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Abstract

Objectives Atlas-based segmentation is a powerful
method for automatic structural segmentation of several
sub-structures in many organs. However, such an approach
has been very scarcely used in the context of muscle seg-
mentation, and so far no study has assessed such a method
for the automatic delineation of individual muscles of the
quadriceps femoris (QF). In the present study, we have
evaluated a fully automated multi-atlas method and a semi-
automated single-atlas method for the segmentation and
volume quantification of the four muscles of the QF and for
the QF as a whole.

Subjects and methods The study was conducted in 32
young healthy males, using high-resolution magnetic reso-
nance images (MRI) of the thigh. The multi-atlas-based
segmentation method was conducted in 25 subjects. Dif-
ferent non-linear registration approaches based on free-
form deformable (FFD) and symmetric diffeomorphic
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normalization algorithms (SyN) were assessed. Opti-
mal parameters of two fusion methods, i.e., STAPLE and
STEPS, were determined on the basis of the highest Dice
similarity index (DSI) considering manual segmentation
(MSeg) as the ground truth. Validation and reproducibility
of this pipeline were determined using another MRI data-
set recorded in seven healthy male subjects on the basis of
additional metrics such as the muscle volume similarity
values, intraclass coefficient, and coefficient of variation.
Both non-linear registration methods (FFD and SyN) were
also evaluated as part of a single-atlas strategy in order to
assess longitudinal muscle volume measurements. The
multi- and the single-atlas approaches were compared for
the segmentation and the volume quantification of the four
muscles of the QF and for the QF as a whole.

Results Considering each muscle of the QF, the DSI
of the multi-atlas-based approach was high 0.87 £ 0.11
and the best results were obtained with the combination
of two deformation fields resulting from the SyN registra-
tion method and the STEPS fusion algorithm. The optimal
variables for FFD and SyN registration methods were four
templates and a kernel standard deviation ranging between
5 and 8. The segmentation process using a single-atlas-
based method was more robust with DSI values higher than
0.9. From the vantage of muscle volume measurements,
the multi-atlas-based strategy provided acceptable results
regarding the QF muscle as a whole but highly variable
results regarding individual muscle. On the contrary, the
performance of the single-atlas-based pipeline for individ-
ual muscles was highly comparable to the MSeg, thereby
indicating that this method would be adequate for longitudi-
nal tracking of muscle volume changes in healthy subjects.
Conclusion 1In the present study, we demonstrated that
both multi-atlas and single-atlas approaches were relevant
for the segmentation of individual muscles of the QF in
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healthy subjects. Considering muscle volume measure-
ments, the single-atlas method provided promising per-
spectives regarding longitudinal quantification of individ-
ual muscle volumes.

Keywords MRI - Multi-atlas-based segmentation -
Quadriceps femoris muscle - Non-linear registration -
Fusion - Individual muscle volume measurements

Introduction

Segmentation of skeletal muscle magnetic resonance (MR)
images is of high interest given that it can provide accurate
quantitative information regarding muscle volume, fat infil-
tration, and the corresponding changes in a variety of phys-
iological (e.g., exercise, immobilization, aging) and patho-
logical conditions (e.g., neuromuscular diseases). If such
an approach can be robust, reproducible, and automated,
it can be promising for the processing of large amounts of
data such as those obtained in trials for which accurate lon-
gitudinal measurements have to be performed. However,
considering the high variability of muscles shapes and the
relative positions within the image, segmentation of mus-
cle MR images has been commonly recognized as chal-
lenging, generally speaking, and even more so if one aims
at quantifying the volume of each muscle. More particu-
larly for the thigh muscles, any subtle changes regarding
the angular position of the leg, the relative position of the
coil on the thigh, and the stress of the coil on the thigh can
generate, among other things, additional uncontrolled fac-
tors of variability. In order to circumvent these difficulties,
manual labelling of anatomical structures has been used in
several studies, and the time consuming and expert-depend-
ent nature of the task have been largely recognized [1].
Recently, several semi-automated or automated segmenta-
tion methods have been proposed for skeletal muscle MR
images parcellation.

Baudin et al. [2, 3] associated a statistical shape atlas
and an random walks graph-based algorithm in order to
automatically segment individual muscles, and reported
high Dice similarity indices (DSI = 0.86 £ 0.07) for 13
thigh muscles. Based on a combined analysis of water
and fat volumetric MRI of the mid-thigh region, Mak-
rogiannis et al. [4] validated an unsupervised muscle and
fat quantification algorithm. In order to take into account
the large intersubject variability, Prescott et al. [5] pre-
sented a semi-automated method of segmenting each
muscle of the quadriceps femoris (QF) based on the man-
ual selection of specific anatomical landmarks and the

utilisation of a selected template from a templates data-
base. They assessed the performance of this approach as
compared to a manual method and reported the follow-
ing values: rectus femoris (RF), DSI = 0.78 £ 0.12; vas-
tus intermedius (VI), DSI = 0.79 + 0.10; vastus lateralis
(VL), DSI = 0.82 £ 0.08; and vastus medialis (VM),
DSI = 0.69 £ 0.16. Using a combination of a manual
labelling of regions of interest, atlas construction, and reg-
istration, Ahmad et al. [6] proposed a semi-ASeg pipeline
of the QF that proved to be reliable. However, the authors
did not provide information related to individual muscles of
the QF. Overall, considering the large intersubject variabil-
ity regarding individual muscle morphology and size, one
could hypothesize that a multi-atlas-based segmentation
would more accurately take into account this anatomical
variability and provide more robust results.

Accordingly, a registration process using multiple image
templates on the one hand and a subsequent label fusion on
the other hand proved to be reliable for the in vivo parcella-
tion of a mouse brain [7]. A similar performance has been
reported for human brain segmentation using label fusion
and multi-atlas-based registration [8—10]. It is noteworthy
that a multi-atlas-based approach has also been reported for
the prostate [11] and pectoral muscles [12]. More recently,
a few studies have investigated the potential of multi-atlas-
based approaches in order to automatically quantify large
muscle volumes from whole-body MR images [13, 14].
Overall, although of interest, multi-atlas-based methods
have been mainly used for large muscle volumes measure-
ments and the potential of such an approach for the quanti-
fication of individual muscle volumes and its corresponding
accuracy for longitudinal measurements have never been
assessed.

From the vantage of robustness, most of the studies
reported so far have used DSI values higher than 0.7 as a
sign of an acceptable performance [15] and muscle volume
measurements have been scarcely reported. Additional met-
rics such as the false positive (FPVF) and the false negative
volume fraction (FNVF) have been advocated as reliable
indices of the accuracy of segmentation and volume meas-
urements [16].

The purpose of the present study was therefore to assess
and compare the performance of fully automated, multi-
atlas-based and semi-automated single-atlas-based algo-
rithms for the segmentation and volume quantification of
each muscle of the QF in healthy subjects, as well as to
characterize the corresponding accuracy for longitudinal
measurements. We also aimed at comparing the perfor-
mance of different non-linear registration and fusion pro-
cesses as part of the atlas-based pipeline.
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Materials and methods
Subjects

Two groups of subjects were investigated after they were
fully informed about the nature and aim of the study and
gave their informed written consent. The first group of
subjects was composed of 25 healthy men (22 + 1 years,
height 178 4 6 cm, weight 68 £ 7 kg) while seven healthy
men (32 £ 7 years, height 169 £+ 9 cm, weight 64 £ 11 kg)
were part of the second group. A single MRI acquisition
was performed in the first group of subjects while two MRI
sessions was repeated twice, 2 days apart, in the second
group of subjects. The study was approved by the local
human research ethics committee and was conducted in
conformity with the Declaration of Helsinki.

In vivo MRI data acquisition

Subjects were positioned supine with the right leg cen-
tered in a 1.5 T superconducting magnet (MAGNETOM
Avanto, Siemens AG, Healthcare Sector, Erlangen, Ger-
many). A flexible surface 6-channel body coil (Siemens
AG, Healthcare Sector, Erlangen, Germany) was placed
around the right thigh. T;-weighted (7}, high-resolution
images (20 slices, field of view = 220 mm x 220 mm;
matrix = 576 x 576; time repetition = 549 ms; echo
time = 13 ms; number of repetitions = 1; slice thick-
ness = 6 mm; gap between slices = 6 mm, acquisition
time = 5 min 18 s) were recorded using a gradient-echo
sequence. The most distal slice was always acquired at
approximately 20 mm (i.e. 5 % of the thigh length meas-
ured for each subject) upper the proximal border of the
patella.

As previously described by Barnouin et al. [1], borders
of the anatomic cross sectional areas of the four QF mus-
cles, i.e. the VL, VM, VI, and RF, were manually drawn in

(c)Snake

~—— starting contour
- leg contour
muscle contour

Fig. 1 Main steps of a single-atlas construction including an auto-
matic segmentation (ASeg) of intramuscular adipose tissue (IMAT),
muscle, subcutaneous adipose tissue (SAT), bone, and a manual seg-

one sin Ie atlas

each slice by an experienced researcher (A.F., with 7 years
of experience in evaluation of muscle anatomy and geom-
etry). The corresponding result was referred to as manual
segmentation (MSeg) in the following sections and was
considered as the ground truth. All the regions of interest
were delineated using FSL View software, the 3D viewer
included in the FSL toolbox [17].

Metrics for the segmentation process evaluation

Four metrics (ranging from O to 1) were used in order to

evaluate the segmentation algorithms on the basis of a com-

parative analysis between the results of an ASeg (X) and

those from an MSeg (Y), performed by an expert (consid-

ered the ground truth):

e The Dice similarity index DSI(X,Y) = W
quantitative index of the overlap between X and Y

e The false negative volume fraction FNVF (X, Y) refers
to the volume fraction corresponding to the missed parts
of the ground truth Y into X

e The false positive volume fraction FPVF (X, Y) refers to
the volume fraction corresponding to the segmented
parts not overlapping the ground truth into X.

is a

e The muscle volume similarity fraction
MVSF(X,Y) = %&v)ﬁf)' refers to the similarity

between the manually v(Y) and the automatically v(X)
quantified volumes.

Atlas construction

As illustrated in Fig. 1, a single atlas was built from of a T,
image (Fig. 1a) and the corresponding segmentations of spe-
cific regions of interest, i.e. intermuscular fat (IMAT), sub-
cutaneous fat (SAT), muscle (MUSCLE), and bone, using
an entirely automated segmentation algorithm (ASeg). ASeg
was based on an initial pixel-based intensity analysis of the

m

(e) MSeg

EVL BRF
HVI EBVM

(d) ASeg \

B IMAT O muscle \
B SAT M bones

SO

mentation (MSeg) of vastus lateralis (VL), rectus femoris (RF), vas-
tus medialis (VM), and vastus intermedius (VI)
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MUSCLE25 ATLAS

TEST1 ATLAS TEST2 ATLAS

Fig. 2 T,-weighted images (7},,) recorded in both groups of subjects
and the corresponding atlases MUSCLE25, TEST1, and TEST2 [col-
our legend: vastus lateralis (red), rectus femoris (dark orange), vastus

T,,,image (Fig. 1b) followed by a spatial analysis allowing us
to identify each region of interest using a colour label (more
details are provided in “Automated segmentation: ASeg”).
Overall, the initial T},, image together with the results of both
segmentation processes ASeg (Fig. 1d) and MSeg (Fig. le)
include eight labels and refer to a single atlas.

Automated segmentation: ASeg

ASeg was intended to obtain a fast and fully automated seg-
mentation method providing quantitative information related to
muscle, bone, and fat fractions (intermuscular and subcutane-
ous). It has been developed in C++- using the OpenCV library
previously published by Positano et al. [18]. Briefly, the first
step of the ASeg method corresponds to a k-means clustering
applied on the intensity values of each voxel in order to seg-
ment the original image into three clusters (Fig. 1b, top left
corner) corresponding to background (cluster 1), muscle tissue
(cluster 2), and adipose tissue (cluster 3). In the second step, we
used a morphological closing with a small structuring element
in order to eliminate noise from the vessels in the SAT region,
which keeps the topology of the leg and muscle regions. Then,
clusters 2 and 3 (muscle and adipose tissue) were merged to
obtain a new shape corresponding to the leg. At this stage, an
active polygonal contour was performed in cluster 1 (the white
discrete circle on Fig. Ic) in order to define the boundaries
between the leg and the muscle (the red discrete contour on
Fig. 1c¢). While Positano et al. [18] used a gradient vector flow
snake algorithm previously described by Xu et al. [19], we used
a more classical polygonal active contour algorithm described
by the following energy with the aim of minimizing &:

&= (a(s)Econt + B(S)Ecury + )’(S)Eimagc)ds

contourC (s)

medialis (light orange) and vastus intermedius (yellow), bone (white),
subcutaneous adipose tissue (green), intermuscular adipose tissue
(dark blue), posterior thigh (blue)]

where Econt = llpi — pi=11l? and
Ecury = pi—1 — 2pi + Pit1 Ik represent the internal energy
related, respectively, to the continuity and the curvature
of the shape contour (defined as C,<; .y = {p;} where
N = 50), and Ej,,,. represents the external energy on the
contour of the binary target image. The parameters («, B,
y) control the contour tension, the rigidity of the curve,
and the data attachment. In the present study, we chose the
three weighting parameters (0.3, 0.4, 0.3).

The MRI datasets recorded in the two groups of sub-
jects were used in order to build three different atlases.
The MUSCLE2S5 atlas was composed of the 25 subjects of
group 1. The repeated measurements performed in the sec-
ond group of subjects allowed us to build two additional
atlases referred as TEST1 and TEST2. These three atlases
were used in order to assess both segmentation methods
proposed in this study (Fig. 2). For the fully automated,
multi-atlas approach, TEST1 and TEST?2 have been defined
as the images to be segmented (targets) and MUSCLE25
as the source atlas. For the semi-automated single-atlas
approach, the MUSCLE2S5 atlas has not been used, and
TEST1 and TEST2 have been used as source and target
atlases and vice versa.

Fully automated multi-atlas based segmentation

The global scheme of the fully automated segmentation
pipeline is described in Fig. 3. It includes a first stage
dedicated to the non-linear registration algorithm defined
as the T function (more details are provided in “Affine
and non-linear registration methods™) and a second stage
dedicated to a multi-atlas fusion approach defined as the
F function (more details are provided in “Multi-atlas
label fusion methods”). The performance of this pipeline
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Fig. 3 Automated segmenta-
tion pipeline using the multi-
atlas-based registration and
fusion algorithms. 7 refers to a
non-linear registration function,
MSeg to the manual segmen-
tation of 7,, image, ASeg to
the automated segmentation

target

k
REGISTRATION

to estimate
deformable fields

source

Tiw ASeg + MSeg
E To
0 0 to apply
deformable
fields

of T}, RSeg to the automated

segmentation without the fusion
process, FSeg to the automated
segmentation resulting from the
fusion function (F)

<
T.

I Tn
Manual
Segmentation

MUSCLE25 ATLAS

Overlap Estimation

was assessed using MUSCLE2S5 as the source atlas and
TEST1 and TEST2 as targets, i.e. set of images to be
segmented.

Semi-automated single-atlas based segmentation

The global scheme of the semi-automated segmentation
pipeline is described in Fig. 4. It includes a single stage
dedicated to the non-linear registration (defined as the T
function). The performance of this pipeline was assessed
using TEST1 and TEST2 as source and targets and vice
versa. More specifically, each image set of a given subject
in TEST1 was registered using the image set of the same
subject in TEST2 and vice versa. This method can only be
used for multiple MRI recordings in the same subject. The
result of the MSeg performed for the first MRI is used as
the single-atlas source for the segmentation of other MRI
recordings considered as the targets.

Fig. 4 Semi-automated
segmentation pipeline using
the single-atlas based registra-
tion. T refers to a non-linear

target

LA . ' REGISTRATION to apply
registration function, MSeg to to estimate deformable
the manual segmentation of 7', deformable fields fields

image, ASeg to the automated
segmentation of T, RSeg to
the automated segmentation
resulting from the registration

function (7) Manual

Segmentation

TEST2 ATLAS

DICE Similarity Index

Affine and non-linear registration methods

In order to take into account the differences between the
target image (image to be segmented) and the atlases,
we assessed two different approaches, i.e. the free-form
deformable (FFD) parametric method originally pro-
posed by Rueckert et al. [20] and implemented by Modat
et al. (available in the library NiftiReg [21]), and the non-
parametric symmetric diffeomorphic normalization (SyN)
method, implemented in the ANTs library [22].

In order to facilitate an understanding of the following
parts, we have detailed below a few abbreviations:

. RSegf}g = T (I, J)reg refers to the resulting image of the
registration process between the source image / and the
target image J.

e T(1, J) refers to the transformation describing the defor-
mation field between 7 and J.

source

ASeg + MSeg

TEST1ATLAS

Overlap Estimation
DICE Similarity Index
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o reg refers to the registration method. We actually tested
two different 3D non-linear registration methods, FFD
and SyN, which will be detailed in the next section.

It is noteworthy that the initialization process of a non-
linear registration method is a critical step. On that basis,
we used a 3D affine transformation (AFF) based on a flirt
function using 12 degrees of freedom (available in the FSL
toolbox [17]) calculated between each pair of images as an
initial step of both FFD and SyN methods. The initializa-
tion step for the processing of a 7| weighted image (7, is
defined as: AFF = T'(T1y, T1w) AFF-

e FFDr,, method (ref f3d function included in the Nif-
tiReg library [21]) is used with the default settings
without particular options (final grid spacing (sx, sy,
sz) = (5vx, Svx, 12vx), number level to perform = 9,
maximum iteration = 1,000) and processed from each
T,,, template included in the source atlas to the T, tar-
get (image to be segmented):

FFDy,, = T(T1w, T1w)Frp © AFF

e SyNy, method (ANTS function included in the ANTs
library [22]). The parameters were defined to allow a
large deformation of areas (cost function = cross-corre-
lation, gradient step = 0.5, total smoothing = 0.5, gradi-
ent smoothing = 3, N time steps = 1 and trunk = 256)
and processed from each T, template included in the
source atlas to the T}, target:

SyNT|w =T(T1w, le)SyN o AFF

SyNaseg/;, method with the same parameters as the
SyNy,, but initialized with the transformation from each
ASeg included in the source atlas to the ASeg target, and
re-calculated from each T, registered template included in
the source atlas to the 7, target:

SyNASeg/T|W = SyNTIw [¢] SyNASeg o AFF

The outputs were a set of warp deformation fields. Each
deformable field obtained from the registrations was then
used in order to resample each MSeg atlas associated with
the T),, template image space and to obtain RSeg images
(the outputs of registration process, cf. Figs. 3, 4). For each
transformation applied to a mask image (MSeg or ASeg),
nearest neighbor interpolation was applied to keep the inte-
ger values from the original labels.

Multi-atlas label fusion methods

The label fusion process was conducted using either the
STAPLE or the STEPS algorithm developed by Jorge

Cardoso et al. [23], who described it as an extension of the
original STAPLE algorithm [24]. The STEPS approach
includes a Markov random field aiming at preserving spa-
tial coherence and incorporates a template selection step
using a ranking strategy based on the local normalized
cross-correlation over a local Gaussian window. The STEPS
fusion algorithm implemented in the NiftiSeg library was
customized and the two main user-defined parameters
for the fusion strategy (i.e. the width of the Gaussian ker-
nel for image comparison and the number of labels to use
after ranking) were optimized to obtain the highest DSI
[25] between MSeg and the results provided by the auto-
matic segmentation pipeline for the four muscles of the QF.
This STEPS optimization was performed using both atlases
TEST1 and TEST?2. For the four muscles of the QF from all
the individual sample images and for each combination of
parameters (with the number of templates used from 1 to 18
and the Gaussian kernel standard deviation varying from 1
to 12), the average DSI value was found and the higher DSI
was used to determine the optimal set of parameters.
Regarding the fusion process, we used the following

abbreviations.
reg.fus reg 1\ fus
FSegas,rs = F(RSegx 7 kaas,,, the final segmenta-

tion of the image J resulting from the fusion F, where func-
tion and parameters are defined as follows:

J: target image, F: the transformation describing the fusion,
fus: the fusion method (STAPLE or STEPS), atlas,: the ref-
erence multi-atlas, {RSegff’,}: the set of MSeg images K
included in the atlas,; and co-registered to the target image J.

Reliability of muscle volume measurements

For both atlas-based methods, individual muscle volumes
were quantified using the results from MSeg and the trun-
cated cone formula [26] considering the whole set of MRI
slices, the slice thickness, and the gaps between slices.
Intraclass correlation coefficients (ICC) and coefficients
of variation (CV) were calculated using a spreadsheet pro-
vided by Hopkins [27] and as previously described [28] in
order to assess the reliability of muscle volume measure-
ments and so on, on the basis of a comparative analysis
between the results from MSeg and those from the ASeg.

Results

Fully automated multi-atlas based segmentation
Optimization of the STEPS fusion algorithm

The optimization of the STEPS fusion method relies on

the number of templates used for the fusion process and
the width of the Gaussian kernel. As illustrated in Fig. 5,
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FFD T1w

Number of selected templates

Aseg/T1w

0.83

b ot

9 10 11 12

Kernel Standard Deviation

Fig.5 Mean Dice similarity index (DSI) for different combina-
tions of number of templates and Gaussian kernel standard devia-
tion used in the STEPS algorithm. The optimal number of templates
was the same for FFD and SyN (equal to 4) and the optimal Gauss-

Table 1 Metrics for the multi-atlas-based segmentation approach

Registration method (row)
Fusion method (column)

FFDy,,, SyNy,, SYNaseg/T1,

STAPLE DSI 0.76 £0.14 0.80 £0.14 0.81 +£0.14
STEPS DSI 0.82+0.13 0.84 £0.13 0.87 £0.11
STEPS FNVF 0.13+0.14 0.13£0.12 0.09 £0.10
STEPS FPVF 021+0.15 0.17+0.15 0.16 £0.13
STEPS MVSF 0.13£0.14 0.11 £0.14 0.13+0.16

DSI Dice similarity index, FNVF false-negative volume fraction,
FPVF false-positive volume fraction, MVSF muscle volume simi-
larity fraction for different registration methods (FFDry,,SyNy, .
SyNaseg/7,,) and different fusion algorithms (STAPLE and STEPS)
for TEST1 and TEST2 segmented using the MUSCLE25 atlas.
Results are presented as mean + SD

we found the same single local maximum (i.e. a small DSI
variation that was closed to the optimal model parameters)
for both SyN registration methods corresponding to four
templates and a kernel standard deviation ranging between
5 and 8. The corresponding DSI value was 0.82 £ 0.13,
0.84 + 0.13 and 0.87 £ 0.11 for FFDr,,, SyNy, —and
SyNaseg /7, registration methods, respectively.

Comparative analysis of the FFD and SyN registration
algorithms combined with STAPLE and STEPS fusion
methods

As the STAPLE algorithm has been largely used in the lit-
erature, we compared the corresponding DSI values with
those obtained with our pipeline including the STEPS
algorithm. The DSI, FNVF, FPVE, and MVSF values
obtained for the QF muscle using the STAPLE and STEPS
algorithms are presented in Table 1. Regardless of the
fusion and the registration methods, the DSI values were

ian kernel standard deviation was equal to 8 for FFD and 5 for SyN
(max(DSI) = 0.82 with FFD7,,, max(DSI) = 0.84 with SyNle and
max(DSI) = 0.87 with SyN g, 7, are highlighted with white dotted
lines)

systematically larger than 0.7, with the threshold com-
monly reported as an index of quality. The largest DSI val-
ues were systematically obtained for the STEPS algorithm
and thus, are considered regardless of the non-linear regis-
tration methods. This result was further supported by the
box plots displayed in Fig. 6 illustrating a systematic supe-
riority, in terms of DSI values, of the STEPS fusion method
in providing higher DSI values and also a narrower range
of values. The smallest FNVF (0.09 £+ 0.10) and FPVF
(0.16 £ 0.13) values were obtained using the SyNygeo /7,
registration method. However, regarding the accuracy of
muscle volume measurements illustrated by the MVSF
index, the smallest value (0.11 £ 0.14) was obtained
with the SyNy, = registration, although the MVSF values
obtained with the other methods were also very low (0.13).

Metrics performance of the fully automated
multi-atlas-based segmentation and individual muscle
volume quantification

As indicated in Table 2, the average DSI values ranged from
0.72 to 0.94 while the FNVF and the FPVF values ranged
from 0.04 to 0.20 and 0.08 to 0.33. Regarding the perfor-
mance related to the volume measurements, i.e. MVSEF, the
range was 0.03-0.23. It is noteworthy that the larger volume
error (23 %) was observed for both the RF and the VL mus-
cles. Individual muscle volume values were quantified in
the QF using the fully automated multi-atlas segmentation
pipeline considering the MUSCLE?2S5 atlas as the source and
the TESTT atlases as the target (FSeguscrezstest1))- The
corresponding value of the overall QF was 1,129 + 197 cm?
while individual values ranged from 81 4 29 c¢m?® for the
RF to 378 + 64 cm® for the VM (Table 3). The corre-
sponding averaged value for the QF (1,134 £ 206 cm?)
was similar when using TEST2 as the target atlas
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Fig. 6 Left panel box plots showing Dice similarity index (DSI)
obtained for the four muscles of the quadriceps femoris for both
TEST1 and TEST2 atlases. Right panel the corresponding segmen-
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tation results for STAPLE and optimized STEPS fusion methods are
presented for the subject showing the highest Dice similarity index

(DSI) value

Table 2 Metrics related to the multi-atlas based method for each muscle of the quadriceps femoris

Muscle Manual segmentation Automated segmentation DSI FNVF FPVF MVSF

VL MSeg g1 FSegnuscrias TEsTI) 0.88 + 0.08 0.04 £ 0.02 0.17£0.13 0.17 £0.18
MSeg is12) FSegnuscrizs TEsT2) 0.84 +£0.10 0.05 £ 0.05 0.23 £0.16 0.23 £0.23

RF MSegis1) FSegnuscrLEs.TESTI) 0.84 £0.12 0.06 £ 0.03 0.22 +£0.18 0.21 £0.24
MSeg rgs12) FSegmuscrrzs TEST2) 0.72 £ 0.17 0.20 £ 0.24 0.33+£0.13 023 £0.14

VM MSeg st FSegnuscLizs.tesT1) 0.94 £ 0.01 0.05 £ 0.03 0.06 £ 0.01 0.03 +0.03
MSeg rgsT2) FSegmuscrezs TEST2) 0.91 +0.05 0.10 £ 0.06 0.08 £ 0.06 0.04 £ 0.04

VI MSegisti) FSegauscrLizs.tEsTI) 0.92 +0.02 0.08 £ 0.05 0.08 £ 0.03 0.05 £0.04
MSeg rps12) FSegmuscrrzs TEST2) 0.87 £ 0.07 0.12+0.11 0.13 £ 0.05 0.10 £ 0.07

Performance metrics (DSI Dice similarity index, FPVF false-positive volume fraction, FNVF false-negative volume fraction, MVSF muscle vol-
ume similarity fraction values) of the multi-atlas segmentation approach for the individual muscles of the quadriceps femoris (VL, vastus lat-
eralis; RF, rectus femoris; VM, vastus medialis; VI, vastus intermedius). Metrics have been calculated on the basis of a comparative analysis
between the automated segmentation (FSeg) and manual segmentations (MSeg) of TEST1 and TEST?2 atlases, using SyN ASeg/Th, registration
method and STEPS fusion. Values are presented as mean £ SD

Table 3 Quantitative volume measurements for each muscle and for each segmentation method

Volumes (cm?) MSeg FSeg RSeg

Muscle TEST1 TEST2 (MUSCLE25,TEST1) (MUSCLE25,TEST2) (TEST2,TEST1) (TEST1,TEST2)
VL 286 + 111 286 £ 112 322 + 82 340 + 88 283 + 112 295 + 115

RF 69 £ 35 67 £32 81 £29 72 £ 18 67 £ 31 71 £ 37

VM 375+ 70 378 £ 68 378 £+ 64 371 £ 67 385+ 78 376 £ 68

VI 349 £ 51 351 £53 348 £ 53 351 £55 350 £ 51 355+ 54

QF 1080 £ 220 1082 £+ 229 1129 £ 197 1134 £ 206 1085 £ 229 1098 £ 231

Individual quantitative volumes are estimated for each muscle (VL, vastus lateralis; RF, rectus femoris; VM, vastus medialis; VI, vastus inter-
medius of the QF, quadriceps femoris) and for each segmentation (MSeg manual segmentation, FSeg automated multi-atlas-based segmentation,
RSeg semi-automated single-atlas-based segmentation) of TEST1 and TEST?2 atlases. The mean & SD volumes are measured in cm?

(FSegvuscLezs TesT2)-  Individual muscle  volumes  val-
ues ranged from 72 + 18 cm? for the RF to 371 + 67 cm®
for the VM (Table 3). Generally speaking, the ground-
truth results, i.e. resulting from the manual segmentation

(MSeggsty) and MSeg gst,) Were systematically lower,
e.g., 1,080 £ 220 and 1,082 + 229 cm? for the QF using
TEST1 and TEST2 atlases, respectively (Table 3). Individ-
ual values were reported in supplementary Table 1.
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Fig. 7 Left panel box plots showing DSI values obtained for the four
muscles of the quadriceps femoris using SyNy, ~and SyNagee 7,
registration methods from the whole subjects included in the TEST1
atlas to the corresponding subjects in the TEST2 atlas (each col-
our represents an individual subject). Right panel the correspond-
ing segmentation results for the SyN ASeg/Tin registration method are

Semi-automated single-atlas-based segmentation
Evaluation of the SyN registration algorithms

In order to illustrate the potential of the various non-linear
registration methods, we assessed both the SyN, —and
the SyNageg 7, methods for repeated measurements in
seven healthy subjects (TEST1 co-registered on the corre-
sponding images of the TEST2 atlas and vice versa). This
approach is similar to a more classic individual single-
atlas-based non-linear registration method in the context of
longitudinal tracking.

As illustrated in Fig. 7, the corresponding average DSI
value for the QF was 0.91 £ 0.09 for SyNy, whereas it was
higher (0.94 £ 0.03) for the SyNge, /7, » thereby illustrat-
ing the key importance of the initialization process of the
non-linear registration method. In addition, to the overall
increase of the DSI values, the SyNyg,, initialization pro-
cess led to a substantial reduction of the DSI values range
(Fig. 7). This was particularly more the case for the RF mus-
cle, which is the smallest muscle within the QF and also dis-
played the largest morphology variability in our population.

Metrics performance of the semi-automated
single-atlas-based segmentation method and individual
muscle volume quantification

As indicated in Table 4, the average DSI values ranged from
0.89 to 0.95 while the FNVF and the FPVF fractions val-
ues ranged from 0.04 to 0.10. Regarding the performance

DSl =0.91

presented for two subjects showing the highest (fop) and the low-
est (bottom). Dice similarity index (DSI) values calculated on the
basis of a comparative analysis between the manual segmentation
(MSegrpgr2)) and the semi-automated single-atlas-based segmenta-
tion (RSegrigr1,1E512))

related to the volume measurements MVSF, the range was
0.02-0.05. The larger volume error (5 %) was observed for
the RF muscle.

Individual muscle volume values were quantified in the
QF using the semi-automated single-atlas segmentation
pipeline considering either TEST1 or TEST2 as source or
target atlases and vice versa. Using TEST]1 as the target atlas
(RSeg(rgsto1ESTI)): the QF volume was 1,085 + 229 cm?
and was almost identical (1,098 =+ 231 cm3) using TEST2
as the target atlas (RSeg tgst 1EsTo))- Similarly, individual
muscle volumes ranged from 67 + 31 cm?® for the RF to
385 + 78 cm? for the VM using TEST1 as the target atlas
and from 71 + 37 cm? for the RF to 376 £ 68 cm? for the
VM (Table 3).

Reproducibility measurements of quantitative volume
using both atlas-based approaches

The reproducibility of each atlas-based method was
assessed on the basis of the ICC and CV measurements
from a comparative analysis between the manual and the
automated volume measurements on both TEST1 and
TEST?2 atlases. The corresponding values are reported in
Table 5, for each muscle and for different combinations.
The ground-truth values were computed from a compara-
tive analysis between repeated manual volume measure-
ments; the ICC values were larger than 0.98 and the cor-
responding volume measurement error (illustrated by
the CV) was 2.0 % for the whole QF muscle and ranged
from 1.7 (VI) to 5.5 % (VL). As indicated in Table 5, the
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Table 4 Metrics related to the single-atlas-based method for each muscle of the quadriceps femoris

Muscle Manual segmentation Automated segmentation DSI FNVF FPVF MVSF

VL MSegisti) RSegri:sTa 1E8TI) 0.94 +0.02 0.07 £0.03 0.04 £ 0.01 0.03 £0.03
MSegrs12) RSegrysT1.1EST2) 0.93 +0.03 0.06 £ 0.02 0.07 £ 0.05 0.03 £ 0.04

RF MSegrs1) RSegrysta.1ESTI) 0.92 +0.04 0.10 £ 0.05 0.06 £ 0.03 0.05 £ 0.04
MSeg rst2) RSegrysT1.1EST2) 0.89 + 0.07 0.10 £ 0.06 0.10 £ 0.09 0.05 £ 0.03

VM MSeg sty RSeg rpsta ST 0.96 + 0.02 0.04 = 0.01 0.04 £0.03 0.02 £0.02
MSegist2) RSeg st E5T2) 0.95 + 0.04 0.06 £ 0.05 0.04 £ 0.04 0.02 £0.03

VI MSegisti RSegrista i8T1) 0.95 +£0.01 0.05 £ 0.02 0.04 £ 0.01 0.02 £0.02
MSegist2) RSegrisT1 EST2) 0.94 + 0.01 0.05 £ 0.01 0.05 £ 0.02 0.02 £ 0.01

Performance metrics (DSI Dice similarity index, FPVF false-positive volume fraction, FNVF false-negative volume fraction, MVSF muscle vol-
ume similarity fraction values) of the single-atlas segmentation approach for the individual muscles of the quadriceps femoris (VL, vastus lat-
eralis; RF, rectus femoris; VM, vastus medialis; VI, vastus intermedius). Metrics have been calculated on the basis of a comparative analysis
between the automated segmentations (RSeg) and manual segmentations (MSeg) of TEST1 and TEST2 atlases, using the SyNygeg/ 7, registra-
tion method. Values are presented as mean = SD

Table 5 Reproducibility of volume measurements for each muscle and for each atlas-based method

Muscle MSeg g1 MSeg st MSeg st MSeg sty MSegris12)
Mseg(TESTZ) Fseg(MUSCLEZS,THST] ) Fseg(MUSCLEQS‘TESTQ) RS CE(TEST2,TESTI) Rseg(TESTl TEST2)
ICC CV (%) ICC CV (%) ICC CV (%) ICC CV (%) ICC CV (%)

VL 0.99 5.5 0.94 15.7 0.90 20.6 0.99 32 1.00 2.1

RF 0.98 4.5 0.88 22.4 0.78 17.3 0.99 4.0 0.99 3.6

VM 0.99 2.1 0.98 32 0.96 39 0.98 1.1 0.99 1.8

VI 0.98 1.7 0.90 53 0.70 10.5 0.98 2.0 0.99 1.7

QF 0.99 2 0.98 32 0.97 44 0.99 1.4 1.00 0.9

Intraclass correlation coefficient (ICC) and coefficient of variation (CV) calculated for each individual muscle volume (VL, vastus lateralis;
RF, rectus femoris; VM, vastus medialis; VI, vastus intermedius of the QF, quadriceps femoris) and for each atlas-based method [semi-auto-
mated, single-atlas-based segmentation (RSeg) and automated, multi-atlas-based segmentation (FSeg)]. For each method the manual segmen-
tation (MSeg) results were considered as the ground truth. Measurements were performed for both TEST1 and the TEST2 atlases using the
SyNaseg/ 7, registration method (for both approaches) and the STEPS fusion (for multi-atlas only)

performance of the single-atlas method was actually sim-
ilar to the ground-truth method with an ICC value larger
than 0.99 and a volume error smaller than 4.0 %. On the
contrary, the multi-atlas method performance was much

of interest [1, 5, 6]. Although a few studies have assessed the
potential of multi-atlas-based methods for muscle segmen-
tation [14], individual muscle volume measurements have
scarcely been reported and the performance of the different

worse. The results might be considered as acceptable for
the whole QF muscle (ICC larger than 0.97 and CV smaller
than 4.4 %). However, the corresponding values for the
individual muscles were much larger, ranging from 3.2 to
22.4 % for the CV and from 0.70 to 0.98 for the ICC.

Discussion

In the present study we assessed the performance of two
atlas-based methods using non-linear registration processes
with the aims of providing an automatic segmentation of indi-
vidual muscles and quantifying the corresponding muscle
volumes. Previous studies have clearly indicated that manual
labelling of anatomical structures was time consuming and
expert-dependent such that automated techniques would be

methods has been mainly assessed on the basis of the DSI,
which can be questioned for muscle volume measurements.

On the basis of several metrics regarding muscle seg-
mentation, we clearly showed that the fully automated,
multi-atlas-based segmentation was robust and that the
semi-automated, single-atlas segmentation provided more
robust and accurate results. Regarding muscle volume
measurements, the multi-atlas-based method was accept-
able for the overall QF muscle with a 3.2-4.4 % meas-
urement error. However, the results regarding individual
muscles were not acceptable, with measurement errors
ranging from 3.2 to 22.4 %. On that basis, the very low
measurement error associated to the single-atlas method
(1.1-4.0 %) clearly positioned this method as the method
of choice for longitudinal measurements for which subtle
volume changes might have to be quantified.
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Non-registration and fusion processes

For both non-linear registration methods, i.e. FFD and SyN,
we observed a large between-muscle variability for the DSI
values using the STAPLE algorithm. Using the STEPS
method, this variability was substantially reduced and the
individual DSI values were increased such that this fusion
method was chosen. The fusion method strategy allowed
us to only select appropriate templates for the segmenta-
tion process and we showed that the selection of four tem-
plates was optimal for the MUSCLE2S5 atlas. The necessity
of such a step has been clearly identified in the study of
Prescott et al. [5], in which they used, based on normalized
histograms, a single template among the six available in
order to increase the accuracy of the segmentation process.

Metrics of the atlas-based approaches

On the basis of a comparative analysis between the results
from the manual and the fully automated, multi-atlas-based
segmentation, we clearly demonstrated that our segmenta-
tion approach of the four muscles of the QF was reliable.
Regarding the DSI values, the performance of our multi-
atlas-based method combining a non-linear registration
method to a fusion process was rather high. As a matter
of comparison, a value of 0.7 has been reported as a good
agreement in the context of morphometric analysis of
white matter lesions in brain [15]. The average DSI value
(0.87 £ 0.11) we reported for the SyN g, /7,, method was
slightly higher than the values obtained using a single-atlas-
based level set segmentation strategy (RF 0.78 £ 0.12; VI
0.79 £ 0.10; VL 0.82 % 0.08 and VM 0.69 £ 0.16) [5] and
comparable to those obtained using a random walks-based
approach for individual muscles (0.86 £ 0.07) [3]. It is
noteworthy that our DSI results were also similar to those
reported for the segmentation of prostate (DSI = 0.85) [11]
and the pectoral muscle (DSI = 0.74) [12]. Of interest, the
robustness of the semi-automated, individual, single-atlas
approach was systematically higher on the basis of the DSI
values, which were always larger than 0.9.

Volume measurements using the atlas-based
approaches

The other metrics reported in the present study allowed
us to evaluate the accuracy of the muscle volume meas-
urements. Considering that these metrics have been very
scarcely reported in other studies intending to use atlas-
based segmentation for the quantification of muscle vol-
umes, we were only able to compare these values with a
single study. The FNVF, FPVF and MVSF values we
reported in the present study were very similar to those
reported by Karlsson et al. [14] for the whole QF muscle.

However, the situation was very different for the volume
quantification of individual muscles. While the single-atlas
approach provided volume measurements errors (1.1-4.0 %
error) very similar to those resulting from the ground-truth
analysis (1.7-5.5 % volume error), i.e. the repeated MSegs,
the multi-atlas-based method provided larger errors (3.2—
22.4 %), clearly indicating that subtle changes in individual
muscle volumes could not be accurately quantified using
a multi-atlas-based strategy and that a single-atlas-based
approach must be preferred. This has to be considered with
respect to previous longitudinal investigations conducted
in healthy subjects and indicating a selective hypertrophy
among or along the whole QF after a resistance-training
program [29, 30], an acute exercise [31], or a muscle-spe-
cific atrophy after a short- and long-term immobilization
period [32, 33].

For both segmentation methods, we found that the
robustness differed between individual muscles with a
higher performance systematically observed for the VI and
VM muscles and a poorer performance for the RF and VL
muscles. Such an anatomical dependence has been already
reported in previous studies. While the VM muscle was
reported as the most variable muscle by Prescott et al. [5],
Karlsson et al. [14] reported a larger variability in the upper
part of the body as compared to the lower part. In the lat-
ter study, it has been suggested that this variability was not
only due to purely anatomical variations but also to the
subject positioning in the MRI scanner, thereby indicating
the importance of the subject positioning for longitudinal
and also for cross-sectional studies. The multi-atlas data-
set we have constructed relied on MR images recorded in
a very straightforward way regarding the leg position, and
this certainly substantially improved the accuracy of the
segmentation approach.

Usefulness of atlas-based approaches for longitudinal
tracking

At this stage, one could question the usefulness of these
methods for the longitudinal tracking of pathological
changes occurring in patients with neuromuscular disor-
ders. Previous longitudinal studies have been conducted in
patients but the corresponding analyses have been mainly
qualitative [34, 35]. The segmentation strategies reported
so far have never tackled the intermuscular fatty infiltration,
which is one of the main hallmarks of the disease in these
patients and is likely to challenge the robustness of any seg-
mentation strategy. Although additional studies would have
to further investigate this issue, it looks as if the multi-atlas-
based strategy is inappropriate given that a relevant multi-
atlas database would have to be available for each disease
and for each stage of a disease. The single-atlas strategy
might be a relevant alternative inasmuch as longitudinal
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measurements of changes in muscle volume and fat infil-
tration are of interest. We emphasize that the larger perfor-
mance of the single-atlas method is counterbalanced by a
higher processing time as compared to the multi-atlas-
based approach. However, one has to keep in mind that in
a context of multiple MRI performed for a given subject,
the MSeg process would have to be performed only once
and used as an atlas for the segmentation of the following
MRI datasets. According to our results, this is the optimal
choice if one aims at measuring individual muscle volume
and performs a longitudinal follow-up for a given subject.
For individual muscles, we reported a very high accuracy
of the single-atlas method on the basis of measurements
repeated over a 2-day period, and one can wonder what the
situation could be for a 2-year period. Based on the results
from Maden-Wilkinson et al. [36] showing a low average
muscle volume loss (0.77 % per year), the reproducibility
we reported for the 2-day period should be similar to what
we could have measured over a 2-year-period. For patients
with neuromuscular disorders, both inter- and intramuscu-
lar fatty infiltrations might challenge the segmentation pro-
cess and this issue would have to be investigated in future
studies.

Challenging factors related to atlas-based approaches

Additional challenging factors such as MRI artifacts and
intramuscular fat have also been identified for muscles
segmentation strategies [5, 37]. For the limited MRI data-
set we used for the present study, we did not identify any
particular artifact that could challenge the quality of the
ASeg. Our strategy of combining the non-linear registra-
tion with a fusion method did not suffer from the presence
of intramuscular fat. Age, sex, and body mass index have
also been reported as potential challenging factors for an
ASeg strategy given that these factors provide additional
variability regarding muscle shape, volume, SAT thick-
ness, and the degree of IMAT infiltration [37]. The present
study was conducted in healthy men ranging from 25 to
40 years and we only observed a slight variability among
subjects and muscles. The extension of the present database
with women and older subjects should allow us to take into
account the natural diversity related to age and sex, as pre-
viously described [13]. However, it should be mentioned
that challenging factors are likely to be related to the seg-
mentation strategy. While Karlsson et al. [14] mentioned
that age and BMI did not affect the performance of their
methods, Prescott et al. [5] indicated that the poorer perfor-
mance of their algorithm for the VM muscle could be due
to the larger variability of the muscle shape and the limited
consistency of the corresponding borders.

The present work is a prospective study in the grow-
ing field of automated muscle segmentation and has some

limitations related to the limited number of subjects,
although comparable to the populations size used in pre-
vious studies [3, 5, 14]. This approach should be further
tested in a larger cohort of healthy subjects.

Conclusion

We have presented two atlas-based methods allowing a seg-
mentation of individual muscles from the QF group and the
corresponding volume quantification. Both segmentation
algorithms were very robust and the performances related
to muscle volume measurements were very different. While
the fully automated, multi-atlas-based approach was sat-
isfactory for global volume measurement, the semi-auto-
mated, single-atlas-based approach must be preferred for
volume measurements of individual muscles and for longi-
tudinal investigations.
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