, and post processing. Compared to the brain,

the MRS of HNPGLs is challenging due to their anatomical

location near or within bone structures and the surround-

ing adipose tissue, which create susceptibility artifacts and

make the shimming process very difficult. Furthermore,

data quality is also degraded by patient motion (head

movement) and vascular pulsatility. In the present study,

jugular PGL and small lesions exhibited a poorer spectra

quality compared to other sites. These PGLs, which arise

from the dome of the jugular vein and are located in the

temporal bone, are more sensitive to susceptibility

artifacts, with specific problems for optimizing shimming

and fat suppression. In one CBP, motion artifacts lead

to an uninterpretable spectrum. A manual shimming

procedure could improve spectral quality but requires

longer examinations.

In our study, smaller lesions were also found to have

lower quality spectra. In these cases, the lower size of the

voxel volume decreased the signal-to-noise ratio (SNR). It is

possible to reduce the voxel size to 1 ml (Abdel Razek &

Poptani 2013), but this requires increasing the number

of excitations with a subsequent increased duration of

the scan.

The present and previous studies open and strengthen

a new field of in vivo metabolomics profiling in various

PHEOs/PGLs. In recent years, 18F-FDG uptake has also been
Published by Bioscientifica Ltd.
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shown to be strongly dependent on patient genotype.

Thus, the degree of 18F-FDG uptake has also been

proposed as a predictor of SDHx PHEOs/PGLs (Taieb et al.

2009, 2014b, Timmers et al. 2012, Blanchet et al. 2014).

According to this lesion-based model using SUV ratio and

tumor diameter, sensitivity, specificity, positive predictive

value, negative predictive value, and accuracy were 80.8,

63.6, 83.1, 60.0, and 75.5% respectively (Blanchet et al.

2014). Beyond the practical constraints associated with

MRS, it is anticipated that in vivo detection of succinate

would have a better pneumococcal polysaccharide vac-

cination than 18F-FDG uptake, but this remains to be tested

on a very large population of patients with different genetic

backgrounds.

It is also expected that MRS could be applied to the

metabolite assessment in the setting of adrenal and extra-

adrenal sympathetic PGLs. Even if compared to jugular

foramen localization, the 1H-MRS analysis of the adrenal

region encounters less susceptibility artefacts (dental

fillings, petrous apex pneumatisation), the physiologic

respiratory motion complicates matters. Faria et al. (2007)

showed that adrenal 1H-MRS free breathing point-resolved

multi-voxel acquisition enabled adenomas and PHEOs to

be distinguished from carcinomas and metastases using a

ratio between choline, creatine, and lipids. Most authors

recommend the use of respiratory triggering, which, in

return, needs elaborate and time-consuming post-proces-

sing processes to exploit the spectra (Schwarz & Leach

2000, Katz-Brull et al. 2003, Faria et al. 2007, Kim et al.

2009). Recently, Imperiale et al. (2015b) have confirmed

that respiratory-triggered single-voxel 1H-MRS enables

in vivo detection of catecholamines in PHEOs. We believe

that assessing succinate in the adrenal masses of SDHx

patients will require respiratory-triggered single-voxel
1H-MRS acquisitions with repeated excitations, improving

the sensibility for succinate detection to the detriment of

the examination length.

Several studies have pointed well towards impair-

ments in oxidative phosphorylation processes within

PHEOs/PGLs (Favier et al. 2009, Vicha et al. 2014,

Rao et al. 2015). Phosphorus metabolism (inorganic

phosphate, phospho-creatine, ATP) can be evaluated

in vivo by 31P-MRS (Abdel Razek & Poptani 2013) and,

therefore, should provide new information in the meta-

bolomic/energy characterization of these tumors. The use

of hyperpolarized nuclei may also be an attractive

additional tool for proton MRS because it may increase

the signal factor by 6000 and quality spectra

(increased SNR). Therefore, this enables for in vivo assess-

ment of small tumors in a faster acquisition time
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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(Kurhanewicz et al. 2011). Hyperpolarized succinate can

be produced using para-hydrogen induced polarization

and was thus used as a contrast agent for MRI and MRS

in preclinical studies of brain tumors (Bhattacharya et al.

2007). More recently, it has been shown that hyper-

polarized (2H, 13C)-labeled glucose by dynamic nuclear

polarization increases the SNR up to 10 000 times

(Ardenkjaer-Larsen et al. 2003). This contrast agent could

be used for the assessment of succinate and other TCA

metabolites by MRS (Mishkovsky et al. 2012) and

successfully applied to various hereditary PHEO/PGL that

are considered as a metabolic disease.

In conclusion, in vivo metabolomics analysis may

serve as an important bridge between molecular genetics

and imaging. 1H-MRS could be added to the classical MR

sequences for characterization of various PHEOs/PGLs,

especially those related to TCA cycle impairment.

Imperiale et al. (2015b) have also recently shown that
1H-MRS enables in vivo detection of catecholamines in

PHEOs. The recently introduced PET/MR systems enable

acquisition of MRS and PET data during a single exami-

nation, provide high-quality fusion of both modalities and

potentially provide the opportunity to perform multi-voxel

acquisition analysis in the setting of prospective studies.

In vivo detection of succinate shows promise in further

guiding genetic testing and characterization of SDH

variants, especially in the absence of available tumor

samples and detection of changes in plasma succinate

levels in these patients, which is currently insufficient.

This approach also has the future potential of serving as an

important tool for monitoring therapeutic responses

while avoiding excessive radiation exposure or functional

imaging techniques that are often very costly yet limited

in availability. Nevertheless, the conclusions of the

present study should be tested on a very large population

of patients with SDHx and non-SDHx tumors.
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