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Negative cooperativity in enzyme reactions, in which the first
event makes subsequent events less favorable, is sometimes well
understood at the molecular level, but its physiological role has
often been obscure. Negative cooperativity occurs in human
glutathione transferase (GST) GSTP1-1 when it binds and neu-
tralizes a toxic nitric oxide adduct, the dinitrosyl-diglutathionyl
iron complex (DNDGIC). However, the generality of this behav-
ior across the divergent GST family and its evolutionary signif-
icance were unclear. To investigate, we studied 16 different
GSTs, revealing that negative cooperativity is present only in
more recently evolved GSTs, indicating evolutionary drift in this
direction. In some variants, Hill coefficients were close to 0.5,
the highest degree of negative cooperativity commonly observed
(although smaller values of nH are theoretically possible). As
DNDGIC is also a strong inhibitor of GSTs, we suggest negative
cooperativity might have evolved to maintain a residual conju-
gating activity of GST against toxins even in the presence of high
DNDGIC concentrations. Interestingly, two human isoenzymes
that play a special protective role, safeguarding DNA from
DNDGIC, display a classical half-of-the-sites interaction. Analysis
of GST structures identified elements that could play a role in neg-
ative cooperativity in GSTs. Beside the well known lock-and-key
and clasp motifs, other alternative structural interactions between
subunits may be proposed for a few GSTs. Taken together, our
findings suggest the evolution of self-preservation of enzyme func-
tion as a novel facility emerging from negative cooperativity.

Glutathione transferases are a superfamily of enzymes
responsible for the metabolism and inactivation of a broad
range of carcinogens and xenobiotics (1, 2). They catalyze the
conjugation of glutathione (GSH) to many toxic organic com-
pounds provided with an electrophilic center. They are also
able to act as ligandins, binding and sequestering many types of
toxins without any chemical reaction involved. This non-catalytic

role has an important physiological impact because these proteins
are abundantly expressed in all organisms, from bacteria to
humans, approaching concentrations close to 1 mM in some cells
(3). Cytosolic GSTs have been grouped into 13 gene-independent
classes based upon their primary structure (4). An alternative clas-
sification is possible on the basis of the residue that in the active site
(the G-site) favors the activation of GSH: the Cys-GSTs (Omega
and Beta classes) whose structures are close to the ancestral pre-
cursor of all GSTs, the Ser-GSTs (Delta, Theta, Zeta, and Phi
classes, including also Nu-GST activated by a threonine), and the
Tyr-GSTs (Alpha, Pi, Mu, and Sigma classes); this latter sub-
family comprises the more recently evolved GSTs. Most of
these variants are dimeric proteins composed of identical sub-
units. However, heterodimeric GSTs composed of different
members from the same class also occur (5). For many years
GSTs were considered non-cooperative enzymes based on
hyperbolic binding curves of substrates (6), further supported
by the kinetic independence of subunits in heterodimeric GSTs
demonstrated with various substrates as well as inhibitors (7, 8).
However, in 1995 the replacement of a critical cysteine (Cys-47)
by site-directed mutagenesis of the human GSTP1-1 disclosed
a hidden intersubunit communication made evident by marked
positive homotropic behavior for GSH binding (9). A few years
later, other single point mutations on the same variant (10 –12)
as well as on other GSTs (13–14) also revealed hidden cooperativity.

Intersubunit communication in native GSTP1-1 was indi-
cated by modification with thiol reagents (15), and the crystal
structure (16) provided strong evidence for negative coopera-
tivity in the enzyme. A number of different chemical or physical
inactivators provided further support for this interpretation
(17). In the meantime, a few other GSTs revealed cooperative
properties in a native status, namely the murine GSTA4–4 (18),
the human GSTA1-1 (19), and the Plasmodium falciparum GST
(20, 21). However, the human GSTP1-1 remained the most pecu-
liar and striking case of cooperativity among all GSTs, showing
positive cooperativity for GSH binding at temperatures above
35 °C and negative cooperativity below 25 °C (22).

A particularly interesting GST ligand is the dinitrosyl-diglu-
tathionyl-iron complex (DNDGIC)2 (Fig. 1A) formed sponta-
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neously when an excess of nitric oxide is produced in the cell
(23). By sequestering free iron and NO, this complex may
counteract both oxidative and nitrosylative stress. However,
DNDGIC is toxic to the cell as indicated by the significant
induction of the SOS DNA repair systems (24), activation of the
oxidative shock response (soxA) gene, and the gene Sfia inhib-
iting cell division (25). Moreover, it irreversibly inactivates glu-
tathione reductase, an enzyme necessary for maintaining the
redox balance of the cell (26). A few GST variants have been
found to act as efficient DNDGIC ligandin proteins, displaying
astonishing affinities. In particular, the recently evolved Tyr-
GSTs show KD values ranging from 10�9 to 10�12 M (23) mak-
ing this complex a prime intracellular ligand for these enzymes.
X-ray diffraction data demonstrated that DNDGIC binds to the
G-site with loss of one glutathione (Fig. 1B), replacing it with
the residue contributing to the GSH activation, i.e. tyrosine,
serine, or cysteine that complete the coordination shell of the
ferrous ion (27). By testing 39 different GSTs, we also found that

the Cys-GSTs, which are close to the ancestral GST protein,
have thousands of times lower affinity for DNDGIC than the
Tyr-GSTs and Ser-GSTs (23). Thus, protection of the cell
against NO by means of GSTs was proposed to recently have
been acquired during evolution. Interestingly, Cys-GSTs are
the only known GSTs expressed by bacteria, and their low affin-
ity for DNDGIC has been related to the sensitivity of these
organisms to nitrosylative stress (23). Notwithstanding the
beneficial effects of the DNDGIC sequestration by GSTs, a
likely disadvantage is that these enzymes, when saturated
reversibly by this complex, become catalytically inactive and
lose their ability to conjugate GSH to many other toxins. How is
it possible to reconcile these two opposite needs, i.e. bind DND-
GIC too tightly enough to be not easily released and at the same
time preserve an essential and sufficient conjugating activity?
The development of negative cooperativity for DNDGIC bind-
ing in GSTs appears to be an advantageous solution.

This work shows that negative cooperativity is not restricted
to GSTP1-1 but is present also in many other members of the GST
superfamily never described as cooperative enzymes. We propose
that negative cooperativity has evolved to maintain a residual con-
jugating activity of GST against toxins in the presence of DND-
GIC. By this mechanism the physiological role of detoxication is
safeguarded by a phenomenon, which may be reasonably defined
as “cooperative self-preservation of function.”

Results

DNDGIC Binding Triggers a Strong Negative Cooperativity in
Many GSTs—In the present study 16 different GSTs, as repre-
sentative members of the Tyr-, Ser-, and Cys-GST subfamilies,
were examined in relation to their interaction with DNDGIC.
Data reported in Table 1 show that almost all tested Tyr-GSTs
and Ser-GSTs display a noticeable negative cooperativity for
DNDGIC binding with Hill coefficients, nH, ranging from 0.51
to 0.75 (Table 1). If the adjacent subunit is still catalytically
active in the half-saturated GSTs, this behavior would warrant a

FIGURE 1. A, chemical structure of the dinitrosyl-diglutathionyl iron complex
(DNDGIC). B, crystal structure of DNGIC bound to GSTP1-1 (one GSH is
replaced by a Tyr residue, which completes the coordination shell of the iron
ion with its -OH group). The structure is from PDB ID 1ZGN, the protein is in
green ribbons, whereas DNGIC and Tyr-7 are depicted in ball-and-stick colored
according to atom type (27).

TABLE 1
Cooperativity for DNDGIC binding in several GSTs
nH are Hill coefficients, and KD1 and KD2 are dissociation constants for DNDGIC calculated by fluorometric experiments. Equations used for calculation of nH and KD1 and
KD2 are reported under “Experimental Procedures.”

Glutathione transferase variants nH KD1 KD2 KD2/KD1 Lock-and-key motif

Tyrosine subfamilya

H. sapiens GSTP1-1 0.51 � 0.06 1.5 � 0.1 120 � 5 80 � 9 Yes
H. sapiens GSTA1-1 0.57 � 0.06 0.08 � 0.01 3.4 � 0.1 43 � 6 Yes
H. sapiens GSTA2-2 0.66 � 0.06 0.20 � 0.02 4.8 � 0.2 24 � 3 Yes
H. sapiens GSTA3-3 0.54 � 0.05 0.07 � 0.01 4.4 � 0.1 63 � 10 Yes
H. sapiens GSTM2-2 0.67 � 0.07 1.2 � 0.1 20 � 2 17 � 3 Yes
O. volvulus GST2 0.52 � 0.05 6.4 � 0.2 490 � 20 77 � 5 Yes
S. haematobium GST 0.65 � 0.05 0.40 � 0.02 10 � 1 25 � 4 Alternative

Serine subfamilyb

L. cuprina GSTc 1.0 � 0.1 0.11 � 0.01 0.11 � 0.01c 1 No
A. dirus GSTD3-3 0.62 � 0.06 0.14 � 0.01 4.8 � 0.3 34 � 4 Yes (clasp)
A. dirus GSTD5-5 0.62 � 0.06 0.11 � 0.01 3.4 � 0.1 31 � 4 Yes (clasp)
A. dirus GSTD4-4 0.66 � 0.05 0.22 � 0.02 5.1 � 0.3 23 � 3 Yes (clasp)
H. sapiens GSTT2-2 0.75 � 0.08 0.30 � 0.02 3.9 � 0.2 13 � 2 Alternative

Cysteine subfamilyb

O. anthropic 0.95 � 0.08 0.22 � 0.03 0.22 � 0.03c 1 No
B. xenovorans 1.0 � 0.1 400 � 20 400 � 20c 1 No
S. paucimobilis 1.0 � 0.1 60 � 3 60 � 3c 1 No
P. mirabilis 1.0 � 0.1 350 � 30 350 � 30c 1 No

a Concentrations for KD1 and KD2 are measured in nM.
b Concentrations for KD1 and KD2 are measured in �M.
c For these GST variants the fits are essentially monophasic, and then the dissociation constants KD1 � KD2.
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residual conjugating activity even in the presence of a large
amount of DNDGIC, i.e. in the case of relevant NO production
in the cell. Notably, the Hill coefficients found for a few Tyr-
GSTs approach the value of 0.5, which is the highest degree
of negative cooperativity commonly observed in a dimeric
enzyme (28). None of the GSTs taken as representative mem-
bers of the Cys-GSTs subfamily shows any cooperativity (Table
1 and Fig. 2). Thus, these GSTs, all close to the ancestral pre-
cursor of GSTs, not only display 3 orders of magnitude lower

affinity for DNDGIC than the Tyr- and Ser-GSTs but also lack
any detectable intersubunit communication necessary for
cooperative modulation. Interestingly, the average of both nH
and the ratio of the two apparent binding constants KD2/KD1 for
DNDGIC binding follow a trend that parallels the evolution
pathway of these enzymes (Fig. 2). Representative fits of exper-
imental data to the equations diagnostic for cooperativity are
reported in Figs. 3, 4, and 5.

The Negative Cooperativity Preserves the Enzymatic Activity
in the Adjacent Subunit—By evaluating the effect of the coop-
erative binding of DNDGIC on the classical GST activity, i.e. its
ability to conjugate GSH to 1-chloro-2,4-dinitrobenzene
(CDNB), it is evident that many tested GSTs belonging to the
Tyr- and Ser- subfamilies efficiently protect the activity of the
adjacent subunit after the first one has bound DNDGIC. This
may be quantified by means of a “protection factor” (Ki2/
Ki1 �1) obtained by kinetic data, which indicates to what extent
one subunit becomes more resistant to inactivation by
DNDGIC when the adjacent subunit has bound this compound
(Fig. 6). Among all tested Tyr-GST variants, GSTP1-1 and
Onchocerca volvulus GST show the highest protection factors,
but even the human GSTM2-2 and GSTA2-2 display remarka-
ble protection values (Fig. 6). Among the Ser-GST variants,
GSTD3 and GSTD5 are those showing the most efficient self-
protection, whereas this mechanism is absent in Lucilia
cuprina GST (Table 2). Obviously, no protection is obtained in
the Cys-GSTs, which do not display any cooperativity (Fig. 6
and Tables 1 and 2). Two apparently paradoxical exceptions

FIGURE 2. Negative cooperativity for DNDGIC binding. A, average (and S.E.)
of the ratio between the two dissociation constants for GST-DNDGIC interac-
tion (KD2/KD1) calculated for all tested dimeric GSTs (see Table 1) and grouped
into the three sub-families. B, average (and S.E.) of all Hill coefficients calcu-
lated for all GSTs grouped into the three sub-families. Experimental details are
reported under “Experimental Procedures.”

FIGURE 3. Representative fits of inhibition data of GSTP1-1 (a cooperative GST). Experimental inhibition data by DNDGIC were fitted by the two-site
inhibition equation reported under “Experimental Procedures” to obtain Ki1 and Ki2 (r2 � 0.995). A, section of the global fit showing the inhibition due to the
binding of DNDGIC to the high affinity site. B, section of the global fit showing the inhibition due to the binding of DNDGIC to the low affinity site. Note that the
plots show apparent Ki values (see Equation 1). C, experimental data for inhibition by DNDGIC, fitted to the Hill equation (r2 � 0.991) reported under
“Experimental Procedures,” which provides nH values. Error bars represent the S.D. D, Hill plot for the same experimental data reported in panel C. Coefficients
of variation for each point do not exceed 12%.
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have been found, represented by GSTA1-1 and GSTA3-3
(Table 2), and their behavior will be explored more deeply
below. Excluding these two variants, the average of Ki2/Ki1
ratios produce similar values as calculated from the average of
KD2/KD1 ratios (coming from thermodynamic fluorescence
data) for all the Tyr-GSTs and the Ser-GSTs (Tables 1 and 2).
This coincidence occurs because binding of DNDGIC to one
GST subunit leaves intact the catalytic efficiency of the adjacent
subunit, as suggested by a residual activity in the half-saturated
GSTs of �50% of the original one. Actually, in the DNDGIC-half-

saturated enzyme the affinity for GSH in the vacant subunit is not
much changed. For example the half-saturated GSTP1-1 shows a
Km � 0.22 mM for GSH instead of 0.15 mM (data not shown). This
increment does not modify the catalytic capacity of GSTs in
vivo given that the GSH concentration in the cells is 1– 8 mM.
Fig. 7 explains the cooperative self-preservation mechanism
found in GSTs. Even in the presence of DNDGIC in concen-
trations essentially saturating one subunit, the second sub-
unit remains unliganded and catalytically active.

A Few Alpha Class GSTs Adopt a Half-of-the-sites Inter-
action—An interesting exception to the above described
self-preservation found in the Tyr-GSTs and Ser-GSTs is rep-
resented by the Alpha class GSTA1-1 and GSTA3-3, both
undergoing a typical half-of-the sites interaction, i.e. when one
subunit binds DNDGIC, the adjacent one becomes fully inac-
tive but still able to bind a second DNDGIC molecule with
lower affinity (see Tables 1 and 2 and Fig. 6). This property,
observed in the past for GSTA1-1 (29), is now also found for
GSTA3-3, whereas the homologous GSTA2-2 follows the
cooperative self-preservation behavior demonstrated for other
GSTs. This finding is proved by plotting the residual activity of
these GSTs as a function of substoichiometric additions of the
inhibitor (Fig. 8, A–C). The peculiar affinities of these two vari-
ants toward DNDGIC and their expression and localization
inside the cell suggest some possible comments. In fact,
GSTA1-1 and GSTA3-3 display the highest affinity, showing
20 times higher affinity for DNDGIC (�8 � 10�11 M) than all
other Mu and Pi variants (1.5 � 10�9 M) (23). The complete loss
of activity after the half-of-the-sites binding of DNDGIC seems
to be the price that needs to be paid by these GSTs for assuming
the role of interceptors toward DNDGIC. This suicide behavior
inherent in their enzymatic activity is probably well tolerated by
the cell, as the Alpha class GSTs are often co-expressed with a

FIGURE 4. Representative fits of the DNDGIC binding data to O. volvulus GST2 (a cooperative GST). Experimental fluorescence quenching data by DNDGIC
were fitted by the two-site binding equation reported under “Experimental Procedures” to obtain KD1 and KD2 (r2 � 0.994). A, section of the fit showing the
binding of DNDGIC to the high affinity site. B, section of the fit showing the binding of DNDGIC to the low affinity site. C, experimental inhibition data by
DNDGIC fitted to the Hill equation (r2 � 0.990) reported under “Experimental Procedures,” which provides nH values. Error bars represent the S.D.

FIGURE 5. Representative fits of the DNDGIC inhibition and binding data to S. paucimobilis GST (a non-cooperative GST). Experimental fluorescence and
inhibition data were fitted by the two-site binding and inhibition equations reported under “Experimental Procedures,” obtaining KD1 � KD2 and Ki1 � Ki2. A,
intrinsic fluorescence quenching of S. paucimobilis GST by DNDGIC (r2 � 0.993). B, inhibition data by DNDGIC (r2 � 0.994). The same inhibition data were also
fitted by the Hill equation (plot not shown), giving the same curve as in B and an nH value of 1.0 � 0.1. Error bars represent the S.D. C, Hill plot for the same
experimental data reported in panel B.

FIGURE 6. Protection factors against inactivation due to DNDGIC binding.
Protection factor (by what factor does one subunit become more resistant to
inactivation by DNDGIC when the adjacent subunit has bound this complex)
is defined as (Ki2/Ki1 �1). The negative value (�1) for GSTA1-1 and GSTA3-3
(amplified in the plot) underlines an opposite phenomenon, i.e. a half-site
inhibition where Ki2 approaches zero. Error bars are derived from Table 2.
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conspicuous level of Mu class GSTs, which show cooperative
self-preservation and then guarantee a residual detoxifying
activity toward other toxins in case of NO insults. Another safe-
guard is the presence of heterodimers containing a GSTA2 sub-
unit, which could display activity when the other subunit binds
DNDGIC. Graphic representation of the expression of all
GSTs in human hepatocyte, their detoxifying capacity toward
DNDGIC, and their conjugating activity toward toxic electro-
philic compounds is given in Fig. 9, A, B, and D. It appears that
all the defense capacity against DNDGIC in human hepatocytes
is exclusively assumed by the Alpha GSTs, in particular by
GSTA1-1 (Fig. 9C). The human GSTA3-3 is primarily
expressed in steroidogenic tissues but not in liver (30); thus, its
contribution in human hepatocytes to bind DNDGIC is null
despite its strong affinity for this complex (Fig. 9).

A further important element that justifies the sacrifice of
catalytic activity in the Alpha GSTs in favor of an acquired

extraordinary affinity for DNDGIC is the peculiar cell localiza-
tion of these variants. In fact, �30% of the entire pool of Alpha-
GSTs is concentrated near the inner and outer nuclear enve-
lope, forming, as with many other enzymes, a defense barrier
for DNA termed “nuclear shield” (31, 32). For this peculiar role,
some Alpha GSTs developed an extraordinary affinity during
evolution but, as it appears, at the expense of their catalytic
efficiency.

Structural Requirements for Negative Cooperativity in
GSTs—A classical structural explanation for negative or posi-
tive cooperativity is that one subunit, once it has bound a spe-
cific ligand, modifies the structure of the adjacent free subunit.
The subunit interfaces, as they appear from the X-ray struc-
tures of many dimeric GSTs, help us to identify the structural
requirements for the observed negative cooperativity. The two
adjacent monomers display three types of interactions: polar
contacts, hydrogen bonds, and hydrophobic interactions. For
the mammalian Tyr-GSTs the combination of mutational,
kinetic, and structural studies provide strong evidence for the
structural basis of cooperativity, in particular for GSTP1-1 (33).
By analogy, but with less experimental evidence, we suggest
similar structural requirements for negative cooperativity in
other GSTs below. In the Tyr-GSTs a typical hydrophobic con-
tact, important for inter-subunit communication, is the “lock-
and-key” motif. This structural trait is formed by an aromatic
residue (key residue) from domain I in one subunit wedged into
a hydrophobic pocket formed by helices 4 and 5 in domain II of
the other subunit (lock apparatus) (Fig. 10A). The lock-and-key
motif is a common feature of Pi, Mu, and Alpha class GSTs
where the key residue is either phenylalanine or tyrosine
(Tyr-49 or Tyr-50 with Met-1 residue in hGSTP1-1) buried in a
hydrophobic pocket formed by Met-91, Val-92, Gly-95, Pro-
128, Phe-129, and Leu-132 of the second subunit chain (Fig.
10A). Mutagenesis has been used to investigate the importance
of the key residue for dimerization, stability, and cooperativity
found in GSTP1-1 (34), GSTA1-1 (35), and GSTM1-1 (36). The

TABLE 2
Inhibition constants for DNDGIC interaction with several GSTs
Ki1 and Ki2 are the true inhibition constants for DNDGIC calculated from the kinetics experiments via the apparent constants Ki1

app and Ki2
app. Equations used for calculation

of Ki1 and Ki2 are reported under “Experimental Procedures.”
Glutathione transferase variants Ki1 Ki2 Ki2/Ki1 Self-preservation

Tyrosine subfamilya

H. sapiens GSTP1-1 1.4 � 0.1 110 � 4 79 � 8 Yes
H. sapiens GSTA1-1 0.07 � 0.01 0b 0b No
H. sapiens GSTA2-2 0.18 � 0.01 4.6 � 0.1 26 � 2 Yes
H. sapiens GSTA3-3 0.05 � 0.01 0b 0b No
H. sapiens GSTM2-2 1.2 � 0.1 22 � 2 18 � 3 Yes
O. volvulus GST2 6.5 � 0.2 500 � 20 77 � 5 Yes
S. haematobium GST 0.44 � 0.02 11 � 1 25 � 3 Yes

Serine subfamilyc

L. cuprina GSTc 0.10 � 0.01 0.10 � 0.01d 1 No
A. dirus GSTD3-3 0.15 � 0.01 5.0 � 0.3 33 � 4 Yes
A. dirus GSTD5-5 0.12 � 0.01 3.6 � 0.1 30 � 3 Yes
A. dirus GSTD4-4 0.24 � 0.02 5.4 � 0.3 23 � 3 Yes
H. sapiens GSTT2-2 0.30 � 0.02 4.0 � 0.2 13 � 2 Yes

Cysteine subfamilyc

O. anthropic 0.26 � 0.03 0.26 � 0.03d 1 No
B. xenovorans 440 � 20 440 � 20d 1 No
S. paucimobilis 63 � 3 63 � 3d 1 No
P. mirabilis 380 � 30 380 � 30d 1 No

a Concentrations for Ki1 and Ki2 are measured in nM.
b For GSTs that show half-of-the-site interaction the Ki2 was assumed to be 0.
c Concentrations for Ki1 and Ki2 are measured in �M.
d For these GST variants the fits are essentially mono-phasic, then inhibition constants Ki1 � Ki2.

FIGURE 7. The cooperative self-preservation mechanism found in GSTs as
well as in other homo-dimeric enzymes. A and I represent the substrate and
the inhibitor, respectively. Pink squares represent the modified subunits,
which do not bind (or scarcely interact with) the inhibitor molecule.
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FIGURE 8. Cooperative half-of-the sites inactivation and cooperative self-preservation in Alpha class GSTs. Variable amounts of DNDGIC (from 0.4 to 4
�M) were incubated with 4 �M Alpha class GSTs in 0.1 M potassium phosphate buffer, pH 7.4 (Panel A, GSTA1-1; Panel B, GSTA2-2; Panel C, GSTA3-3). After 2 min
of incubation, aliquots were assayed for GST activity. Error bars are S.D.

FIGURE 9. In vitro and in vivo capacity of human hepatocyte GSTs to bind DNDGIC or to inactivate toxins by conjugation with GSH. A, relative capacity
of identical amounts of purified GSTs to bind DNDGIC (data coming from dissociation constant KD1 reported in Bocedi et al. (23). a.u., arbitrary units. B, relative
expression of GST variants (microgram of GSTs/mg total protein) in human hepatocytes (from Ref. 58). C, relative capacity of human GSTs to bind DNDGIC in
hepatocytes (relative concentrations of GST variants in liver (58) � their corresponding affinities for DNDGIC reported in panel A). D, relative capacity of human
GSTs in hepatocytes to conjugate GSH to toxic electrophilic compounds (relative concentrations of GST variants (58) � their corresponding specific activities
toward CDNB (units/mg � 80 for A1-1, 166 for M1-1 (59), 78 for A2-2, 157 for M1-1, 182 for M2-2, and 129 for P1-1 (60)). Error bars are S.E. *, the null contribution
of GSTA3-3 in the liver cell protection is simply due to its absence from these cells (30), as shown in panel B.
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Schistosoma haematobium GST, which also shows a relevant
negative cooperativity (nH � 0.65), lacks this specific motif but
shows an alternative insertion of an aromatic residue (Tyr-92)
into a hydrophobic cavity of the adjacent subunit formed by
Lys-80 and Met-85 but also surrounded by the Arg-76 and
Tyr-77 (Fig. 10B). In the Ser-GSTs, a lock-and-key motif is
always present but different from that reported in mammalian
Alpha/Mu/Pi classes. A striking characteristic of this motif
involving the “key” residue is that it not only inserts into a
hydrophobic pocket of the neighboring subunit but also itself
acts as part of the lock for the other subunit key. In addition, the
key residues from both subunits hook around each other in an
aromatic pi-pi interaction, through slightly offset aromatic ring
stacking, generating a “clasp” in the middle of the subunit inter-
face (37). The clasp motif is formed by an aromatic residue of
Phe-104 of one subunit and the Arg-67, His-100, Leu-103, and
Val-107 of the second subunit and vice versa occurs among the
Phe-104 of the second subunit and the same four residues of the
first subunit. The clasp motif appears like two hands inter-
locked with the two Phe-104 residues in the central portion
(Fig. 10C). The human GSTT2-2 lacks this peculiar motif, but
similar to the S. haematobium GST, an alternative aromatic
residue (Tyr-73) is inserted in a hydrophobic cavity of the adja-
cent subunit formed by Leu-89 and Ala-93 possibly acting as an
ancillary transmission device for cooperativity (Fig. 10D). In the
Cys-GSTs no similar intersubunit connections were observed,
in full agreement with the absence of any kinetic or binding
cooperativity (Table 1). Obviously, the alternative motifs pro-
posed here for S. haematobium GST and for GSTT2-2 are plau-

sible but only hypothetical structural mechanisms that must be
confirmed in the future by mutagenesis experiments.

Discussion

Negative cooperativity is even now one of the most intriguing
phenomena in biochemistry, but many aspects are still to be
explored (38 – 41). A typical case of negative cooperativity is the
half-of-the-sites interaction, i.e. when binding of a specific
inhibitor to one subunit of a dimeric enzyme results in the adja-
cent vacant subunit becoming fully inactive (42). Alternatively,
the binding of the inhibitor to the first subunit may give the
second subunit lower affinity for the same compound. In this
case the adjacent subunit retains its original activity even in the
presence of an excess of inhibitor (43). In this complex scenario
of different and sometimes opposite effects triggered by nega-
tive cooperativity mechanisms, a much debated question is the
identification of specific physiological functions. Cornish-
Bowden stated in 1975 that physiological role of negative coop-
erativity remained unclear (44), and almost 40 years later he
concluded that there had been very little progress in under-
standing its biological function, although he proposed that neg-
ative cooperativity can better be understood in a network
context, generating very high sensitivity of metabolite concen-
trations to flux perturbations (45). The particular cooperativity
found in the GST superfamily and described in this paper shows
some novelties in this context. The interaction of GSTs with
DNDGIC, a toxic compound that can be neutralized by these
enzymes but that also represents a strong inhibitor for all GSTs,
offers a diverse scenario of utilization of negative cooperativity
that spans from a classical half-of-the sites interaction to a
cooperative self-preservation. The availability of many purified
GST variants and the corresponding X-ray diffraction data
offered us an extraordinary investigative strength to define evo-
lutionary pathways and structural requirements for this phe-
nomenon. A first conclusion is that these detoxifying enzymes
have evolved to acquire a cooperative self-preservation mech-
anism that helps to save a residual enzymatic activity in the case
of DNDGIC overproduction i.e. after NO toxicity. The evolu-
tion progress appears evident, observing that all tested Cys-
GSTs (the oldest variants close to the ancestral GST), despite
their dimeric structures and their three-dimensional shapes
similar to the more recently evolved GSTs, display no (or very
scarce) trace of negative cooperativity. In addition, most Ser-
GSTs, which also appeared after Cys-GSTs but before the Tyr-
GSTs in the evolution pathway of GSTs, display a less efficient
cooperative self-preservation than that found in the more
recently evolved Tyr-GSTs (Tables 1 and 2 and Fig. 2). A struc-
tural explanation of these differences has been recognized. The
typical lock-and-key motif involving one hydrophobic residue
of one subunit, which is inserted between helix 4 and helix 5 of
the second one, is only present in the Tyr-GSTs (35) and
appears to be the most efficient structural machinery to achieve
an optimized self-preservation with nH values near 0.5, which
indicates a very strong negative cooperativity for a dimeric pro-
tein (see Table 1). A different but less efficient intersubunit
connection, termed clasp motif, has been found in a few Ser-
GSTs (37) but not in all. In addition, these connections are not
unique; in one Tyr-GST and in one Ser-GST variants other

FIGURE 10. Structural requirements for cooperative interactions in GSTs.
A, the lock-and-key motif in hGSTP1-1. Tyr-49 (Tyr50 with Met-1 residue) is
reported in corn blue for chain A and in orange for chain B. Met-91, Val-92,
Gly-95, Pro-128, Phe-129, and Leu-132 in chain A and B are reported as blue
and red spheres, respectively. B, the “alternative” motif found in GST from
S. haematobium. Tyr-92 of the two subunits is reported in corn blue for chain A
and in orange for chain B; Arg-76, Tyr-77, Lys-80, and Met-85 in chain A and B
are reported as blue and red spheres, respectively. C, the clasp motif found in
GSTD4-4 from A. dirus. Phe-104 of the two subunits is reported in corn blue for
chain A and in orange for chain B; Arg-67, His-100, Leu-103, and Val-107 in
chain A and B are reported as blue and red spheres, respectively. D, the alter-
native motif of the hGSTT2-2. Tyr-73 of the two subunits are reported in corn
blue for chain A and in orange for chain B; Leu-89 and Ala-93 in chains A and B
are reported as blue and red spheres, respectively. In all structures the back-
bone chains are in blue and red colors.
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alternative modalities of communication may be proposed (see
Fig. 10, B and D). Thus it appears that diverse structural motifs
have been adopted by GSTs during evolution to reach an effi-
cient intersubunit communication. Conversely, none of the
tested bacterial Cys-GSTs, close to the ancestral forms of GSTs,
display any similar structural insertions. Interestingly, one of
the most efficiently self-protecting GSTs is the GSTP1-1,
whose enzymatic activity must definitely be saved, as it is the
sole GST variant expressed in some tissues. The half-of-the-
sites interaction leading to full inactivation, found for the two
GSTs showing the highest propensity to bind DNDGIC, is
probably the price to be paid to reach such astonishing affinity.
The finding that GSTs with highest affinity (i.e. the Alpha class
variants) surround in large amounts the nuclear envelope is
strong evidence that one primary function of these enzymes is
to protect the nucleus and DNA from DNDGIC, leaving to the
Mu class GSTs the classic catalytic role against other toxins. We
must remember that in all cells Alpha class GSTs are often
combined with variable amounts of Mu class GSTs, and then
this sacrifice is probably well balanced by the presence of a
sufficient potential of active enzyme for the classical conjugation
of GSH to other toxins (see Fig. 9). Alternatively, the presence of
substantial amounts of GSTA1-2 or GSTA2-3 heterodimers (5)
could also guarantee a residual conjugating activity toward elec-
trophilic toxins in the presence of DNDGIC. In fact, this appears as
a reasonable explanation for the existence of GST heterodimers.

In conclusion, the cooperative self-preservation found in
GSTs, but probably also operative in a number of other multi-
meric enzymes, may be considered a novel biological applica-
tion of Le Chatelier’s principle: “If there is a change in the con-
dition of a system in equilibrium, the system will adjust itself in
such a way as to counteract, as far as possible, the effect of that
change” (46). In our case, whenever a chemical factor (for
example DNDGIC) perturbs or inhibits the enzyme, it opposes
this perturbation by developing some negative cooperativity
that tends to relieve that stress.

Other Enzymes Have Acquired Cooperative Self-preser-
vation—Many studies describing the interaction of specific
inhibitors to homo-multimeric enzymes have revealed that
biphasic inhibition patterns are not an unusual finding. This
suggests that negative cooperativity mechanisms could have
been adopted and perfected to achieve self-preservation, but
curiously this possibility has only rarely been taken into consid-
eration. An extended examination of the scientific literature
now leads to the realization that 100s of enzymes display this
behavior. For example, aminoglycoside N-acetyltransferase
(47), adenylosuccinate lyase (48), adenylosuccinate synthetase
(49), enoyl-ACP reductase (50), thymidylate synthase (51),
pyruvate kinase (43), formate dehydrogenase (52), and pyruvate
phosphate dikinase (53) show negative cooperativity toward
specific inhibitors, but no allusion to a possible self-preserva-
tion function has been made. Conversely, the study of the pro-
lidase inhibition by the natural inhibitor phosphoenolpyruvate
represents a rare example of a discovered negative cooperativ-
ity explicitly indicated as “an expedient evolutionary solution to
the problem of eluding an endogenous inhibitor” (54).

Our intention in this paper has been to draw attention and
analyze a role for negative cooperativity that has been given

almost no attention in the past. However, we do not suggest
that self-preservation is the only reason why it should have been
selected in evolution. In other cases increasing the sensitivity of
the concentrations of intermediate metabolites (45) may pro-
vide a better explanation, although it does not seem to apply to
the glutathione transferases.

Experimental Procedures

Purified GSTs—Human GSTP1-1, human GSTA1-1, human
GSTA2-2, human GSTA3-3, human GSTM2-2, O. volvulus
GST2, S. haematobium GST, L. cuprina GSTc, Anopheles
dirus GSTD3-3, A. dirus GSTD4-4, A. dirus GSTD5-5, human
GSTT2-2, Ochrobactrum anthropi GST, Burkholderia xeno-
vorans GST, Sphingomonas paucimobilis GST, and Proteus
mirabilis GST, all except L. cuprina GST (M. W. Parker, per-
sonal gift), were expressed and purified as described previously
(23).

Synthesis of Dinitrosyl-diglutathionyl Iron Complex—
DNDGIC was prepared essentially as described previously (55).
Briefly, 1 ml of 0.5 mM FeSO4 (dissolved in degassed water to
avoid rapid oxidation to the ferric state) was added to 10 ml
(final volume) of 0.1 mM potassium phosphate buffer, pH 7.4,
containing 20 mM GSH and 2 mM S-nitrosoglutathione (25 °C).
After 10 min the reaction was almost complete, and the result-
ing stock solution of DNDGIC (50 �M) was stable for at least
3 h. More concentrated solutions (up to 1 mM DNDGIC) were
also obtained by incubating GSH 20 mM, 4 mM S-nitrosogluta-
thione, and variable FeSO4 (up to 1 mM) in 0.05 M sodium
borate buffer, pH 11.0.

Inhibition by DNDGIC—The interaction of the inhibitor
DNDGIC with Tyr-GSTs and Ser-GSTs has been studied by
means of inhibition experiments using the classical enzymatic
reaction, i.e. GSH (0.1 mM), 1-chloro-2,4-dinitrobenzene (1
mM) in 0.1 M potassium phosphate buffer and variable additions
of DNDGIC. The spectrophotometric procedure was identical
to the one described previously (23). Inhibition kinetics data
were fitted by a two site inhibition Equation 1,

Y �
Bmax1�DNDGIC�

Ki1
app � �DNDGIC�

�
Bmax2�DNDGIC�

Ki2
app � �DNDGIC�

(Eq. 1)

where Y is the percent of inhibition, and Bmax1 	 Bmax2 � 100.
Ki1

app and Ki2
app are the apparent values from which the true

inhibition constants are calculated via Ki1
app � Ki1(1 	 [GSH]/

Km), and Ki2
app � Ki2(1 	 [GSH]/Km) and the Km values derived

from Ref. 23.
Fluorescence Experiments—Quenching of intrinsic fluores-

cence by DNDGIC was measured in a single photon counting
spectrofluorometer (Fluoromax, S.A. Instruments, Paris,
France) with a sample holder thermostated at 25 °C (37 °C for
GSTT2-2). Excitation was at 280 nm, and emission was at 340
nm. In a typical experiment GST (2 �M) was incubated with
variable amounts of DNDGIC (from 0.2 to 20 �M) in 1 ml of 0.1
M potassium phosphate buffer, pH 7.4. After 5 min (40 min for
GSTT2-2), the fluorescence at 340 nm was measured and cor-
rected for inner filter effect. Data were fitted by a two-site bind-
ing equation,
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Y �
Bmax1�DNDGIC�

KD1 � �DNDGIC�
�

Bmax2�DNDGIC�

KD2 � �DNDGIC�
(Eq. 2)

where Y is the percent of fluorescence quenching and Bmax1 	
Bmax2 � 100.

As shown in Tables 1 and 2, KD values are very similar to
those for Ki obtained by kinetic experiments, except for
GSTA1-1 and GSTA3-3, which display half-site interaction
(full inhibition in the half-saturated enzyme with DNDGIC) but
two distinct binding constants.

Hill Plot and Hill Coefficients—Hill coefficients (nH) were calcu-
lated by fitting fluorometric or inhibition data to the equation,

Y � Ymax

�DNDGIC�nH

Ki
nH � �DNDGIC�nH

(Eq. 3)

where Y is the percent of inhibition or fluorescence perturba-
tion, and nH is the Hill coefficient.

Visualization of negative cooperativity (or its absence) was
also obtained by means of the Hill plot (Equation 4),

log� Y

100 � Y� � nHlog�DNDGIC� � logK1 (Eq. 4)

where Y is percent of inhibition or percent of fluorescence
quenching.

GST Activity—GST activity was assayed by incubating 0.1
mM GSH and 1 mM CDNB in 0.1 M potassium phosphate buffer,
pH 6.5 (25 °C). The reaction was followed spectrophotometri-
cally at 340 nm, where the CDNB-GSH adduct absorbs (� �
9600 M�1 cm�1).

Structural Studies—Illustrations of X-ray structures were
created by UCSF Chimera (56). PDB ID used to identify inter-
face connectivities were: hGSTP1-1, 6GSS; hGSTA1-1, 1K3L;
hGSTA2-2, 2WJU; hGSTA3-3, 1TDI; hGSTM2-2, 2AB6; O.
volvulus GST2, 1TU8; S. haematobium GST, 1OE7; L. cuprina
GSTc (Parker, personal communication); A. dirus GSTD3-3,
1JLV; A. dirus GSTD4-4, 3F63; A. dirus GSTD5-5, 1R5A;
hGSTT2-2, 3LJR; O. anthropi GST, 2NTO; B. xenovorans
GST, 2DSA; S. paucimobilis GST, 1F2E; P. mirabilis GST,
2PMT. Finally, hGSTP1-1 with DNGIC was derived from
PDB ID 1ZGN.

The residue numbering of all these GSTs is those reported in
the Protein Data Bank. In this library only human GSTP1-1,
GSTA1-1, and GSTM2-2 sequences do not display Met-1.

Statistical Data Analysis—Kinetic and thermodynamic data
were analyzed and displayed by GraphPad Prism software (La
Jolla, CA). The experimental values reported in Table 1 and
Table 2 and in Figs. 3–7 are the means of three independent
experiments � S.D. The propagation of uncertainties for the
quotients in Tables 1 and 2 were analyzed according to the
classical statistical methods (57).
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