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Abstract 

A number of theories have been proposed to explain in precise mathematical terms how 

statistical parameters and sequential properties of stimulus distributions affect category ratings. 

Various contextual factors such as the mean, the midrange, and the median of the stimuli, the 

stimulus range, the percentile rank of each stimulus, and the order of appearance have been 

assumed to influence judgmental contrast. A data clustering reinterpretation of judgmental 

relativity is offered, wherein the influence of the initial choice of centroids on judgmental 

contrast involves two combined frequency and consistency tendencies. Accounts of the k-means 

algorithm are provided, showing good agreement with effects observed on multiple distribution 

shapes, and with a variety of interaction effects relating to the number of stimuli, the number of 

response categories, and the method of skewing. Experiment 1 demonstrates that centroids 

initialization accounts for contrast effects obtained with stretched distributions. Experiment 2 

demonstrates that the iterative convergence inherent to the k-means algorithm accounts for the 

contrast reduction observed across repeated blocks of trials. The concept of within-cluster 

variance minimization is discussed, as well as the applicability of a backward k-means 

calculation method for inferring, from empirical data, the values of the centroids that would 

serve as a representation of the judgmental context. 

Keywords: judgment, contrast, context, k-means, clustering 
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Are Judgments a Form of Data Clustering? Reexamining Contrast Effects With the K-Means 

Algorithm 

Category ratings are widely used in cognitive and social research, in opinion surveys, 

and in consumer reviews, probably because they reflect the way people make value judgments in 

everyday life. Due to their methodological flexibility and ease of implementation, rating scales 

are amongst the most widespread tools to collect indications of how stimuli varying along one or 

several dimensions are perceived. As opposed to absolute identification tasks, in which 

participants are required to correctly identify stimuli drawn from a set of items by using clearly 

predefined labels, category scaling typically requires assigning a few category levels to 

numerous stimuli without any instructions as to what would be a right or wrong response 

(Stewart, Brown, & Chater, 2005). Correlatively, by enabling subjective assessment of stimuli in 

systematically manipulated contexts, rating scales largely contributed to isolating mathematical 

relations between the mean response assigned to any particular stimulus on one hand, and 

different contextual properties on the other. In the field of judgmental relativity, category ratings 

are known to be highly sensitive to the frequency distribution. The same stimuli are rated higher 

when the distribution is positively skewed than when the distribution is negatively skewed, even 

though both distributions have the same range (e.g., Parducci, 1956). For example, squares 

receive higher ratings when the smaller sizes are presented more frequently than the larger sizes. 

Here we examine a k-means clustering reinterpretation of judgmental relativity as a way to 

account for those contrast effects in category ratings. 

Helson’s (1948) adaptation-level theory represents one of the earliest attempts at a 

quantitative framework capable of accounting for such context effects. Helson postulated that the 

perceptual value of any stimulus is determined by its relation to a prevailing, internal reference 
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value, the so-called level of adaptation, which acts as a dynamic, background function 

encompassing the influence of all current and past stimuli of a similar nature. The adaptation 

level, by combining the effects of present and past experience, serves as a constantly changing 

baseline to which comparisons are made for assessing the current stimulus. Stimuli of a 

magnitude close to the adaptation level are judged as neutral. Stimuli occurring above or below 

the adaptation level are judged as being of positive or negative magnitude, respectively. The 

adaptation level was initially conceived as the result of an implicit averaging process operating 

on relevant stimuli, and was practically defined as a weighted logarithmic mean of the current 

and previously presented stimuli. Multiple experiments were conducted in the 1950s to 

characterize, in terms of nearness, recency, and salience, the weighting function intended to 

reflect this averaging process.  

Experiments based on systematic control of central tendency indicators in the early 

1960s (Parducci, Calfee, Marshall, & Davidson, 1960) demonstrated that manipulating either the 

midpoint or median of a set of stimuli affected the judgment scale, while manipulating the mean 

did not. This discovery proved decisive in the emergence of a new framework, the range-

frequency theory (RFT), which explained contrast effects as the result of an integration process 

involving the full contextual series of stimuli, rather than as the manifestation of a comparison 

process involving one single reference value. 

The essential idea of RFT (Parducci, 1965) is that the judgment of any particular 

stimulus represents a compromise between two principles of judgment: (a) The range of 

contextual stimuli is divided into as many equal subranges as response categories (the range 

principle), and (b) the same number of contextual stimuli are assigned to each response category 

(the frequency principle).  



ARE JUDGMENTS A FORM OF DATA CLUSTERING? 5 

The judgment Jic of Stimulus i in Context c is a weighted average of two values: 

 , (1) 

where Ric is the range value of Stimulus i in Context c (what its judgment would have 

been if categories actually divided the contextual range into equal subranges); Fic is the 

frequency value of the same stimulus (what its judgment would have been if an equal number of 

contextual stimuli were assigned to each category); and w is the weighting parameter describing 

the compromise between the two principles of judgment.  

The range value of Stimulus i in Context c is determined by the proportion of the 

contextual range lying below that stimulus:   

 ,       (2) 

where Si is the subjective value of Stimulus i, and Smin and Smax are the subjective 

endpoints of the range. 

Because the range values are highly dependent on the subjective endpoints, and because 

the subjective endpoints may differ from the two most extreme stimuli, Ric is generally inferred 

from the observed responses instead of being calculated beforehand.  

The frequency value of Stimulus i in Context c, directly calculable from the stimulus 

distribution, is determined by the proportion of stimuli lying below that stimulus: 

 , (3) 

where ric is the rank of Stimulus i in Context c. 

All values (Jic, Ric, Fic, and w) are expressed on an abstract scale ranging from 0 to 1. The 

mean response to Stimulus i in Context c is obtained by linear transformation of Jic:   

 , (4) 

where k is the number of categories in the response scale. 

(1 )ic ic icJ w R w F= ⋅ + − ⋅

( )1 1ic icC J k= ⋅ − +

( 1) / ( 1)ic icF r n= − −

min max min( ) / (S )ic iR S S S= − −
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In the 1970s and 1980s, RFT met undisputed success in establishing clear indications of 

contextual effects pertaining to perceptual and social judgments. RFT has proven to be a highly 

robust framework for describing effects obtained with rating scales for a variety of stimuli: lifted 

weights, numerousness of dots, sizes of squares, lengths of lines, pleasantness of facial 

expressions (e.g., Fabre, 1993), perception of fair grading (Wedell, Parducci, & Roman, 1989), 

estimation of comfortable temperatures (Molina & Fabre, 1999), and ratings of test scores 

(Molina & Fabre, 2000, 2001). RFT also aided in demonstrating the more general principle of 

context dependency in other types of judgmental tasks: body perception (Wedell, Santoyo, & 

Pettibone, 2005), judgment of athletes’ performance (Damisch, Mussweiler, & Plessner, 2006; 

Fasold, Memmert, & Unkelbach, 2013), hedonic preference and contrast (Cogan, Parker, & 

Zellner, 2013; Zellner, Mattingly, & Parker, 2009), hedonic ratings of paintings (Zellner et al., 

2010), judgment of price (Matthews & Stewart, 2009), loudness estimations (Parker, Moore, 

Bahraini, Gunthert, & Zellner, 2012), tempo and pleasantness judgments (Rashotte & Wedell, 

2012), comparative optimism (Milhabet, Le Barbenchon, Molina, Cambon, & Steiner, 2012), 

pain perception (Watkinson, Wood, Lloyd, & Brown, 2013), duration perception (Matthews, 

Stewart, & Wearden, 2011; Penney, Brown, & Wong, 2013), and randomness judgments 

(Matthews, 2013). The value of w has been proven to be affected by significant variations, 

depending on how instructions and presentation factors emphasize either the relationship 

between the stimuli and the endpoints of the contextual set, or the relative frequencies or 

spacings of stimuli. 

In the early 1990s, Haubensak reinterpreted the frequency effect as the concomitant 

manifestation of an initial central tendency on one hand, consisting in assigning the middle 

categories to the first presentations, and of a consistency tendency on the other, consisting in 
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persistently reassigning, throughout the entire experiment, the same categories to the same 

stimuli (Haubensak, 1992a, 1992b; Tommasi, 2001). The so-called consistency model postulates 

the prime importance of stimuli presented early in the sequence, with the correlated assumption 

that more frequent stimuli have a higher probability of occurring earlier. Practically, the 

consistency model relies on four assumptions partially inspired from the LS-2 model of Atkinson 

and Crothers (1963). According to the LS-2 model, each newly presented stimulus has a 

probability b of being stored in long-term memory (LTM) along with the response for later use 

as a standard. If not stored in LTM, the stimulus-response pair still enters short-term memory 

(STM). At each trial, every stimulus in STM has a probability f of being forgotten and a 

probability 1 – f of remaining in memory storage. Assumption 1 of the model, which is a 

variation of Parducci’s range principle, states that each stimulus is judged relative to the 

subjective value of the standard immediately higher and lower, if there is any. Assumption 2 of 

the model, which invokes the central tendency, states that, at the start of the task, categories 

closer to the center of the scale are likely to be selected so as to leave room on both sides for 

future judgments. Assumption 3 of the model states that stimuli do not enter STM a second time 

unless they are forgotten. Assumption 4 of the model, which accounts for scale development 

along the course of the task, states that if a new stimulus matches or even exceeds the highest or 

the lowest of the current standards, the response is switched to a higher or lower category, if 

available. With these few assumptions, Haubensak managed in the early 1990s to reproduce 

most of the known context effects observed so far using the successive presentation method. 

Subsequent efforts by Haubensak in the field of judgmental relativity were directed towards 

experimentally decoupling the respective effects of the order of appearance and of the stimulus 

frequencies (e.g., Haubensak & Petzold, 2003). 
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These three theoretical approaches emphasize that rating scales can be regarded as 

context-dependent interval scales (i.e., that the rank difference between the response categories 

assigned to two stimuli reflects the perceived degree of difference between those two stimuli in a 

particular context). In essence, these approaches have been developed as measurement theories, 

in the sense that they share the same underlying premise that any response has a quantitative 

relation to other responses along a phenomenal continuum. In this paper, we advance the 

radically different idea that judgment is a clustering partitional process consisting in grouping 

what is perceived as similar in the same response categories, and in distinguishing what is 

perceived as distinct by use of different response categories. Judgment can be interpreted as a 

natural case of unsupervised classification, driven by the objective of expressing hidden 

structures in unlabeled stimuli by means of response categories. This theoretical premise is 

developed in the following section by reference to the mechanics of the k-means algorithm, an 

automated classification approach that has laid the foundation for unsupervised learning. 

Data Clustering: A K-Means-Oriented Framework 

The k-means algorithm (MacQueen, 1966) has been largely used in the field of data 

clustering, and, while involving costly iterative calculation, has spawned numerous machine 

learning applications based on continuously increasing storage capacities and computer 

processing power. In its standard form, it can be applied to unidimensional or multidimensional 

numeric data, and with few modifications, to multi-attribute categorical data. The k-means 

algorithm enables the classification of a given set of n data points into k clusters, based on a 

procedure composed of two main features: centroids initialization on one hand, and assignment-

update iterations on the other. Centroids initialization involves defining a set of k starting 

centroids, one for each cluster. One of the commonly used initialization methods is the Forgy 
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method, wherein k data points are randomly drawn from the data set and used as starting 

centroids. The assignment-update iterations consist in assigning each data point to the cluster 

with the closest centroid, and in calculating the new means to be the centroids of the data points 

in the new clusters. Final convergence is reached when the assignments no longer change or 

when the objective function, J, measuring the within-cluster sum of squares, is lower than a 

predetermined threshold, or after a predetermined number of iterations: 

 , (5) 

where J is the sum of the Euclidean distances between each data point xi and the closest 

centroid mj.  

The vanilla Forgy k-means algorithm relies on the following computation rules: 

• Rule 1 (initialization): Randomly draw k distinct data points as starting centroids. 

The initial set of centroids is denoted c1, …, ck. 

• Rule 2 (assignment): Assign each data point xi to the cluster that has the closest 

centroid.  

. (6) 

Here, Cj is the cluster of centroid mj. Ties must be broken consistently (i.e., 

always to the lowest centroid, or always to the highest centroid), in order to prevent the 

algorithm from cycling through non-convergent loops. 

• Rule 3 (update): Recalculate the new value of mj as the mean of all data points 

assigned to it. 

 . (7) 
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• Rule 4: Repeat Rule 2 and 3 until the centroids no longer change, or until J is 

lower than a predetermined threshold, or for a predetermined number of 

iterations.  

There is no guarantee that the algorithm will converge to the global optimum in terms of 

within-cluster variance minimization, as the result depends on the starting centroids. In recent 

years, much research effort has been devoted to developing better initialization meta-algorithms 

(e.g., Chen & Shixiong, 2009; El Agha, 2012; Kanungo et al., 2002). In practice, the algorithm is 

run multiple times with various starting conditions. 

Table 1 illustrates how the k-means algorithm iteratively addresses a typical classification 

problem. Schematically, 18 numbers equally distributed between 108 and 992 are to be 

iteratively grouped into nine clusters ranging from A to I. In this example, the initial centroids set 

is biased as if positively skewed, and consists of nine low-value centroids: 108, 160, 212, 264, 

316, 368, 420, 472, and 524. Theoretically, a skewed sample has the same probability of being 

drawn with the Forgy Method as any other similarly sized sample drawn from the same 

distribution. However, this particular starting centroids set is extreme due to the very low 

probability of not drawing at least one number greater than 524. Such a combination of data and 

centroids provides an opportunity to understand the algorithm’s properties. Table 1 shows that 

stabilization is reached after eight iterations, with the following final centroid values: 108, 160, 

212, 264, 316, 394, 524, 706, and 914. From initialization to final convergence, assignment-

update iterations induce a global shift to higher centroid values. The shift is drastic for Clusters 

H and I, moderate for Clusters F and G, and null for Clusters A to E. This illustrates how the k-

means algorithm minimizes the within-cluster variance conditionally to the centroids 

initialization, the value of J decreasing by 85% during the process with this particular starting 
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centroids set. For global minimization purposes, multiple repetitions of the algorithm with 

random starting centroids sets would increase the chances of obtaining a lower value of J (i.e., a 

better partition in terms of within-cluster variance). 

Because the phenomena occurring at the centroids level reflect symmetrically on the 

response scale, the mechanics of the k-means algorithm can be transposed to judgmental issues 

by replacing the terms data point with stimulus, and cluster with category. Table 1 shows that, at 

the end of the iterative refinement process, the seventh category of the response scale, G, is 

assigned to the two stimuli closest to the numerical midrange, 524 and 576. Alternatively, 

dividing the numerical range into nine equal-length intervals would lead to the fifth category, E, 

being assigned to both these stimuli. From a clustering perspective, two conclusions may be 

drawn concerning contrast effects: Contrast is caused entirely by the skewing of the initial set of 

centroids, and subsequent refinement iterations contribute to reducing its magnitude.  

As illustrated in the above example using evenly-spaced stimuli, the k-means properties 

provide an enlightening framework capable of accounting for judgmental contrast. These 

properties will now be examined in detail to support reinterpretation of known effects pertaining 

to skewed distributions. Our underlying assumption is that the stimulus distribution influences 

the initial choice of centroids under the form of two combined frequency and consistency 

principles.  

Accounts of the K-Means Framework 

In this section, we provide k-means accounts for judgmental contrast observed on 

multiple distribution shapes, and for a variety of interaction effects pertaining to the number of 

stimuli, the number of response categories, and the method of skewing. In the following 

simulations, the influence of the initial choice of centroids on judgmental contrast was 
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formalized by means of random sampling without replacement, based on two assumptions: a 

frequency-driven random sampling principle, and a distance threshold-based consistency 

principle. The frequency-driven random sampling principle states that the values of the starting 

centroids are k’ stimuli randomly drawn from the distribution of the n stimuli, with each stimulus 

having a probability to be drawn depending directly on its frequency. The distance threshold-

based consistency principle states that the initial Euclidean distance separating two neighbor 

centroids tends to be greater than a minimum value, referred to as the consistency threshold δ. 

The former principle tends to support assignment of equal quantities of stimuli to the different 

response categories, while the latter tends to support assignment of the same response categories 

to similar stimuli. To account for the observed tendency to not use all the response categories, k’ 

was assumed to be lower than or equal to k, k being the total number of categories in the 

response scale. Practically, the centroids selection relied on the following steps: 

• Step 1: Sort the n stimuli in random order (in the random-sorted set, the stimuli 

are denoted sε with ε = 1 to n), set the starting k’ value to 0, and go to Step 2. 

• Step 2: Select s1 as a centroid, set the new value of k’ to 1, set the value of ε to 2, 

and go to Step 3. 

• Step 3: For ε = 2 to n, move down the random-sorted set of stimuli sε: 

• Step 3.1: If the Euclidean distances between sε and each previously 

selected centroid are all higher than or equal to δ, select sε  as a centroid, 

set the new value of k’ to k’ + 1, set the new value of ε to ε + 1, and go to 

Step 3.3. Otherwise, go to Step 3.2. 

• Step 3.2: With probability p, reject sε, set the new value of ε to ε + 1, and 

go to Step 3.3. Otherwise, select sε  as a centroid, set the new value of k’ to 
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k’ + 1, set the new value of ε to ε + 1, and go to Step 3.3. 

• Step 3.3: If ε = n or k’ = k, go to Step 4. Otherwise, go back to Step 3. 

• Step 4: If k’ < k, randomly remove k’’ categories from the response scale (with 

k’’ = k – k’), and go to Step 5. 

• Step 5: Assign the k’ centroids to the k’ categories monotonically. 

The rest of the algorithm followed the vanilla k-means procedure, with as many iterations 

as required for the centroids to reach complete stability (i.e., for the within-cluster sum of 

squares J to stop decreasing). The higher δ and p, the greater the weight of the consistency 

principle. The accounts of the k-means framework presented below were computed with 40 

repetitions per condition, and fitted to empirical data by following the least squares method. 

Judgmental Contrast With Multiple Distribution Shapes 

Boillaud’s (1997) Experiment 1 consisted of two separate factorial designs, one for each 

type of distribution, i.e., asymmetric and symmetric. In each factorial design, the distribution was 

a between-subjects factor. Participants were required to judge lines according to their length. The 

entire set of lines was arranged in a single column on a 21.0 x 29.7-cm sheet of paper. The lines 

were center-aligned and presented in random order. The stimulus set consisted of 21 lines whose 

length varied from 8.00 to 58.00 mm, with a width of 1 mm. Five lines were used in every 

condition: 8.00, 18.00, 30.00, 44.00, and 58.00 mm. No line was repeated exactly; instead, 

repetitions consisted of adding lines of very similar values (every line in a group was within 1 

mm of another line in the same group). Two distributions were used in the asymmetric 

conditions: positively skewed (most of the lines had a value between 8.00 and 30.00 mm), and 

negatively skewed (most of the lines had a value between 30.00 and 58.00 mm). Two 

distributions were used in the symmetric conditions: unimodal (most of the lines had a value 
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between 18.00 and 44.00), and bimodal (most of the lines had a value between 8.00 and 18.00 

mm, and between 44.00 and 58.00 mm). A six-response scale was used, ranging from 1 (very 

small) to 6 (very large). 

Results are shown in Figure 1. The comparison of responses obtained in the two 

asymmetric conditions revealed a single-direction effect: The lines of 18.00, 30.00, and 44.00 

mm all received higher ratings when presented in a positively skewed distribution than in a 

negatively skewed distribution. The comparison between the two symmetric conditions revealed 

a dual-direction effect: The line of 18.00 mm received higher ratings when presented in the 

bimodal distribution than in the unimodal distribution, while the line of 44.00 mm received 

higher ratings in the unimodal distribution than in the bimodal distribution. In summary, the 

response curves reflected the densities of stimuli in the distributions. Accounts of the k-means 

framework are in good agreement with these results, the best fits being obtained with a 

psychophysical transformation of the stimulus values based on a power function of exponent 

0.72, and with δ = 1.25 and p = .95 in all conditions. The response pattern obtained with the 

bimodal distribution is particularly interesting. The k-means algorithm is known, from a data 

clustering standpoint, to perform poorly on bimodal and non-convex multidimensional 

distributions (e.g., Sharma, Singh, & Gupta, 2013). In the case of a bimodal distribution, the 

large central gap in the stimulus distribution makes it impossible to draw initial centroids in the 

middle of the range. The frequency-driven random sampling principle pulls the initial centroids 

towards the endpoints of the range, but because the high densities of stimuli in those regions 

generate conflicts between this principle and the distance threshold-based consistency principle, 

Step 3.2 of the centroids selection causes k’ to be lower than k. In other words, the k-means 

algorithm skips categories as though it was saving the missing categories for stimuli in the part 
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of the range that had not been sampled. Whilst not optimal in terms of variance minimization, 

this pattern accurately mimics what is typically observed from participants.    

Parducci’s frequency principle correctly accounts for judgmental contrast, but the literal 

interpretation of Equation 3 requires accepting the implication that any given stimulus is judged 

in relation to the series of stimuli as a whole (Petzold & Haubensak, 2001). This raises the 

question of how such a contextual integration could be plausibly managed without exceeding the 

limited capacity of working memory. From a k-means perspective, contrast can be interpreted as 

a phenomenon occurring at the early stage of scale development, a statistical consequence of 

rapid frequency-driven random sampling. From such a perspective, the initial choice of centroids 

is influenced by the distribution of the stimuli: The higher the density of stimuli in a given region 

of the range, the greater the probability for a stimulus of this region to be sampled as a centroid. 

While a frequency-driven sampling process might lead to the neglect of low-density regions at 

the initialization stage, subsequent iterations will converge to an acceptable partition in terms of 

within-category variance minimization, as long as the number of response categories remains 

low compared to the number of stimuli. The question of how the number of stimuli and the 

number of response categories affect contrast when the distributions are skewed by manipulating 

the frequencies is addressed in the following experiment. 

Stimulus and Category Effects With Frequency-Skewed Distributions 

Parducci and Wedell’s (1986) Experiment 4B consisted of a factorial design involving 

three between-subjects factors: (a) Skewing of Distribution (positive skewing versus negative 

skewing), (b) Number of Stimulus Groups (five versus nine), and (c) Number of Categories 

(three versus nine). Participants were required to judge numbers according to their magnitude. 

The entire set of numbers was arranged from smallest to largest in a single column on an 8.5 x 
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11.0-inch sheet of paper. The stimulus set consisted of 25 numbers whose magnitude varied from 

108 to 992. Five stimulus groups were used in every condition: 108, 329, 550, 771, and 992. In 

the nine-group conditions, four stimulus groups were added: 219, 439, 661, and 881. To avoid 

repeating the same number, repetitions of a group consisted of numbers of similar values (every 

number in a group was within one unit of any other in the same group). For example, the 

positively skewed, five-group set consisted of the following numbers: 108, 109, 110, 111, 112, 

113, 114, 115, 116, 117, 326, 327, 328, 329, 330, 331, 332, 548, 549, 550, 551, 770, 771, 991, 

and 992. 

Results are shown in Figure 2. The interaction between the skewing and the number of 

stimuli, the stimulus effect, led to a smaller difference between the two skewed conditions with 

five stimulus groups than with nine stimulus groups. The interaction between the skewing and 

the number of categories, also known as the category effect, led to a smaller difference between 

the two skewed conditions with nine categories than with five categories. Accounts of the k-

means framework are consistent with these results, the best fits being obtained with δ = 5 and p = 

.50 in all conditions. For the nine-category conditions, the effective response scale ranged from 

the second category to the ninth category, the first category being almost never used by the 

participants. Parducci and Wedell (1986) observed similar stimulus and category effects with 

different types of stimuli and experimental designs, most of their results being obtained in 

successive presentation. To explain these effects, they developed an elaborated version of RFT, 

the retrieval-consistency model, based on a reinterpretation of Shannon and Weaver’s (1963) 

mathematical theory of communication. According to this model, participants tend to assign the 

same response category to all repetitions of the same group of stimuli (consistency principle) 

while assigning equal numbers of stimuli to each category (frequency principle). When there are 
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a large number of stimulus groups relative to the number of categories, the consistency principle 

can be applied without conflict with the frequency principle. When there are only a few stimulus 

groups relative to the number of categories, applying the consistency principle requires violating 

the frequency principle. To quantitatively account for both stimulus and category effects, the 

retrieval-consistency model states that the retrieved frequencies are flattened by means of a 

scale-dependent memory threshold operating on the last t trials. This retrieval bias leads to the 

percentile ranks being calculated using the retrieved stimulus frequencies instead of the real 

presentation frequencies. In practice, the retrieved presentations of a stimulus are not counted 

beyond the frequency of use of each category as dictated by the frequency principle, which 

precludes assignment of more than one category to each stimulus.  

The plausibility of such a retrieval mechanism is questionable, as it suggests that 

participants manage to maximize the quantity of transmitted information by means, 

paradoxically, of an incidental cognitive bias. From a k-means perspective, both stimulus and 

category effects can be reinterpreted by emphasizing how consistency constraints rapidly affect 

the starting centroids in the early stage of scale development in reference to the selection loop 

specified in Step 3. According to the distance threshold-based consistency principle, two 

centroids can hardly be drawn within a subrange lower than the consistency threshold δ. In the 

five-group conditions, the probability of two stimuli belonging in the same group is .27. In the 

nine-group conditions, this probability is .16. Thus, for a given δ close to the mean within-group 

range, the probability of rejecting similar stimuli during the centroids selection step is higher in 

the five-group conditions than in the nine-group conditions. Stimuli of low-density regions are 

more likely to be selected as second-choice centroids in the former case than in the latter, which 

explains the stimulus effect. On the other hand, since consistency relies on a sequential non-
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replacement procedure, the probability of rejecting a stimulus is higher when drawing more 

centroids, which explains the category effect. Hence, the category effect can be interpreted as a 

consequence of how the distance threshold-based consistency principle affects the centroids 

selection when the probability of two stimuli belonging in the same group is non-null.  This is 

the case when the distributions are skewed by manipulating the frequencies. The question of how 

spacing-skewed distributions, wherein this probability is null, affect the category effect is 

addressed in the following experiment. 

Absence of Category Effect With Spacing-Skewed Distributions 

Parducci and Wedell’s (1986) Experiment 4C used a factorial design involving two 

between-subjects factors: Skewing of Distribution (positive skewing versus negative skewing), 

and Number of Categories (three, five, nine, and 100). Participants were required to judge dot 

patterns according to their darkness. Each pattern consisted of solid, 1 mm-diameter black dots, 

scattered irregularly within a 25 mm-side square. The entire set of dot patterns was presented on 

an 8.5 x 11.0-inch sheet of paper in a random arrangement. The stimulus set consisted of 11 

patterns ranging from 12 to 90 dots. Six patterns (with 12, 18, 27, 40, 60, and 90 dots, 

respectively) were common to both sets. For the positive sets, five low-density patterns were 

added (with 14, 15, 16, 21, and 23 dots, respectively). For the positive sets, five high-density 

patterns were added (with 47, 51, 70, 74, and 77 dots, respectively). Because each pattern 

occurred only once, skewing was manipulated by variation in the spacing of stimulus values. 

Results are shown in Figure 3. In spite of some variability in the effect of skewing, the 

data differ from the systematic decline observed in Parducci and Wedell’s (1986) Experiment 

4B. The contrast magnitude proved constant with three and 100 categories, and a large effect of 

skewing was observed in all conditions. Accounts of the k-means framework are consistent with 
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these results, the best fits being obtained with a psychophysical transformation of the stimulus 

values based on a logarithmic function, with δ = 0.15 and p = .80 in all conditions. To improve 

the slope of the response curves in the 100-category condition, k’’ categories were randomly 

removed from the response scale as in all previous simulations, but the categories of rank 1 and 

100 were always conserved. Both the retrieval-consistency model and our k-means framework 

explain the absence of a category effect with spacing-skewed distributions as a consequence of 

all stimuli being clearly perceived as different. The retrieval-consistency model states that 

densities retrieved in memory are biased when participants are confronted with frequency-

skewed distributions, and unbiased when participants are confronted with spacing-skewed 

distributions, which raises questions about the plausibility of the model’s assumptions. 

Alternatively, our k-means framework asserts that at the early stage of scale development, the 

tendency to sample centroids based on stimulus densities conflicts with the consistency tendency 

in the case of frequency-skewed distributions (as explained previously), but not in the case of 

spacing-skewed distributions. In the latter case, two randomly drawn centroids never belong to 

the same stimulus group, which mechanically prevents rejection of any previously selected 

centroid. In such a condition, the number of categories has no effect on how the centroids set is 

sampled. 

In summary, the contrast and interaction effects presented above can be interpreted in 

reference to the initial centroids selection, which is the first of the two main features of the k-

means algorithm. The contrast magnitude results from a combination of two tendencies. These 

are a tendency to reflect the distribution densities in the sampled centroids set, and a tendency to 

choose the centroids set so as to support consistent assignment of the same response categories to 

similar stimuli. Both these tendencies are implemented in the early stage of scale development 
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by means of rapid sampling operations. The following experiment demonstrates that centroids 

initialization, under the influence of these two combined tendencies, accounts for contrast effects 

obtained with stretched distributions. The second of the two main features of the k-means 

algorithm involves subsequent assignment-update iterations. Its properties in terms of 

judgmental contrast will be examined in Experiment 2. 

Experiment 1: Judgmental Contrast With Stretched Sets 

The objective of this experiment was to demonstrate that judgmental contrast still occurs 

when keeping invariant the midrange, the mean, the median, the extrema, and the frequency 

values, and when controlling the order of stimuli with the method of simultaneous presentation. 

An alternative stretching method was used to manipulate the stimulus densities so as to produce 

different conflict levels between the frequency and the consistency tendencies in the lower and 

upper regions of the range. Our k-means framework predicts that the frequency tendency should 

result in drawing the starting centroids in the regions of the range where it does not conflict with 

the consistency tendency. To test this prediction, we stretched the distributions so that the 

number of non-repeated stimuli (i.e., the number of stimuli that differ by more than one unit 

from any other) varied between the lower and upper regions of the range without affecting the 

central tendency indicators and the ranks of the stimuli. We expected a larger contrast effect in 

the regions of the range containing the larger number of non-repeated stimuli. 

Method 

Participants. All participants were students enrolled in human science at the University 

of Aix-Marseille, Aix-en-Provence. Twenty participants served in each condition. 

Design and stimuli. There was one between-subjects factor (Skewing of Distribution) 

with two levels (positively stretched set versus negatively stretched set), and one within-subject 
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factor (Stimulus Value) with five levels (corresponding to the five number values used in both 

distributions: 108, 329, 550, 771, and 992). Each participant was presented with 25 numbers. 

Stimuli are shown in Table 2. In both sets, the numbers varied from 108 to 992, in order to keep 

the range invariant. In both sets, the median, the midrange, and the mean were equal to 550, and 

the Fi values of the five common stimuli were kept invariant (i.e., each of the five common 

stimuli had the same rank in both distributions). The two distributions differed only in the 

number of non-repeated stimuli along the range. For example, in the positively stretched 

distribution, there were thirteen non-repeated stimuli between 108 and 550, and three non-

repeated stimuli between 550 and 992. The stimuli were presented in one single column on a 

sheet of paper in randomized order, and each participant received a unique order. 

Procedure and instructions. Participants were each given a sheet of paper displaying 

instructions and numbers. Their task was to rate each number in accordance with how large or 

small it appeared in comparison with the other numbers. They were to write a response next to 

each of the numbers, consisting in a letter ranging from A (very small) to F (very large). 

Results and Discussion 

Participants whose responses showed one or several of the following anomalies were 

discarded: (a) One or several stimuli had no assigned response, (b) one or several responses fell 

outside of the scale, and (c) the response ranks did not monotonically follow the stimulus ranks. 

In each group, three participants’ data were discarded, leaving the ANOVA balanced. 

Figure 4 shows results for the five common numbers. These results demonstrate that the 

contrast effect is larger in the regions of the range containing the larger number of non-repeated 

stimuli. A two-way 2 (Skewing of Distribution) x 5 (Stimulus Value) mixed-design ANOVA 

revealed that all effects were significant: Skewing of Distribution, F(1, 32) = 4.57, p < .05; 
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Stimulus Value, F(1, 32) = 445.66, p < . 0001; and Skewing of Distribution x Stimulus Value 

interaction, F(4, 128) = 2.85, p < .05. Because all three central tendency indicators were kept 

invariant, i.e., the median, the midrange, and the mean, the results cannot be explained by 

adaptation-level theory. They cannot be explained by RFT either, at least not in its canonical 

form, because the range and the frequency values of all five common stimuli were kept invariant. 

As for the consistency model, even if the participants happened to assess the stimuli sequentially 

(which is theoretically possible, if not probable), the control of all of the above-mentioned 

parameters and the randomization of the presentation order would make the internal processing 

sequence independent of the distribution shape. Therefore, the results cannot be explained by a 

central tendency that would occur early in the processing sequence.  

There is an alternative approach to RFT that deserves consideration as it emphasizes the 

concept of similarity as a key factor in judgmental contextualization. Instead of giving equal 

weight to all stimuli, frequency values can be calculated by giving greater weight to stimuli of 

similar values. The GEMS model (Qian & Brown, 2005) is a generalization of RFT that relies on 

similarity-driven sampling. This model states that the judgment context for a stimulus consists 

primarily of similar stimuli, or, equivalently, that similar stimuli are given greater weight in the 

judgmental process. The specification of the GEMS model for calculating the frequency values is 

given in Equation 8. 

 
 . (8) 

Here, Fi is the frequency value of Stimulus xi, and γ is the similarity sampling parameter. 

When γ < 1, the model gives greater weight to contextual stimuli close to the stimulus being 
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Figure 4, are in line with the data observed for the mid-range stimuli but deviate unacceptably 

from the data observed in the lower and upper regions of the scale. The poor performance of the 

GEMS model invalidates the assumption that the contextualization of judgments is based on 

similarity-driven sampling.  

There is an opposite approach to rank-based contextualization that relies on the notion of 

discriminability. The more a stimulus is discriminable from other stimuli, the more likely it is to 

influence the judgmental context. The combined SIMPLE + DbS model, developed by Brown 

and Matthews (2011), is a particular extension of the Decision by Sampling framework (Stewart, 

Chater, & Brown, 2006). The Decision by Sampling framework states that the judgment of a 

stimulus is constructed from binary, ordinal comparisons to a sample of retrieved or experienced 

contextual representations (i.e., that the judgment depends on the relative ranked position of that 

stimulus within this particular sample). The SIMPLE + DbS model assumes that the probability 

of a stimulus being included in a sample for judgment depends on its discriminability. The 

confusability of any two stimuli in memory is a decaying exponential function of the distance 

between them in psychological space:  

, (9) 

where ηi,j is the similarity between Stimulus xi and Stimulus xj, di,j the distance between 

them, and c a parameter acting as what we will designate here as the discriminability sampling 

parameter. 

The retrievability of a stimulus depends on its discriminability. The discriminability of 

Stimulus xi is inversely proportional to its summed similarity to every other stimulus. 

Specifically, the discriminability of the trace for Stimulus xi, Di, is given by Equation 10. ,
,

i jcd
i j e−η =
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 . (10) 

Here, n is the number of comparison stimuli. 

Discriminability is converted into predicted recall probability by taking into account the 

possibility of omissions. The recall probability Pi is given by Equation 11. 

. (11) 

Here, t is the threshold (such that if discriminability is below a threshold, a stimulus 

cannot be retrieved) and s determines the slope of the transforming function (effectively, how 

noisy the omission threshold is).  

Figure 4 shows the fits of the SIMPLE + DbS model with the least squares method 

(c = 1.50, s = 4.0, and t = 0.50) when calculating the frequency values from the recall 

probabilities instead of the regular percentile ranks. These fits are in good agreement with the 

results, which suggests that the model captures some key phenomena in relation to the 

judgmental contextualization. We believe that the notion of discriminability is conceptually close 

to the combination of the two intertwined principles presented in this article: the frequency-

driven random sampling principle and the distance threshold-based consistency principle.  

According to k-means rules, within-cluster variance is minimized conditionally to the 

centroids initialization. As shown in Figure 4, the predictions of the k-means framework, 

calculated with 40 repetitions of the vanilla k-means algorithm per condition, are in strong ( t)
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agreement with the results. The best fits were obtained, using the least squares method in all 

conditions, with δ = 5 and p = .50, and with one iteration per repetition. The absence of 

subsequent assignment-update iterations in those simulations emphasizes the role of the initial 

centroids selection in the emergence of contrast effects. Contrast effects occur in the region of 

the range from which multiple centroids are drawn, leading to stimuli of this region being 

assigned different response categories.  

While the results obtained in this experiment supply clear evidence for clustering effects 

in judgmental relativity, they also raise the interesting question as to why such effects have been 

overlooked during the past 30 years. The answer is of an epistemological nature. Their detection 

could have been achieved only by conducting experiments based on appropriate combinations of 

distribution shapes and of category scales, which has never been attempted. While Parducci was 

aware of the existence of the k-means algorithm as a method for automated classification 

(Parducci, 1983), Occam’s razor led to favor RFT, because it provided a conceptual framework 

that was not only simpler, but also more adapted, from a psychophysical standpoint, to the 

measurement of persistent representations under the form of range values. In that sense, the 

postulate of the invariance of the range values across different stimulus distributions certainly 

played an important role in the success of RFT, as it proved very useful to infer scale values 

from category ratings for various types of stimuli, even in the absence of simple physical 

measures, as in the case of odor and flavor attributes (Parducci, 1982).  

Experiment 2: Judgmental Contrast Across Repeated Blocks of Trials 

The objective of this experiment was to demonstrate the dynamical nature of scale 

adjustment across repeated blocks of trials using the successive presentation method, and to 

interpret the obtained results in reference to the concept of assignment-update iterations. In order 
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to characterize the within-category variance minimization conditionally to the order of 

appearance of the stimuli, two sequences of presentation were used.   

Method 

Participants. All participants were students enrolled in introductory psychology at the 

University of Aix-Marseille, Aix-en-Provence. Ten participants served in each condition. 

Design. There were three between-subjects factors: (a) Skewing of Distribution (positive 

skewing versus negative skewing), (b) Method of Skewing (equal length versus unequal length), 

and (c) Sequence of Presentation (Sequence 1 versus Sequence 2). Four blocks of trials were 

presented to each participant. 

Stimuli and apparatus. Stimuli and order of appearance in the first block of trials (Trials 

1-13) are shown in Table 3. The two sequences of presentation used in the first block of trials 

differed in the degree of correlation between the order of appearance and the rank order among 

the stimulus values. In Sequence 1, the Spearman's rank correlation coefficient was .47 for the 

positively skewed distribution and -0.47 for the negatively skewed distribution (i.e., the order of 

appearance of the stimuli was loosely correlated with their density within the range). In 

Sequence 2, the Spearman’s rank correlation was .00 for both distributions (i.e., the order of 

appearance of the stimuli was independent on their density within the range). In all conditions, 

the stimulus set consisted of 13 black lines whose length varied from 0.50 to 11.50 cm, with a 

width of 1 mm. The lines appeared one at a time against a white background at the center of a 

23-cm monitor. In the equal-length conditions, skewing was achieved by varying the frequencies 

of five lines, 0.50, 2.50, 5.00, 8.00, and 11.50 cm. In the unequal-length conditions, no line was 

repeated exactly; instead, repetitions consisted of adding lines of very similar values (every line 

in a group was within 0.05 cm of another line in the same group).  
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Procedure. The participants were seated in front of the monitor at a distance of about 60 

cm. They were asked to judge lines according to their length. The two extreme lines were shown 

to the participants before the start of the judgment task. A five-response scale was used, ranging 

from 1 (very small) to 5 (very large). Four blocks of 13 stimuli were presented for a total of 52 

trials. Each line remained visible until an oral response was provided by the participant and 

entered by the experimenter. The next line appeared immediately after the response to the 

preceding one. The room was dimly lit. 

Results and Discussion 

Figure 5 shows results for the three common lines closest to the midrange of the stimulus 

range (2.50, 5.00, and 8.00 cm). These results indicate that judgmental contrast decreased for all 

conditions from Block 1 to Block 4. A four-way 2 (Skewing of Distribution) x 2 (Method of 

Skewing) x 2 (Sequence of Presentation) x 2 (Block of Trials) mixed-design ANOVA revealed 

that the Skewing of Distribution x Block of Trials interaction was significant, F(1, 72) = 29.11, 

p < .0001. The following effects were also significant: Skewing of Distribution, F(1, 72) = 56.23, 

p < .0001; Skewing of Distribution x Sequence of Presentation interaction, F(1, 72) = 6.25, 

p < .05; and Sequence of Presentation x Block of Trials interaction, F(1, 72) = 7.79, p < .01. 

None of the other effects was significant. If, according to RFT (Parducci, 1983), contrast is due 

to the tendency to use the different response categories with equal frequency, the decrease of 

contrast observed from Block 1 to Block 4 should occur concomitantly with a decrease of 

equalization. Hence, response entropy (calculated as in Equation 12) should be lower in Block 4 

than in Block 1.  
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Here, H(C) is the response entropy, and f(cj) the frequency of category cj, H(cj) being 

equal to 0 if f(cj) = 0.  

Response entropy remained stable over the course of the experiment: 1.81 bits in Block 1 

and 1.74 bits in Block 4. As the maximum response entropy for five response categories is 2.32 

bits, this represents a slight decrease of 3.20% in terms of frequency equalization, which can 

hardly account for the dramatic shift of the response scale. On the other hand, our results showed 

that 35.42% of the stimuli received different responses in Block 1 and in Block 4. These results 

demonstrate that contrast magnitude is not related to the degree of frequencies equalization, and 

that contrast decrease across repeated blocks of trials is merely caused by scale adjustment. 

According to the consistency model (Haubensak, 1992a), scale adjustment is related to 

the forgetting parameter, f, and to how it affects the probability of applying Assumption 4 of the 

model, stating that if a new stimulus matches or even exceeds the highest or the lowest of the 

current standards in memory, participants tend to switch to a higher or lower category. This 

assumption ensures that the response scale spreads along the range of stimuli as the presentations 

proceed. If this statement is true, the response range should stretch up toward the extrema from 

Block 1 to Block 4. To remove the asymmetry between the two skewing conditions, we 

collapsed the data across the common stimuli. Our results showed that the mean response range 

assigned to the lines ranging from 2.50 to 8.00 cm remained unchanged, from 2.24 to 4.16 in 

Block 1, and from 2.18 to 4.05 in Block 4. These results are not consistent with interpreting 

ratings adjustment as an effect of scale expansion.  

Overall, the empirical data provide evidence for a strong influence of centroids 

initialization in Block 1, and for significant within-category variance reduction in Block 4. As 

blocks of trials proceed, more complete information about the skewing of stimulus densities is 
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available, which enables the participants to establish the scale while reducing the within-category 

variance. From a k-means perspective, variance minimization is achieved, for any non-optimal 

set of initial centroids, by means of assignment-update iterations. The larger the number of 

assignment-update iterations, the lower the within-cluster sum of squares J. To obtain better 

clusters, category boundaries are progressively relocated so as to make a clearer distinction 

between different groups of stimuli.  

Our theoretical objective is to account for the data obtained with both the successive 

presentation method and the simultaneous presentation method by using a single unified 

framework. Regarding the simultaneous presentation and the data obtained in Experiment 1, we 

assumed that the assignment-update iterations that are inherent to the vanilla k-means algorithm 

could be implemented abstractly at the series level (i.e., for all the stimuli at once). Regarding the 

successive presentation and the data obtained in Experiment 2, there are two modelling options 

capable of describing the dynamical development of the clusters: trial-by-trial centroids updating 

and block-level centroids updating. Both options support the concept of variance minimization 

over time, though at a different level of time granularity. Whilst the former is more compatible 

with the intuitive assumption that the participants might adjust the judgment scale after each 

presentation, its implementation in the framework would require adding specific trial-level 

calculation steps such as those that are developed in more sophisticated versions of the k-means 

algorithm. In some of those versions, only a limited subset of data points is processed when 

calculating the Euclidean distances to the centroids (e.g., Ackermann et al., 2012). In other 

versions, a data point is reassigned to a different cluster only if that reassignment decreases the 

within-cluster sum of squares J (e.g., Leiva & Vidal, 2011). In particular variants of the k-means 

algorithm devoted to the classification of moving data points, data points are updated only when 
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the difference between their previous value and their new value exceeds a defined threshold 

(Zhang, Yang, Tung, & Papadias, 2008). Those specific trial-level calculation steps would be 

relevant for the successive presentation but not for the simultaneous presentation, which would 

amount to presenting two different frameworks. On the other hand, because any given block of 

trials in Experiment 2 consists of the entire series of stimuli, the block-level centroids updating 

can be regarded as isomorphic to the series-level centroids updating used for the simultaneous 

presentation method. This is why the block-level modelling was preferred over the trial-by-trial 

modelling. Therefore, we ran one assignment-update iteration per block of presentations rather 

than one assignment-update iteration after each new presentation. Simulations were run with 40 

repetitions in each condition.  

As shown in Figure 5, the predictions of the k-means framework are consistent with the 

empirical data. The best fits were obtained, using the least squares method, with a 

psychophysical transformation of the stimulus values based on a power function of exponent 

0.72, and with δ = 0.08 and p = .80 in all conditions. Instead of randomizing the order of stimuli 

as stated in Step 3, centroids selection rules were run on stimuli ordered according to their 

respective sequence of presentation in Block 1. Our assumption was that, if a psychological 

principle determines how starting centroids are chosen in successive presentation, it must be 

dependent on the order of appearance. Both this particular assumption and the consistency model 

(Haubensak, 1992b) rely on the influence of the very first stimuli. While the latter highlights the 

role of central tendency mechanisms in judgment, the former suggests that contrast stems 

specifically from over-differentiating a few consecutive stimuli during the very first trials. By 

assuming that the initial set of centroids is influenced by the order of appearance, we emphasize 
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the tendency to discriminate between slightly different stimuli during the early stage of scale 

development. 

General Discussion 

In this article, our core claim is that judgment is a clustering process, and that a model 

incorporating within-cluster variance minimization accounts for many phenomena in the rating 

scale literature, for new contrast effects observed with specific stimulus distributions 

(Experiment 1), and for dynamical contrast reduction across repeated blocks of trials 

(Experiment 2). While Parducci’s analysis framework and Haubensak’s process model underlie 

two different computationalist interpretations of context effects, the present model is 

connectionist in essence. The concept of variance minimization has been used in multiple 

approaches to data clustering and unsupervised learning (e.g., He, Ji, Zhang, & Bao, 2011), and 

has proven to be critically important to the successful implementation of dynamical systems in 

the field of artificial intelligence. 

Defining judgmental relativity as a product of variance minimization seems challenging 

in terms of psychological plausibility, as it is improbable that any conscious operations could 

realistically support such a sophisticated optimization, at least under the form of explicit 

computational processes. From a connectionist standpoint, this issue is of minor importance, as 

judgmental relativity can be regarded as resulting from emergent properties. From a 

computationalist standpoint, it is interesting to note that the concept of variance developed in this 

article and the concept of information transmission, which has been widely accepted since the 

1950s as a powerful framework for describing various cognitive processes (Fabre, 1993), relate 

equally to the notion of statistical dispersion. This epistemological equivalence between the two 

concepts leaves little argument that the basic principle of variance minimization should be 
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considered as a plausible cognitive driver, even though it involves specific operations that are 

unknown at present. 

One question remains. Do the variations of the model’s parameters, δ and p, as fitted 

across different experimental conditions, tell something about how the consistency principle 

conflicts with the frequency principle? The consistency principle reflects an intuitive reluctance 

to apply more than a single category to similar stimuli. Table 4 shows the values of p’, defined as 

the product of p and the probability of the Euclidean distance between any two stimuli being 

lower than δ. The higher p’, the higher the chance of rejecting, for consistency purposes, a 

candidate centroid too close to a similar centroid. We found that p’ is higher when the materials 

reflect a greater uncertainty in establishing whether certain stimuli are repeated exactly (p’ varies 

from .13 to .28 with lines and dots), and lower when the stimuli make any switching of 

categories more obvious (p’ varies from .07 to .11 with numbers). These variations suggest that 

perceptual uncertainty would tend to increase the weight of the consistency principle, and 

reciprocally, to reduce the weight of the frequency principle. When perceptual uncertainty causes 

difficulty in determining if two stimuli are identical or different, the consistency principle would 

help in regarding them as indistinguishable.  

Starting centroids can be seen as the internal representation of the context at the outset of 

the task. One possible extension to this work would include systematizing backward analysis for 

inferring the values of the starting centroids from experimental data. In the same way as the 

range values can be inferred from the observed mean responses based on RFT, the values of the 

starting centroids could be inferred from the observed clusters based on a backward k-means 

calculation method. In practice, range values are not inferred at the individual participant level, 

but from aggregated group data for two stimulus distributions at once (most often, positively and 
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negatively skewed sets with antagonistic Fi values). Alternatively, the values of the starting 

centroids could be inferred directly from participant-level data, that is, from the entire set of 

responses assigned to a series of stimuli by any given participant. Such an approach would 

eliminate the need for assessing particular initialization rules when fitting the data. However, the 

k-means algorithm is not reversible. Multiple sets of starting centroids can lead to the same final 

clusters, which makes it impossible to identify the exact set of starting centroids that a given 

participant had in mind at the outset of the task. Because there is no known formula to determine 

the mean starting centroid values from a given response set, the only practical approach to 

backward calculation relies on brute-force equal-weight combination. The total number of initial 

centroids sets, S, for n stimulus and k categories, is given by equation 13. 

.  (13) 

In the case of the example given in Table 1, where n = 18 and k = 9, which is typical of 

the orders of magnitude used in research on judgment, S = 48620. If the final clusters showed in 

Table 1 were explicit responses experimentally obtained from a participant, backward calculation 

would enable the retrieval of the complete subsets of candidate starting centroids. Brute-force 

execution of the k-means algorithm shows that 100 different initial centroids sets would generate 

the same final clusters (the initial centroids set described in Table 1 being one of those particular 

sets). Detailed values per quantity of iterations are shown in Table 5. Figure 6 shows the mean 

starting centroids for each of the nine response categories, with the assumption that each of the 

100 starting centroids sets is equally probable, regardless of the number of iterations required for 

reaching final convergence. It is interesting to note that the standard deviation of the mean 

starting centroid values is reasonably low compared to the stimulus scale: 0.00 for Categories A 
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averaging assumption tends to smooth the resulting curve, which would contribute to capturing 

the main patterns in the participant-level data.  

There would be several methodological advantages in systematizing backward analysis of 

starting centroids. First, starting centroids could be calculated for any given set of participant-

level data, which would make inferential testing possible at the starting centroids level. Second, 

regardless of the response patterns, no psychophysical assumption would be required to 

transform stimulus values into perceived values, since inferred centroids could be plotted directly 

on the original stimulus scale. Other models, such as the SIMPLE + DbS model (Brown & 

Matthews, 2011), successively demonstrated that purely rank-based approaches can account not 

only for frequency effects, but also for apparent range effects when memory retrieval and 

distinctiveness are taken into account. Third, due to the equal-weight averaging assumption, 

between-subjects variance obtained at the starting centroids level would be lower than in the 

source data, which would help test small-amplitude effects. Fourth, for falsification purposes, 

starting centroids could be calculated per block of presentations (provided that responses are 

recorded for all presentations in each block). Repeated measure designs would enable per-

category comparisons between starting centroids calculated in Block t + 1 and stimulus-response 

assignments observed in Block t. Fifth, for investigation purposes, starting centroids could be 

calculated as a function of the quantity of iterations required to reach final convergence. This 

would help distinguish between effects specifically occurring at the centroids initialization stage 

and effects occurring concomitantly with subsequent variance minimization efforts. 

Experimental procedures relying on attentional instructions, dual-task interference, and time 

pressure could help investigate the demarcation between the two types of effects.  
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In conclusion, we see the k-means interpretation of context effects and the backward 

calculation method proposed here as an important step towards unifying models that emphasize 

judgmental relativity, such as RFT, and models that focus on dynamical properties of judgment, 

such as the consistency model. We have offered results suggesting that the judgmental context 

can be represented under the form of centroids at the outset of the task, and presented an 

approach to data fitting that would help plot its evolution in time.       
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Table 1 

An Illustration of how the K-Means Algorithm Minimizes the Within-Cluster Variance  

   Stimuli 

  108 160 212 264 316 368 420 472 524 576 628 680 732 784 836 888 940 992 

Starting centroids 
(A) (B) (C) (D) (E) (F) (G) (H) (I)          
108 160 212 264 316 368 420 472 524          

Iteration 1                   

 Assignment A B C D E F G H I I I I I I I I I I 

 Update (A) 
108 

(B) 
160 

(C) 
212 

(D) 
264 

(E) 
316 

(F) 
368 

(G) 
420 

(H) 
472     (I) 

758     

Iteration 2                   

 Assignment A B C D E F G H H H I I I I I I I I 

 Update (A) 
108 

(B) 
160 

(C) 
212 

(D) 
264 

(E) 
316 

(F) 
368 

(G) 
420  (H) 

524     (I) 
810    

Iteration 3                   

 Assignment A B C D E F G G H H H I I I I I I I 

 Update (A) 
108 

(B) 
160 

(C) 
212 

(D) 
264 

(E) 
316 

(F) 
368 

(G) 
446  (H) 

576     (I) 
836    

Iteration 4                   

 Assignment A B C D E F G G H H H H I I I I I I 

 Update (A) 
108 

(B) 
160 

(C) 
212 

(D) 
264 

(E) 
316 

(F) 
368 

(G) 
446  (H) 

602    (I) 
862   

…                   

Iteration 8                   

 Assignment A B C D E F F G G G H H H H I I I I 

 Update (A) 
108 

(B) 
160 

(C) 
212 

(D) 
264 

(E) 
316 

(F) 
394  (G) 

524   (H) 
706   (I) 

914  

Final clusters A B C D E F F G G G H H H H I I I I 

Notes. Starting and updated centroids are represented by letters in brackets. Ties are broken in 

favor of lower centroids. 
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Table 2 

Stimulus Distributions Used in Experiment 1 

Notes. Pos. stretched = positively stretched. Neg. stretched = negatively stretched. 

  

 Stimuli 

Set 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Pos. stretched 108 145 182 218 255 292 329 366 403 440 476 513 550 551 552 553 554 555 771 987 988 989 990 991 992 

Neg. stretched 108 109 110 111 112 113 329 545 546 547 548 549 550 587 624 660 697 734 771 808 845 882 918 955 992 
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Table 3 

Stimulus Distributions and Orders of Appearance Used in Experiment 2 

Note. Pos. = positive skewing. Neg. = negative skewing. Values are in centimeters. 

  

 Stimuli per order of appearance in the first block of presentation (Trials 1-13) 

Set 1 2 3 4 5 6 7 8 9 10 11 12 13 

Frequency              

Sequence 1              

Pos. 0.50 0.50 2.50 2.50 2.50 0.50 5.00 0.50 2.50 5.00 8.00 0.50 11.50 

Neg. 11.50 11.50 8.00 8.00 8.00 11.50 5.00 11.50 8.00 5.00 2.50 11.50 0.50 

Sequence 2              

Pos. 0.50 2.50 5.00 8.00 11.50 0.50 2.50 5.00 0.50 0.50 0.50 2.50 2.50 

Neg. 11.50 8.00 5.00 2.50 0.50 11.50 8.00 5.00 11.50 11.50 11.50 8.00 8.00 

Spacing              

Sequence 1              

Pos. 0.50 0.70 2.40 2.70 2.60 0.65 5.00 0.55 2.50 4.80 8.00 0.60 11.50 

Neg. 11.50 10.90 8.15 7.70 7.85 11.00 5.00 11.30 8.00 5.20 2.50 11.10 0.50 

Sequence 2              

Pos. 0.50 2.40 5.00 8.00 11.50 0.55 2.50 4.80 0.60 0.65 0.70 2.70 2.60 

Neg. 11.50 8.15 5.00 2.50 0.50 11.30 8.00 5.20 11.10 11.00 10.90 7.70 7.85 
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Table 4 

Overview of the Consistency Principle in all Experimental Conditions  

Note. Pos. = positive skewing. Neg. = negative skewing. p’ is defined as the product of p and the 

probability of the Euclidean distance between any two stimuli being lower than δ.   

   Model parameters  

Experiment Stimuli Distribution δ p p’ 

Boillaud’s (1997) Experiment 1 Lines Pos. 1.25 .95 .28 

  Neg. 1.25 .95 .28 

  Unimodal 1.25 .95 .28 

  Bimodal 1.25 .95 .28 

Parducci and Wedell’s (1986) Experiment 4B Numbers Pos., 5 stimuli 5.00 .50 .11 

  Neg., 5 stimuli 5.00 .50 .11 

  Pos., 9 stimuli 5.00 .50 .07 

  Neg., 9 stimuli 5.00 .50 .07 

Parducci and Wedell’s (1986) Experiment 4C Dots Pos. 0.15 .80 .28 

  Neg. 0.15 .80 .28 

Experiment 1 Numbers Positively stretched 5.00 .50 .07 

  Negatively stretched 5.00 .50 .07 

Experiment 2 Lines Pos., frequency 0.08 .80 .22 

  Neg., frequency 0.08 .80 .22 

  Pos., spacing 0.08 .80 .13 

  Neg., spacing 0.08 .80 .13 



ARE JUDGMENTS A FORM OF DATA CLUSTERING? 47 

Table 5 

Backward Calculation of Starting Centroids per Quantity of Iterations 

  Categories 

Iterations Occurrences A B C D E F G H I 

1 8 108.00 160.00 212.00 264.00 316.00 368.00 498.00 680.00 914.00 

2 20 108.00 160.00 212.00 264.00 316.00 368.00 461.60 669.60 888.00 

3 13 108.00 160.00 212.00 264.00 316.00 368.00 492.00 632.00 840.00 

4 18 108.00 160.00 212.00 264.00 316.00 368.00 454.67 613.56 833.11 

5 22 108.00 160.00 212.00 264.00 316.00 368.00 453.09 576.00 786.36 

6 12 108.00 160.00 212.00 264.00 316.00 368.00 424.33 519.67 758.00 

7 6 108.00 160.00 212.00 264.00 316.00 368.00 420.00 480.67 662.67 

8 1 108.00 160.00 212.00 264.00 316.00 368.00 420.00 472.00 524.00 

Notes. Ties are broken in favor of lower centroids. 
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Figure 1. Effect of different distribution shapes on perceptual judgments of lengths of line. 

Empirical ratings are from Boillaud’s (1997) Experiment 1: data for positive set shown by open 

points, negative set by solid points, unimodal set by open squares, bimodal set by solid squares. 

Theoretical fits obtained from k-means simulations are represented by lines. 
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Figure 2. Stimulus and category effects with frequency-skewed distributions. Empirical ratings 

are from Parducci and Wedell’s (1986) Experiment 4B: data for positive set shown by open 

points, negative set by solid points. Theoretical fits obtained from k-means simulations are 

represented by lines. 
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Figure 3. Absence of category effect with spacing-skewed distributions. Empirical ratings are 

from Parducci and Wedell’s (1986) Experiment 4C: data for positive set shown by open points, 

negative set by solid points. Theoretical fits obtained from k-means simulations are represented 

by lines.  
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Figure 4. Judgmental contrast on two sets of numbers with identical mean, midrange, median, 

range, and percentile rank, and randomization of the presentation order on the page (left panel). 

Empirical ratings for positively stretched set are represented by open points, for negatively 

stretched set by solid points. Standard deviations are represented by error bars. Theoretical fits 

obtained from k-means simulations are represented by lines. Best fits obtained with the GEMS 

model are shown in the middle panel, best fits obtained with the SIMPLE + DbS model are 

shown in the right panel: Fits for positively stretched set are represented by dashed line, for 

negatively stretched set by solid line. 

  



ARE JUDGMENTS A FORM OF DATA CLUSTERING? 52 

Figure 5. Dynamical contrast reduction across repeated blocks of trials, with two methods of 

skewing and two sequences of presentation. Empirical ratings for positive set are represented by 

open points, for negative set by solid points. Standard deviations are represented by error bars. 

Theoretical fits obtained from k-means simulations are represented by lines. 
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Figure 6. Backward calculation of starting centroids (equal-weight averaging assumption). 

Starting centroids are represented by open points, clustered data by solid points. Standard 

deviations are represented by horizontal error bars. 


