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Abstract

The elimination of so-called background fields is an essential step in phase MRI and quantitative 

susceptibility mapping (QSM). Background fields, which are caused by sources outside the region 

of interest (ROI), are often one to two orders of magnitude stronger than tissue-related field 

variations from within the ROI, hampering quantitative interpretation of field maps. This paper 

reviews the current literature on background elimination algorithms for QSM and provides insights 

into similarities and differences between the many algorithms proposed. We discuss the basic 

theoretical foundations and derive fundamental limitations of background field elimination.
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INTRODUCTION

Magnetic field perturbations generally extend throughout all space and are not restricted to 

the location of their origin. As a result, the measured magnetic field in a certain region of 

interest (ROI) generally contains contributions both from sources located inside and sources 

located outside the ROI (Fig. 1) [1, 2]. Due to the proportionality of magnetic field and 

Larmor frequency [3], the magnetic field can be easily mapped with, e.g., multi-echo 

gradient echo sequences [4, 5, 6]. We refer to these mapping techniques as field-mapping 

MRI in the following.

In field-mapping MRI, the field contributions that are not generated by the sources inside the 

ROI are usually referred to as background contributions. They generally originate from a 

variety of sources, e.g. inhomogeneity of the static main magnetic field, macroscopic 

currents1 (e.g. in the MRI shim coils), or magnetic susceptibility variations outside the ROI 

[2]. Usually, the strongest contributor to the background field is perturbations caused by the 

high susceptibility difference between air and tissue of approximately 9 parts per million 

(ppm). The outside surface of the human body represents such a susceptibility interface, but 

air-tissue interfaces also exist inside the body, for example in the sinus cavities and the lung. 

The susceptibility of biological tissue (e.g. the brain) depends on its biochemical 

composition but usually varies only in the sub-ppm range. Hence, background fields are 

often one to two orders of magnitude stronger than tissue-related field variations from within 

the ROI and typically dominate the measured field [7, 8, 9].

The purpose of the background field removal step in QSM is to eliminate these 

superimposed fields to avoid a degrading effect on the calculated susceptibility maps [2]. In 

this review article we discuss the fundamental physical and mathematical foundations of 

background field removal, review background removal algorithms and conclude with 

remarks on practical aspects of background elimination and a quantitative comparison of the 

different methods. We emphasize theoretical aspects of background field elimination rather 

than numerical implementation, which is generally covered in the respective original 

publications. We think this approach allows a deeper understanding of the basics and 

limitations of background field elimination. Along these lines, we have decided to classify 

the algorithms based on underlying assumptions – the type of mathematical problem solved 

and the solution obtained. Compared to other classification schemes employed in the 

literature that are often more oriented toward aspects of the numerical implementation [9, 8, 

1], this classification may appear counterintuitive in parts, but it provides additional insights 

into similarities and differences of the many algorithms proposed. We begin the review with 

theoretical foundations of background field removal, including central definitions, introduce 

and discuss the different classes of algorithms and practical considerations of the ROI 

definition, and close with a quantitative comparison of the different algorithms in a 

numerical model. Table 1 provides a comparative overview of the different techniques 

discussed.

1We distinguish here between microscopic currents flowing on the atomic and molecular length scale and macroscopic currents 
flowing over a macroscopic length. Microscopic currents, such as electron orbital motion, are related to magnetic susceptibility via the 
generation of microscopic dipoles in an externally applied magnetic field [1].

Schweser et al. Page 2

NMR Biomed. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PHYSICAL AND MATHEMATICAL FOUNDATIONS

Definition of the background field

Traditionally, the term background field has been used as a synonym for external field, 

which is defined as the field inhomogeneity generated by sources located outside the ROI, 

whereas internal fields are field inhomogeneities caused by sources located inside the ROI, 

illustrated in Fig. 1. Internal and background field inhomogeneities may be understood as 

material-related demagnetization fields of (induced) dipole moments [1, 8, 9, 10] that add to 

the externally applied strong main magnetic field, which is usually considered homogeneous 
(e.g. 3 or 7 Tesla). In practice, the main magnetic field has small inhomogeneities due to 

magnet geometrical imperfections partially corrected for by the shim coils. The associated 

static effects similarly contribute to the background field. Because we focus on 

susceptibility-induced fields, the main magnetic field will be considered as homogeneous in 

the present review without loss of generality. Indeed, a formal handling of its contribution 

would only require adding a (harmonic; see below) background contribution to the field 

mapped inside the MRI bore, which is handled by the methods presented.

In QSM, the ROI is usually the region in which the susceptibility distribution is to be 

determined. This region can be identical to the signal-yielding part of the object within the 

field of view, but often only a sub-region of this region is chosen to simplify computations or 

the improve susceptibility estimation. In the case of a brain examination, the ROI usually 

includes all brain tissues, but excludes other signal-yielding tissues, such as parts of the 

skull, the eyes and the neck.

In a first-order approximation, internal and external fields can be considered as being 

independent from one another allowing the expression of the measured total field H (again, 

describing only demagnetization fields here, without loss of generality) as H = Hint + Hext, 

where Hint and Hext are the internal and the external fields that are traditionally assumed to 

be generated by susceptibility distributions inside and outside the ROI, respectively [11]. 

This first-order approximation is warranted for susceptibility values of materials considered 

as “MR-compatible” (few ppm) [12] because demagnetization fields associated with such 

materials are five to six orders of magnitude weaker than the inducing externally applied 

magnetic field [1, 10, 7, 9, 8]. Consequently, second-order interaction effects of 

demagnetization fields with one another are five to six orders of magnitude smaller than the 

demagnetization fields itself.

However, the traditional definition of internal and background fields through the physical 

location of the generating susceptibility distributions is ambiguous because the susceptibility 

values underlying Hint outside and Hext inside of the ROI can to some degree be varied 

without changing the total field, H (see Appendix A.1). For example, if the susceptibility 

within the ROI is approximately −9 ppm (e.g. brain tissue) and the susceptibility value is set 

to a constant – zero, say – outside the ROI, the corresponding internal field will show field 

inhomogeneities due to the relatively large susceptibility difference between the inside and 

the outside of the ROI. If, on the other hand, the susceptibility value outside the ROI is set to 

−9 ppm, field inhomogeneities will be minimized. Related to this internal field extraction 

problem, QSM generally provides only reference-less susceptibility difference maps. In the 

Schweser et al. Page 3

NMR Biomed. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



majority of QSM studies, the susceptibility values are referenced to the average 

susceptibility value in the brain.

A resolution to the ambiguity of the internal field definition is offered by defining internal 

and external fields via the gradient of the susceptibility distribution, which is supported by 

the fact that only spatial changes (gradients) of magnetic susceptibility generate magnetic 

field perturbations. Internal and external fields can then be defined via a constant zero 

gradient outside and inside the ROI, respectively. This definition requires introducing a third 

field component that is caused by the susceptibility change on the boundary of the ROI, 

which in the following description is referred to as the boundary field, Hbnd : H = Hint+ Hext 

+ Hbnd, where the underlying susceptibility (gradient) distribution is split accordingly, ∇χ = 

∇χint + ∇χext + ∇χbnd, with ∇χint = 0 outside the ROI and on its boundary, ∇χext = 0 inside 

the ROI and on its boundary, and ∇χbnd = 0 outside and inside the ROI, but not necessarily 

on the boundary (∇ is the 3D gradient operator). With this definition, internal and external 

fields have genuine contributions only from inside and outside the ROI, respectively, but not 

from the boundary; resulting in a unique definition of internal, external, and boundary fields. 

The boundary field is non-zero if there is a step-change in susceptibility at the boundary 

(Fig. 2).

In a discretized setting, we further define a boundary region of one voxel inside and outside 

the ROI boundary which contains the sources of the boundary field (see Fig. 1, 

enlargement). This boundary region is of practical relevance because the ROI boundary is 

generally located in regions where the susceptibility distribution changes perpendicular to 

the boundary, e.g. due to cortical convolutions, pial veins, and the transition between brain 

tissue and cerebrospinal fluid. Furthermore, most background elimination techniques 

produce incorrect internal field values or do not at all produce internal field values in this 

boundary region (see below). However, since the goal of background field elimination is the 

extraction of the internal field, we will refer to the sum of external and boundary fields as the 

background field (Hbkg = Hext + Hbnd) in the remainder of the review, if not explicitly 

otherwise stated. However, it should be noted that this redefinition is arbitrary and 

background elimination algorithms may lump the boundary field together with the internal 

field. As discussed above (and in Appendix A.1), a combination of the boundary field with 

the internal field will result in an increased level of slowly varying contributions in the 

corrected field. The practical impact of this definition on the final field-to-source QSM 

inversion likely depends on the inversion approach employed. If the inversion algorithm is 

able to place sources directly at the outside boundary of the ROI, the boundary field should 

have a minimal impact on the calculated susceptibility distribution within the ROI. However, 

this has yet to be studied systematically and a detailed discussion of the susceptibility of the 

different QSM inversion approaches toward residual background or boundary fields is 

beyond the scope of the present article.

Mathematical properties of internal and background fields

It follows from the first principles of electrodynamics that, in the absence of susceptibility 

heterogeneity and macroscopic currents, magnetic fields satisfy the homogeneous wave 

equation [1]. For a static magnetic field H this equation simplifies to Laplace’s equation:
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(1)

where c is the speed of light, t denotes time, and the operator  is the 

three-dimensional Laplacian, expressed here in Cartesian coordinates. Functions that satisfy 

Laplace’s equation are called harmonic functions and have been extensively studied in the 

field of potential theory [13]. In regions with susceptibility variations, ∇χ ≠ 0, the Laplacian 

of the total magnetic field is given by [14]

(2)

where H0 is the nominal field strength of the applied main magnetic field.

It follows from Eq. (2) that the background field is harmonic within the ROI because the 

ROI does not contain any of its sources by definition. Consequently, the background field 

satisfies Laplace’s equation inside the ROI and Poisson’s equation outside the ROI:

(3)

where Ω denotes the ROI. The internal field, Hint, has no sources outside the ROI by 
definition, and, hence, per Eq. (1), it satisfies Laplace’s equation outside of the ROI and the 

Poisson equation inside the ROI:

(4)

The mathematical properties of Eqs. (1) to (4) represent the ultimate theoretical basis of 

current background field correction algorithms. The following sections discuss the 

implications of these properties for the theoretical separability of internal and background 

fields as well as numerical solution strategies.

Separability of internal and background fields

To the best of our knowledge, it has yet to be determined theoretically whether a separation 

of the total field based on Eqs. (1) to (4) yields unique background and internal fields or if 

the separation is ambiguous and additional assumptions are required to obtain a physically 

meaningful separation. In particular, it is important to understand if internal fields can be 

Schweser et al. Page 5

NMR Biomed. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incorrectly attributed to the background fields, because this attribution could remove 

potentially important information about the susceptibility distribution within the ROI. It is 

also important to understand if background fields may be incorrectly attributed to the 

internal field. While it is likely that this incorrect attribution would have a negligible effect 

on QSM (because the inversion algorithms could potentially explain such contributions as 

magnetic susceptibility variations outside the ROI) it would have important consequences 

for a comparative evaluation of background removal algorithms.

It is clear that it is impossible (without additional assumptions) to uniquely assign internal 

field contributions as internal fields if identical fields can theoretically also be caused by 

sources outside the ROI. A unique separation of the total field into internal and background 

fields exists only if internal fields generally cannot be described by a combination of 

background fields. In more rigorous mathematical terms; a unique separation of internal and 

background fields requires that no internal field other than the trivial field (which is constant 

zero throughout space) is an element of the subspace spanned by all possible background 

fields.

Since the background field is generally harmonic in the ROI (cf. Eq. 3), it is clear that 

internal fields can be separated uniquely from background fields only if the internal field is 

not harmonic in the ROI; internal fields that are harmonic in the ROI cannot be distinguished 

from background fields. Equation (4) implies that internal fields are harmonic within the 

ROI if and only if their underlying susceptibility distribution satisfies a 2D wave equation 

with the z-coordinate as the “time” coordinate in the ROI:

(5)

Internal fields that satisfy Eq. (5) would be harmonic not only outside the ROI but in the 

whole space. The question is: Do fields exist that are harmonic in the whole space? We show 

in Appendix A.2 that such fields are constant zero. Consequently, non-zero harmonic 
internal fields do not exist. In other words, internal fields can generally be understood as the 

non-harmonic component of the total (susceptibility-based) field perturbation.

The fact that non-zero harmonic internal fields do not exist implies that a unique separation 

of internal and background fields is possible. As a consequence, background elimination 

methods that employ the relations in Eqs. (1) to (4) to remove all harmonic components do 

not remove any information about the internal field.

Liu et al. [15] have illustrated in a numerical simulation that (inside the ROI) internal fields 

are generally only approximately orthogonal to background fields and non-orthogonality 

increases with decreasing distance from the boundary of the ROI. This lack of perfect 

orthogonality implies that background correction methods which employ projection 

techniques (i.e. which rely on orthogonality; see Appendix A.3) can project some field 

components of sources located inside the ROI and close to the boundary (internal fields) 

onto the space of background fields. In other words, the corrected field contains spurious 

background contributions and is not strictly an internal field. However, while this limitation 
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may attenuate internal fields emerging from sources close to the boundary, it does not imply 

that the fields cannot be uniquely separated. Our previous foundations on the harmonic 

properties show that a complete elimination of the field of internal sources will not occur.

While the contamination of the corrected field with fields that are harmonic in the ROI is of 

theoretical interest, it is yet unclear how it affects the field-to-source inversion of QSM. 

Most sophisticated (spatial domain) susceptibility mapping algorithms can place 

susceptibility variations outside the ROI, allowing the attribution of harmonic fields in the 

ROI to sources outside the ROI.

Mathematical solution of the background correction problem

Application of the Laplacian to the total field, H = Hbkg + Hint, results in a Poisson equation:

(6)

Due to its harmonic property in Ω (cf. Eq. 3), the background field does not appear on the 

right hand side of Eq. (6), illustrating that the Laplacian eliminates all harmonic fields in Ω. 

In other words, the null-space of the Laplacian in Ω is spanned by all possible harmonic 

fields in Ω. Solution of the Poisson equation may theoretically reveal the internal field, Hint. 

However, Eq. (6) is an under-determined problem without a unique solution. The internal 

field can only be determined up to the null-space of the Laplacian, i.e. up to an unknown 

additive harmonic field, because adding any harmonic field to Hint will still satisfy Eq. (6). 

For example, a trivial solution of Eq. (6) is the total field itself: Hint = H. However, the 

under-determination of Eq. (6) is not to be confused with the uniqueness property of the 

background-elimination problem (see above). Equation (6) is under-determined because it 

describes the relation between the total field and the internal field only within Ω, but does 

not include the constraint that the internal field is harmonic outside Ω (by definition; cf. Eq. 

4).

Solving differential equations generally requires defining conditions on the boundary of their 

definition space. The definition of the boundary field suggests employing a derivative 

boundary condition:

(7)

where ∂Ω denotes the boundary of Ω (cf. Fig. 1). The boundary condition in Eq. (7) may be 

implemented and the validity of Eq. (6) extended from Ω to all space by introducing a mask 

operation to the left-hand side of Eq. (6) [16]:

(8)

where M denotes a corresponding mask that sets to zero values outside the ROI and on the 

boundary. Solution of the Poisson equation in Eq. (8) by applying the inverse Laplacian in 
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the whole space theoretically gives a unique solution Hint with , in 

accordance with the physical behavior of the internal field. Being harmonic outside the ROI 

and on the boundary, the solution of Eq. (8) satisfies the conditions of the internal field in 

Eqs. (1–4) and is, hence, the unique solution of the background correction problem.

Corollaries of Green’s theorem

Green’s theorem is one of the fundamental theorems of vector calculus [13], and one which 

has several interesting corollaries of relevance for harmonic functions. The uniqueness 
theorem and the spherical mean value (SMV) or average value theorem are the basic 

properties of mathematical physics used by several of the background field correction 

algorithms reviewed in the following sub-sections.

The uniqueness theorem states that a harmonic function u(r⃗) in a region Ω (such as the 

background field in the ROI) is uniquely defined by its values on the boundary of the region 

[13], u|∂Ω, where ·|∂Ω is shorthand notation for values on the boundary.

The SMV theorem states that the mean value of a harmonic function calculated over a 

sphere centered at r0⃗ (the SMV) equals the value of the harmonic function at the center of 

the sphere u(r⃗0):

(9)

where S(r⃗) describes a spatially restricted, normalized (∫S(r⃗)d3 r⃗ = 1)) spherical function 

around the origin.

PRACTICAL CONSIDERATIONS REGARDING THE DEFINITION OF THE ROI

The ROI defines which sources are considered as background sources and, hence, has a 

critical effect on the calculated internal field. If the ROI is defined too small, important 

tissue regions may not be encompassed and would not be open to interpretation in 

subsequent susceptibility mapping steps. If the defined ROI exceeds the actually desired 

ROI, e.g. the brain, and includes regions that contain sources usually regarded as 

background sources (such as the sinus cavities), the corrected field will not meet the 

expectation of absence of large-scale field variations. In particular, the inclusion of voxels 

with erroneous field values, such as regions with severe phase noise due to low magnitude 

MRI signal, can have a detrimental effect on the calculated internal field [17] when those 

voxels are located close to or in the boundary region.

Although the definition of the ROI is critical for the outcome of QSM, the authors are not 

aware of any work that specifically addresses ROI generation in vivo. In brain imaging, the 

ROI is usually defined using automatic brain extraction tools for magnitude images [18], 

followed by a rather conservative erosion of the resulting binary brain mask. However, our 

experience is that automated brain extraction tools tend to perform poorly in the case of very 

abnormal brain anatomy, e.g. in the case of a signal-void brain lesion close the brain’s 

surface. This represents a critical obstacle for the clinical translation of QSM. Furthermore, 
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at ultra-high magnetic field strength, current algorithms often fail even in healthy subjects 

because of strong inhomogeneities in the magnitude images. While enhanced segmentation 

algorithms or the use of phase error information within QSM may mitigate these effects 

[19], robust techniques are critically needed to automatically determine the reliability of 

field measurements and accurately define the ROI.

DIRECT SOLUTION OF EQUATION (8)

Since the discrete Laplacian can be calculated via convolution (symbol *) with a kernel κ, 

∇2 → κ * H, the masking in Eq. (8) allows a numerical solution via direct inverse filtering 

deconvolution (symbol *−1),

(10)

enabling a highly efficient numerical implementation via the Fourier convolution theorem 

[20]:

(11)

where FT and FT−1 denote the Fourier transform and the inverse Fourier transform, 

respectively, and ● denotes point-wise multiplication. The mask M′ is designed such that it 

sets to zero all voxels for which the numerical calculation of the Laplacian requires voxels 

outside the ROI. The quantity Hcorr is the calculated (corrected) internal field; we will use 

the subscript “corr” in the remainder of this article to emphasize that underlying assumptions 

and approximations of background correction algorithms may result in fields that do not 

strictly satisfy our definition of the internal field. Implications of the numerical solution 

outlined in Eqs. (10) and (11) for the resulting corrected field will be discussed below.

According to Eq. (11), numerical implementation of this direct approach involves the 

following simple steps: i) 3D Fourier transformation of the field, ii) point-wise 

multiplication of the Fourier-transformed field map with the Fourier-space Laplacian kernel 

according to Eq. (11), iii) inverse Fourier transformation, iv) masking with the eroded ROI 

mask that sets all voxels in the boundary region to zero, v) Fourier transformation of the 

masked image, vi) point-wise division by the Fourier-space Laplacian kernel 

(deconvolution) and setting all coefficients for which the division is not defined (kernel 

equals zero) to zero, and, finally, vii) inverse Fourier transformation. All Fourier transform 

calculations are usually performed with numerically efficient Fast Fourier Transform (FFT) 

algorithms. Steps (i) to (iii) may also be carried out in the spatial domain using the wrap 

insensitive Laplacian calculus (see [16] or Robinson et al. [21] in this same issue), which 

obviates the need for prior phase unwrapping. Appropriate zero-padding in the spatial 

domain may be introduced before step v) to reduce circular convolution artifacts, which may 

result in low frequency field inhomogeneities.
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The binary masking involved in Eqs. (10) and (11) has implications for the voxels 

immediately at the inner boundary of the eroded ROI, because the Laplacian at these 

locations is calculated using the values of H within the boundary region. Sources within the 

boundary region, such as pial veins in the brain, affect the Laplacian’s values at locations in 

the eroded ROI (see Figure 1). While the masking strictly enforces the boundary condition 

in Eq. (7), the numerically calculated Laplacian values at the inside border between 

boundary region and eroded ROI are inconsistent with the boundary condition. This is a 

source of artifacts when evaluating Eqs. (10) and (11). The inconsistencies can be 

particularly severe when field measurement errors exist in the boundary region, such as 

phase unwrapping errors. Associated artifacts in the corrected field appear as remnant 

background fields, because they emerge from the boundary region and are, therefore, 

harmonic at a distance of more than one voxel from the boundary.

As can be seen in Eq. (10), the direct solution appears as an inverse filtering approach of a 

spatially masked Laplacian of the total field. The multiplication with the Fourier 

transformed Laplacian kernel on the right-hand side of Eq. (11) is a formal point-wise 

multiplication by k2, where k denotes the distance to the origin in the spatial frequency 

domain. Likewise, the deconvolution performed using the inverse Laplacian is a 

multiplication with 1/k2 and is, as such, not well-defined, resulting in error amplification for 

small spatial frequencies in the corrected field. This suggest the definition of some sort of 

regularized inverse Laplacian that mitigates artifacts. Schweser et al. [16] mitigated 

background field contamination and artifacts by using truncated singular value 

decomposition (TSVD) regularization, which essentially means that Fourier coefficients of 

the calculated internal field are set to zero wherever the corresponding magnitude of the 

Fourier coefficient of the deconvolution kernel falls below a certain user-defined numerical 

threshold. The practical effect of TSVD is similar to a mild high-pass filter which not only 

suppresses artifacts but also eliminates other slowly varying contributions, such as non-

harmonic [22, 23] B1-related phase offsets [24] (see Robinson et al. [21] in this same issue). 

In the literature, the TSVD threshold value has been chosen empirically based on the visual 

appearance of the internal field. A more systematical investigation is presented by Özbay et 

al. [25] in this special issue. Other types of regularized inverse Laplacian have been 

proposed with different properties [26].

The direct solution by inverse Laplacian filtering (Eq. 11) has been applied by several 

groups due to the simplicity of realizing an implementation [27, 28]. If the quality of the 

input field map is high, this method seems to eliminate background fields reasonably well, 

resulting in susceptibility maps with a high visual quality [16].

ASSUMPTION OF NO SOURCES CLOSE TO THE BOUNDARY (NOS)

Sophisticated Harmonic Artifact Reduction for Phase (SHARP)

The high sensitivity of the direct solution toward sources in the boundary region may be 

mitigated by assuming that an extended region close to the boundary of the ROI is free of 

any sources. This assumption allows a numerically efficient calculation of the internal field 

via the SMV theorem, a technique termed Sophisticated Harmonic Artifact Reduction for 

Phase (SHARP) [29].
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The convolution-type nature of Eq. (9) allows the SMV to be expressed for all spatial 

locations as a convolution relation: u * S = u. It follows from the harmonic property of 

background fields that they are invariant under convolution with a spherical kernel, Hbkg * S 
= Hbkg, which allows the background field to be eliminated by subtracting its SMV from the 

total field [29]:

(12)

Rewriting Eq. (12) with a modified spherical kernel S′ = δ − S, where δ is a Dirac 

distribution (unit impulse) at the center of the sphere, allows the background elimination 

problem to be expressed using a boundary condition similar to that in the direct solution by 

inverse Laplacian filtering in Eq. (6):

(13)

Analogous to the Laplacian, S′ is a physically motivated filter that completely eliminates 

harmonic fields wherever it can be evaluated in Ω. Note that the boundary region Ω̃′ and the 

mask M″ are different from those in the previous sub-section. Since the SMV cannot be 

evaluated close to the boundary, where the sphere would exceed the ROI, the widths of the 

boundary region, Ω̃′, depends on the spatial extent of S′. In particular, since the convolution 

kernel S′ is larger than the Laplacian kernel, the internal field can be determined only in a 

smaller region.

Equation (13) can be solved analogously to Eq. (6) and the numerical implementation is also 

analogous to the direct solution, with the spherical kernel instead of the Laplacian kernel. 

When SHARP is applied to data with an anisotropic voxel size, the voxel size of the utilized 

grid has to be taken into account when rendering the numerical spherical kernel S′. This 

requirement generally turns the spherical (physical) kernel into an ellipsoid numerical 

kernel. Alternatively, an isotropic grid can be used by resampling the total field map to 

isotropic voxel size before applying the algorithm.

SHARP is subject to the same problems and limitations associated with the masking step as 

the direct solution. In particular, violations of the boundary condition in Eq. (13) (which is 

extended compared to the boundary region in Eq. 7) can lead to artifacts in the corrected 

field. The condition can be violated by an underlying susceptibility distribution that does not 

satisfy S′ * Hint = 0 in Ω̃′, e.g. anatomical structures with different susceptibilities in this 

region. While the violation due to the larger kernel and the larger boundary region seem like 

a disadvantage of SHARP compared to the direct solution, the averaging property of the 

larger kernel actually mitigates artifacts resulting from the inconsistencies in the vicinity of 

the boundary, generally resulting in a less inhomogeneous internal field [30], and, hence, 

requiring less TSVD regularization. An explanation for this observation is that the averaging 

property of the SMV makes it more difficult to violate the boundary condition or produce 

net inconsistencies at the boundary compared to a much smaller Laplacian kernel (Eq. (7)).
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SHARP was one of the first analytical background correction techniques to be developed 

and has been widely implemented and applied. While robustly eliminating the background 

field, a major downside of the method is the inability to determine even approximate internal 

field values in a relatively extended boundary region. However, since the physical extent of 

the boundary region is related to the grid voxel size (rendering of the numerical sphere), it 

can be minimized by spatial interpolation of the discretized field data before the background 

removal. The most native spatial interpolation in MRI is zero-padding in k-space, ideally 

applied to the measured single-channel data before multi-channel combination.

Extended SHARP (E-SHARP)

Extended SHARP (E-SHARP) [31] aims to extrapolate the SHARP-corrected field to the 

boundary region. The method exploits the analyticity of harmonic functions [31], which 

means that they can be described by a convergent power series. E-SHARP calculates a low-

order Taylor expansion of the SHARP-background field based on the values of the 

background field in the vicinity of the boundary of the eroded ROI. However, although 

harmonic functions are analytical, not every analytical function is harmonic, meaning that 

the extrapolated background field may not coincide with the real background field.

The introduction of background correction algorithms that provide internal field values 

much closer to the ROI boundary (see below) have diminished the interest in a dedicated 

extrapolation post-processing step, explaining why E-SHARP has not been applied widely.

Variable-radius SHARP (V-SHARP)

The selection of the spatial extent of the kernel S′ (sphere radius) in the original SHARP 

method represents a trade-off between boundary-related artifacts in the internal field (small 

radii) and a loss of field information at the boundary of the ROI due to its erosion (large 

radii). To achieve a better compromise between the two, Wu et al. [30] used a variable radius 

sphere for the convolution in Eq. (13). A large sphere was used for voxels sufficiently far 

away from the boundary of the ROI. For voxels close to the boundary, the largest possible 

sphere was used that allowed the convolution to be evaluated without extending over the 

boundary. The deconvolution was carried out with the deconvolution kernel corresponding to 

the largest sphere used in the convolution step. This procedure resulted in maximum 

accuracy in the inner part of the ROI (the region where corrected field values are obtained 

with the conventional SHARP method) and mitigated deconvolution artifacts resulting from 

violation of the boundary condition and data inconsistency at the boundary (as discussed 

above for SHARP).

The combination of small and large spheres has the desirable effect that corrected field 

values can be obtained closer to the ROI boundary and, at the same time, artifacts due to the 

masking-related inconsistencies are reduced. However, the use of different spheres results in 

a higher numerical complexity because it precludes direct Fourier-based computation. In 

addition, the accuracy of V-SHARP’s corrected field can be expected to gradually decrease 

when the distance from the boundary decreases, due to the mismatch between convolution 

and deconvolution kernels.
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V-SHARP has been widely implemented and has replaced the conventional SHARP method 

in most labs. An implementation of V-SHARP for MATLAB (The MathWorks, Natick, MA) 

is available as part of the STI Suite software package [32].

ASSUMPTION OF NO HARMONIC (NOHA) INTERNAL AND BOUNDARY 

FIELDS IN THE BOUNDARY REGION

The uniqueness theorem of potential theory (see above) allows calculating the background 

field throughout the ROI based on an estimate of the background field at the boundary of the 

ROI. However, the background field at the boundary is usually unknown a priori. Assuming 

both constant zero internal and boundary fields throughout the boundary region, the total 

field, H, may be used as an estimate of the background field in this region [33, 17].

Wen et al. [33] determined the background field by solving the equation S′*Hbkg = 0 in the 

ROI using the Jacobi iterative method [17, 9], , and using the total field, 

H, for initialization of the algorithm. In this method, dubbed the Iterative Spherical Mean 
Value (iSMV) method, the boundary constraint is enforced by replacing in each iteration 

step the background field values in the boundary region with the total field. Provided the 

background field estimate is accurate in the boundary region, this algorithm converges to the 

true background field, gradually blurring out the internal field present in the initial starting 

pattern. A disadvantage of iSMV is the relatively low convergence rate of the Jacobi method.

Zhou et al. [17] solved the boundary value problem using a full multigrid (FMG) solver for 

elliptic partial differential equations, resulting in substantially improved computational 

performance while essentially yielding the same results as iSMV (when a Laplacian kernel 

is used instead of S′). This method is referred to as the Laplacian Boundary Value (LBV) 

method. A MATLAB implementation of LBV is available as part of the Cornell QSM 

software package [34].

The assumption of constant zero internal and boundary fields is required, because the 

background field cannot be measured without contamination from internal and boundary 

sources. However, relying on the uniqueness theorem, the NOHA methods implicitly assume 

that the background field is harmonic throughout the boundary region. Consequently, it may 

be expected that the solution depends primarily on the harmonic part of the field in the 

boundary region. Non-harmonic contributions from sources located in the boundary region 

should have a reduced effect on the solution compared to other methods [17], whereas 

harmonic contributions in the boundary region that emerge from sources located inside the 

ROI or the boundary region (such as internal fields from veins located close to boundary) 

affect the solution. Hence, the employed assumption of constant-zero fields is actually an 

assumption of no harmonic (NOHA) internal and boundary fields in the boundary region. A 

contamination of the background field estimate at the boundary with (harmonic) internal or 

boundary fields is likely to propagate to the corrected field. However, it is difficult to 

theoretically predict the actual impact of this contamination on the corrected field. It may be 

speculated that a violation of the NOHA assumption has a rather long-ranging effect, due to 

the non-local relation between sources and field perturbation.
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The assumption underlying the NOHA methods is similar (but not identical) to the 

assumption underlying the NOS methods. In line with the definition of the boundary region, 

the NOS methods yield corrected fields that do not contain contributions from sources in the 

boundary region, whereas the NOHA methods attribute the non-harmonic part of fields from 

sources in the boundary region to the corrected field and likely attenuate harmonic 

contributions from internal and boundary fields.

NOHA techniques have not yet been used widely, probably because the advantage over 

techniques proposed earlier remained unclear.

MINIMIZATION OF AN OBJECTIVE FUNCTION INVOLVING A NORM (MOIN)

Instead of employing explicit boundary conditions such as in the NOS and NOHA methods 

(that are easily violated in the in vivo setting), issues associated with the numerical solution 

of Eq. (8) may also be addressed by implicit assumptions, such as a small Euclidean (L2) 

norm of the corrected field. The nature of these methods may be understood with the help of 

the Hilbert projection theorem, which is reviewed in Appendix A.3.

Projection onto the space spanned by simulated background fields

Projection onto dipole fields (PDF; part of the Cornell QSM software package) [15, 35] 

projects the total field onto a subspace spanned by background fields. PDF employs a source 

simulation strategy to model the background field subspace. More specifically, the method 

models background fields via a magnetic susceptibility distribution χbkg outside the ROI. In 

line with the definition of the background field, this simulation is achieved by employing a 

special type of susceptibility mapping algorithm that includes the constraint of constant 

susceptibility within the ROI [35]:

(14)

were d is the unit dipole response function [36, 37] and ||·||2 denotes the L2 norm. The mask 

M̃ restricts the objective function to the region in which the total field, H, is known (may 

also be the ROI). The resulting susceptibility distribution, χbkg, does not necessarily 

represent a physically meaningful solution, in terms of actually representing the 

susceptibility distribution that caused the background field, but the difference (H − Hbkg) is 

an estimate of the internal field.

According to the Hilbert projection theorem (see Appendix A.3) Eq. (14) may be understood 

as a projection of the total field onto the space spanned by all external sources that can be 

simulated with the employed source simulation strategy. The solution is unique and 

orthogonal to all background fields described by the source simulation technique. A major 

theoretical limitation of PDF is that it uses only a subspace of harmonic functions to model 
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the background field–those generated by dipoles outside the ROI. In other words, PDF is 

limited to fields that can be simulated by the employed source simulation algorithm. To the 

best of our knowledge, it has not yet been investigated under what conditions the employed 

source simulation strategy is able to properly model all harmonic fields inside the ROI. For 

example, it may be assumed that the external region in which dipoles are placed in PDF has 

to be chosen appropriately large in practice.

Several precursor techniques of PDF have been presented. Geometry-dependent artifact 

correction (GDAC) [38] involved supervised segmentation of the sinuses, the mastoid cavity, 

and the skull in additional high-resolution T1-weighted images followed by an optimization 

procedure in which susceptibility values are assigned to the segments and a forward-field 

simulation was performed. The susceptibility values were then chosen such that they best 

suppressed the background field. However, GDAC required subsequent high-pass filtering 

because background fields were usually not eliminated completely [38]. Wharton et al. [39] 

modeled background fields using single dipole point-sources positioned outside the brain 

instead of segments as in GDAC. Using an iterative technique, the strength and location of 

the dipole sources was optimized. However, since this technique was also not able to 

completely eliminate the background contributions, the authors proposed combining it with 

polynomial fitting. The limited success of these early projection techniques may be 

understood by the much less powerful source simulation approaches compared to PDF, 

allowing the simulation of a much smaller subspace of background fields than PDF.

Minimum-norm corrected field

The harmonic relation in Eq. (6) may be restricted to the part of the ROI in which the 

Laplacian can be numerically evaluated by applying an appropriate mask to both sides of the 

equation,

(15)

Equation (15) may be understood as a relaxation of the background elimination problem in 

Eq. (8), overcoming the inconsistencies associated with the masking of the Laplacian at the 

boundary on the left-hand side of Eq. (8). Compared to the direct solution and the NOS 

methods, a solution in the spatial domain allows the elimination of the boundary region from 

the data fidelity term (right-hand side in Eq. 15), in which the convolution cannot be 

evaluated. However, the introduction of another mask at the right-hand side turns the 

equation from a problem with a unique solution into an underdetermined problem with 

multiple solutions. It is clear that Eq. (15) allows arbitrary values of ∇2Hint (r⃗) outside the 

ROI; analog to Eq. (6), it can be seen that Hint = H is one of the solutions.

The solution with the minimum L2 norm,

(16)
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may be obtained, for example, by iterative solution with the conjugate gradient (cg) 

algorithm [40]. This strategy requires rewriting Eq. (15) as a least-squares problem of the 

normal equations [41]

(16b)

and choosing the initialization point of the iteration from the range-space of ∇2 · M′ [41, 42, 

43], e.g. zero. Each cycle of the cg-method creates an improved approximate solution of Eq. 

(16) using the operation ∇2 · M′ · ∇2 within the update procedure. It can be seen from the 

involvement of the mask M′ in this operation that all approximate (interim) solutions and 

the final Hcorr are constant-zero in the external region (if zero is used as the initialization 

point), because the update process can create a non-zero field only in the ROI and in the 

boundary region, but not in the external region. Consequently, the Laplacian of the corrected 

field can be non-zero both in the boundary region and in voxels of the external region that 

are adjacent to the boundary region. The non-zero Laplacian in these regions is the major 

difference compared to the direct solution (Eqs. 10 and 11), which allows the algorithm to 

compensate for spurious field inhomogeneities resulting from the inconsistencies of the 

numerically calculated Laplacian at the boundary of the mask M′ (as discussed above for 

the direct solution). However, the non-zero Laplacian in these regions also implies that the 

corrected field is not necessarily harmonic everywhere in the boundary and external regions. 

In other words, the ability to place sources in the boundary region and the external region 

enables overfitting of internal fields with boundary and background sources, similar as to 

PDF (approximate orthogonality).

A possible improvement of the algorithm to mitigate boundary effects is the attenuation of 

the Laplacian of the field at the boundary of the mask M′. This attenuation may be seen as a 

spatial filtering reducing the truncation effects of the binary masking at the boundary and 

would lead to approaches with different masks on the right and left hand sides of Eq. (15). A 

larger mask (e.g. one that does not set to zero voxels in the boundary region) for the 

corrected field on the right-hand side of Eq. (15) enforces harmonic properties in the 

boundary region.

Yielding a corrected field that is constant-zero in the external region, the minimum-norm 

solution appears similar to the NOHA solutions, which employ the practically motivated 

assumption of constant-zero internal and boundary fields throughout the boundary region. In 

other words, the minimum-norm solution shifts the region for the constant-zero constraint 

farther away from the ROI. However, as discussed above, while NOHA methods use the 

constant-zero assumption as a starting point for the solution, they effectively rely on the 

harmonic part of the field in the boundary region to estimate the background field, rendering 

a direct comparison between the methods difficult.

A major difference between PDF and Eq. (16) is that Eq. (16) minimizes the norm of the 

corrected field throughout all space, including the space outside the ROI, whereas PDF 

minimizes the norm of the calculated field only within the region defined by the mask M̃. 
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The incorporation of the corrected field outside of the ROI has a penalizing effect on the 

attribution of fields originating from sources inside the boundary region as internal fields 

(rather than as external fields; see discussion of PDF).

The minimum-norm method was first proposed by de Rochefort et al.2 [44] who also 

replaced the mask M′ in Eq. (16) with a weighting function that masked the external region 

and additionally accounted for varying noise in the total field H within the ROI (more 

precisely using the error on the Laplacian calculated with error propagation rules). The 

incorporation of a weighting function, which is enabled by the iterative implementation (as 

compared to the direct solution), allows penalizing regions in which the Laplacian is 

particularly noisy and accelerates convergence in regions with low noise levels. A MATLAB 

implementation of this algorithm is available online [45].

Minimum-norm of the (filtered) Laplacian throughout all space

A problem very similar to Eq. (16) is the calculation of the field with a minimum-norm 

Laplacian:

(17)

The solution is the Laplacian of the background-corrected field throughout all space. The 

corrected field is obtained from the solution of Eq. (17) by applying the inverse Laplacian. 

The only mathematical difference between this problem and the problem in Eq. (16) is that 

the norm of the Laplacian of the field is minimized compared to the norm of the field itself.

We see that any variation of the Laplacian of the corrected field outside the ROI would 

increase the objective function in Eq. (17). Hence, similar to the minimum-norm problem in 

Eq. (16), the solution, Lmin, of Eq. (17) will always be zero everywhere outside of the ROI 

guarantying that the solution will have the desired harmonic properties outside the ROI and 

in the boundary region, regardless of the initialization of the solution algorithm (which may 

also be understood with the help of the projection theorem, see Appendix A.4). Hence, Eq. 

(17) is equivalent to the Laplacian direct deconvolution in Eqs. 10 and 11.

HARmonic (background) PhasE REmovaL using the Laplacian operator (HARPERELLA; 

part of the STI Suite software package) [46] solves a variant of Eq. (17) that focusses the 

minimization to certain frequency-domain features of the Laplacian of the field via the 

introduction of filtering with a kernel F:

2In their original work the authors formulated the problem as a least-squares problem without acknowledging the importance of the 
initialization value to mitigate the under-determination problem outside the ROI.
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(18)

(see Appendix A.3 for an illustration of the similarity between Eqs. 17 and 18).

The filter kernel F has a direct effect on the solution obtained. A sharpening kernel generally 

penalizes rapid variations in L′, whereas a smoothing kernel penalizes only large-scale 

changes of L′ but tolerates rapid (noise-like) variations, and the Dirac reduces the problem 

to Eq. (18). Since the Laplacian may itself be understood as a filter (convolution with the 

Laplacian kernel κ, see Eq. 10) and linear filters are commutative, the filter F may be 

understood as acting directly on the calculated internal field, penalizing rapid or large-scale 

variations of the calculated field. In their original publication [46], the authors used the SMV 

kernel S as a filter, which effectively acts as a spatially restricted smoothing kernel, 

penalizing large-scale inhomogeneities in the corrected field.

Comparison of Eqs. (18) and (A.2) illustrates that the problem projects the filtered, masked 

Laplacian of the total field onto the space spanned by all filtered functions with non-zero 

function values before filtering only outside of the ROI. This subspace is not generally an 

orthogonal complement of the subspace spanned by all internal fields. The orthogonality 

decreases the more spatially extended is the filter kernel F and the solution of Eq. (18) will 

be non-zero outside the ROI if a filter kernel is used that relaxes the orthogonality 

requirement. Such a filter kernel will create fields that are harmonic inside the ROI to 

suppress field inhomogeneities resulting from the boundary, which can result in a deviation 

of the corrected field from the true internal field within the ROI.

With iHARPERELLA, Li et al. [47] proposed using the inverse Laplacian kernel, κ−1, as a 

filter in HARPERELLA, which projects the direct solution (Eq. 10 and left-hand side in 

norm of Eq. 18) onto the subspace spanned by all external fields. This additional projection 

can be expected to reduce residual field inhomogeneities relating to the issues inherent with 

the masking and the numerical deconvolution in Eqs. 10 and 11. iHARPERELLA has been 

observed to more effectively suppress spatially slowly varying contributions than 

HARPERELLA with a spherical kernel [47]. This observation may be explained by the fact 

that the inverse Laplacian kernel is not spatially localized, creating an effect throughout all 

space, compared to only the local neighborhood when using the SMV kernel in 

HARPERELLA.

Regularization-enabled SHARP (RESHARP)

A relaxed definition of background contributions would go beyond our magneto-static 

definition and include all unwanted MRI phase effects in the ROI that, if they would not be 

eliminated, would have an undesirable effect on the QSM analysis within the ROI. In 

particular, these effects include all contributions that are not caused by magnetic 
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susceptibility and, hence, do not satisfy Eq. (2), such as relatively slowly varying B1-related 

phase offsets (see Robinson et al. [21] in this issue). While a correct phase-based 

measurement of the total field, H, should in principle not show such contributions, phase 

images in practice often suffer from spurious B1-field contributions [21]. The background 

correction algorithms discussed above generally eliminate the harmonic components of these 

additional contributions. However, non-harmonic contributions are generally interpreted as 

internal fields with these techniques [25]. To allow for the compensation of such non-

harmonic contributions in the field data, Sun and Wilman [48] formulated the background 

correction problem as an optimization problem with Tikhonov regularization:

(19)

where ||·||2 denotes the Euclidean norm and λis the Tikhonov regularization parameter. The 

term on the left hand side of the objective function in Eq. (19) promotes a harmonic 

background field within the ROI (excluding the boundary region). The second term on the 

right hand side penalizes the norm of the internal field. The modified SMV kernel S′ may in 

principle be replaced by the Laplacian kernel.

The regularization parameter, λ, defines a trade-off between a background field that is 

harmonic and a small norm of the internal field. For λ→∞, the trivial solution is obtained, 

Hcorr = 0. For λ→0 the solution converges to the least-norm solution in Eq. (16), and for λ 
= 0 a unique solution of Eq. (19) does not exist because an arbitrary harmonic field can be 

added to the internal field, while still satisfying the equation (analog to Eq. 15). Due to the 

weighting of the two terms in Eq. (19), the background field corresponding to the solution of 

Eq. (19) is generally not strictly harmonic, as long as λ ≠ 0, which allows the suppression of 

non-harmonic contributions such as B1-related phase offsets but, on the other hand, 

sacrifices the accuracy of the internal field because also the internal field is non-harmonic 

and will be suppressed. A reasonable trade-off can be achieved by techniques such as L-

curve optimization. RESHARP has been shown to produce more reliable results close to the 

boundaries of the ROI than the original SHARP method when the same kernel S′ is 

employed [48]. A MATLAB implementation of RESHARP is available on GitHub [49].

A QUANTITATIVE COMPARISON

To quantitatively compare the different background elimination approaches discussed in this 

review we applied, in collaboration with the authors of the respective original publications, 

all methods to the brain field of a realistic numerical human torso model. The numerical 

model allowed us to compare the corrected fields against a ground truth.

Materials and Methods

We used the same model as Özbay et al. [25] (in this special issue); details about the model 

generation and field simulation can be found therein. Figure 3 (top row) illustrates the 

model. The ground truth was obtained by simulating the field perturbation of the brain 

susceptibility model with no susceptibility variations outside the brain.
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To obtain the best possible results for each technique, the authors of the respective original 

publications applied their algorithms to the total field within the brain: HARPERELLA and 

iHARPERELLA (W.L.), LBV, iSMV, and PDF (Dong Zhou from Yi Wang’s group), direct 

solution, SHARP and V-SHARP (F.S.), minimum norm solution (L. de R.), RESHARP 

(Hongfu Sun from Alan Wilman’s group). Each participating group was provided with i) a 

binary mask defining the ROI, ii) the ROI-masked total field, iii) the ground truth internal 

field, and iv) a set of 32 binary masks with which to assess the quality of the calculated 

internal field. The masks defined brain-shaped shells of 1 mm thickness located between 1 

and 32 mm from the brain’s surface (in steps of 1 mm; for details please see Özbay et al. 

[25]). The ground truth was provided to achieve the optimal possible result with each 

technique, allowing each collaborator to optimize parameters of their technique, if required. 

We considered the practical question of finding the optimal set of parameters in each method 

as beyond the scope of the experiment. To standardize the parameter optimization, we 

provided a script that calculated the normalized root mean square error (NRMSE) between 

the ground truth and the reconstructed internal fields as a function of the distance from the 

brain’s surface. To this end, the RMSE was calculated in the 32 provided brain shells and 

normalized by dividing by the number of voxels in each respective shell. The parameter that 

resulted in the smallest sum of all 32 NRMSE values was considered optimal.

For RESHARP, we varied the regularization parameter, λ, over a range from 0 to 1, with 13 

exponentially spaced steps between 10−6 and 1. For the direct solution we employed the 

improved universal regularization scheme proposed by Özbay et al. [25] (in this issue) using 

cut-off frequencies between 0.001 and 0.05 mm−1 (in steps of 0.001 mm−1). For SHARP 

and V-SHARP we used values between 0.001 and 0.02 mm−1 (steps of 0.001 mm−1) and 

tested (maximum) radii between 2 and 15 mm (in steps of 1 mm). For LBV 1mm thick (one 

voxel) boundary region was used. iSMV was applied with a Laplacian kernel instead of an 

SMV-kernel to produce results comparable to LBV.

For comparison purposes we also applied homodyne correction [50] which is often used for 

heuristic background field correction in Susceptibility Weighted Imaging (SWI) [51, 52, 53]. 

Two-dimensional homodyne-filtering was implemented with frequency domain widths of 

64×64 and 32×32 voxels.

We refrained from recording the computation times of the different techniques because the 

algorithms were applied on different computational hardware and were implemented by 

different labs. Computational efficiency highly depends on the coding of the algorithm and a 

direct comparison of the computation times, even if the algorithms were executed on the 

same hardware, could result in misleading conclusions.

Results

Due to the lack of measurement errors and non-harmonic background fields in the model 

field, no typical L-curve shape was obtained with RESHARP. The optimal solution was 

obtained for λ=0, equivalent to the minimum-norm solution. For in the direct solution, 

SHARP, and V-SHARP obtained optimal parameters were 0.039 mm−1; 0.016 mm−1 and 15 

mm; and 0.013 mm−1 and 15 mm, respectively.
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Figure 3 shows exemplary slices of the calculated internal fields with the different 

techniques, along with the respective differences to the ground truth. Figure 4 shows a plot 

of the NMRSE for all methods as a function of distance from the brain’s surface.

Apart from their spatial support (the ROI), it was difficult to discern differences between the 

internal field maps obtained with the various methods in Fig. 3. All techniques yielded 

comparable results with relatively smooth error patterns and quantitative accuracy generally 

improved with the distance from the boundary of the ROI (Fig. 4). Only the direct solution 

showed relatively strong deviations from the ground truth, which can be explained by the 

(strong) regularization involved and the inconsistencies at the boundary (without 

regularization), respectively. All except the NOHA methods and HARPERELLA showed a 

localized hyper-intense inhomogeneity at the sagittal sinus (arrows) and rapidly varying 

errors in the direct vicinity of the boundary. This inhomogeneity may be explained by the 

data inconsistency at the boundary (direct solution), a breakdown of the intrinsic assumption 

of a source-free boundary region (V-SHARP), and the issue of only approximate 

orthogonality (iHARPERELLA, PDF and RESHARP), respectively. These artifacts were not 

visible to the same degree in SHARP because of the substantially broader boundary region. 

The heuristic methods showed incomplete background suppression (Homodyne 32) and 

considerable artifacts in the corrected field (Homodyne 64), respectively.

Discussion

Deviations are smaller in SHARP than in the direct solution with regularization because 

SHARP generally requires less regularization due to a more extended kernel (see above). 

This difference between the methods is also reflected by a large NRMSE in the quantitative 

analysis (Fig. 4). V-SHARP extends the definition space of the internal field map compared 

to SHARP and had an error pattern which looked similar to that of the other methods, but it 

produced less accurate values close to the boundary (arrow). While these deviations were 

visible on the difference image, they did not result in a substantial deviation from other 

methods in the quantitative analysis (straight red line in Fig. 4), where V-SHARP 

outperformed SHARP and was on par with the MOIN methods (blue).

The NOHA methods, iSMV and LBV, showed similar error patterns and NMRSE values, 

reflecting the fact that they solve exactly the same mathematical problem. Small differences 

between the two methods can be explained by the much slower convergence of iSMV 

compared to LBV; it is likely that the solutions did not converge to the exact same extent in 

the examples shown. These methods outperformed all other techniques in the quantitative 

comparison (Fig. 4, black). Instead of suffering from a highly localized inhomogeneity at the 

sagittal sinus, the associated error of the NOHA methods was more spread throughout the 

occipital part of the brain. This observation can be explained by a violation of the implicit 

assumption that the internal fields are zero in the boundary region.

The error pattern of HARPERELLA was similar to that of the NOHA methods and different 

from that of the other MOIN methods, which can be understood by recalling that 

iHARPERELLA, PDF and RESHARP minimize the norm of the internal field, whereas 

HARPERELLA (with the SMV kernel) minimizes the low-pass filtered Laplacian of the 

field, which necessarily results in a different solution. The spatial extent of the filter kernel 
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used with HARPARELLA has an effect on the approximate orthogonality that is a common 

issue in the MOIN methods. Using the spatially restricted SMV kernel (as in this work) 

qualitatively places HARPERELLA between iHARPERELLA and the NOHA methods. The 

NMRSE was slightly higher with HARPERELLA than with iHARPERELLA, PDF, and 

RESHARP, which had very similar NMRSEs. The inhomogeneity at the location of the 

sagittal sinus illustrates the over-fitting that is associated with MOIN solutions due to the 

only approximate orthogonality of internal and background fields in the ROI, resulting in the 

creation of background fields to minimize the norm of the internal field pattern. Upon closer 

inspection, the error pattern of PDF showed subtle Gibbs-like artifacts, which can be 

explained by a mismatch of the rendered numerical dipoles used for the creation of the 

model (F.S.) and for PDF (Dong Zhou), illustrating another complication of PDF: the dipole 

used for PDF must exactly mimic the appearance of the dipole in the field data acquired.

Conclusion

Despite the different assumptions involved in the compared background correction 

algorithms, differences between the obtained corrected fields were minimal. However, 

considering the background field elimination performance, we recommend desisting from 

using the direct solution and NOS methods for studying cortical regions of the brain because 

those methods either result in considerably degraded internal field values compared to other 

methods (V-SHARP and direct solution; Fig. 3) or do not produce any internal field values at 

all in these regions (SHARP). When using V-SHARP, results in regions with a distance less 

than the maximum radius of the spheres employed should generally be interpreted with 

caution. In deep brain regions, the performance of all methods (except the direct solution) 

was relatively similar and all methods may be regarded as more or less equivalent. However, 

we want to emphasize that the performance of all methods also critically depends on aspects 

of their numerical implementation. The actual numerical algorithms applied in the present 

multi-center study may be considered as gold-standard implementations because they were 

coded by the original inventors of the respective techniques. In addition, the quantitative 

comparison presented here aimed to identify similarities and differences between the various 

published techniques and to assess only how accurately the internal field can be determined. 

It has yet to be clarified to what degree residual background fields or (regularization) 

artifacts propagate into susceptibility maps. It is the authors’ experience that even relatively 

poorly corrected field maps (e.g. due to an ROI that was too large) often result in 

susceptibility maps without apparent artifacts. This observation can be explained by the 

apparent capability of (spatial-domain based) QSM algorithms to explain certain residual 

background fields by susceptibility variations outside the ROI, not affecting the calculated 

susceptibility values inside the ROI. Özbay et al. [25] demonstrated this capability in the 

present special issue. A thorough investigation of the propagation of residual background 

fields into susceptibility maps is beyond the scope of this study and will be subject of future 

research.

SUMMARY

We have reviewed the current literature on background elimination algorithms for QSM 

(Table 1). The algorithms were classified based on the mathematical solution obtained and 
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assumptions involved. We have shown that the internal field can be understood as the 

(unique) non-harmonic component of the total field inside the ROI and, hence, that 

elimination of harmonic fields does not remove information about susceptibility variations 

inside the ROI. Furthermore, we have shown that, due to an ambiguity of the problem, 

susceptibility variations which occur one voxel from the boundary of the ROI (the boundary 

region) cannot be considered as sources of the internal field. A comprehensive comparison 

of the different techniques in a numerical model showed only minor differences, primarily in 

cortical region of the brain. Future research needs to understand the sensitivity with respect 

to field measurement errors as well as the relative computational complexity of the different 

techniques.
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Abbreviations used

cg Conjugate Gradient

E-SHARP Extended SHARP

FFT Fast Fourier Transform

FMG full multigrid

GDAC Geometry-dependent artifact correction

HARPERELLA HARmonic (background) PhasE REmovaL using the 

Laplacian operator

iSMV Iterative Spherical Mean Value

LBV Laplacian Boundary Value

NOHA No HArmonic internal and boundary fields in the boundary 

region

NRMSE normalized root mean square error

PDF Projection onto dipole fields

ppm parts per million

QSM quantitative susceptibility mapping

RESHARP Regularization-enabled SHARP
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RMSE root mean square error

ROI region of interest

SHARP Sophisticated Harmonic Artifact Reduction for Phase

SMV spherical mean value

TSVD truncated singular value decomposition

V-SHARP Variable-radius SHARP
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APPENDIX

A.1 Susceptibility ambiguity associated with the traditional definition of 

internal and background fields

Let χint and χbkg be the susceptibility distributions in Ω (denoting the ROI) and in R3 

without Ω (outside the ROI), respectively. For the sake of simplicity, we set χint = c1 for all 

locations not in Ω and χbkg = c2 in Ω. If we let Hint = χint *d (* denotes convolution and d is 

the unit dipole response [37, 36]) and Hbkg = χbkg * d, then we obtain Hint + Hbkg = ⌊M · 

χint + (1 − M) · χbkg⌋*d + [(1 − M) · c1 + M · c2]*d. Since we require that the sum of 

internal and background field equals the total field, Hint + Hint + Hbkg = H, the values of c1 

and c2 need to be chosen such that [(1 − M) · c1 + M · c2]*d = 0. This condition implies that 

c1 = c2, which may be understood by recapitulating that a constant susceptibility throughout 

all space does not induce field inhomogeneities, i.e. c * d = 0for c = const. in R3. In other 

words, changing the values of χint for all locations not in Ω and χbkg in Ω does not affect the 

total field, as long as they are changed equally.

However, the fields Hint and Hbkg critically depend on the chosen values. More specifically, 

the field generated by the actual physical jump of (χint + χbkg) at the boundary (which we 

call boundary field later in the article; Fig. 2) is split into a contribution generated by the 

jump of susceptibility from the interior of the ROI to zero outside the ROI (χint) and a 

contribution generated by the jump from zero inside the ROI to the exterior (χbkg). The 

former contribution is attributed to the internal field while the latter is attributed to the 

background field, illustrating the ambiguity of the susceptibility distribution using the 

traditional definition of internal and background fields. Ideally, the whole boundary field has 

to be attributed to the background field, Hbkg, which is the case only if the value is chosen 

such that χint does not undergo a step-change at the boundary, which may not be possible in 

practical situations, because the susceptibility distribution is not generally constant at the 

boundary (see Fig. 2).
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A.2 Harmonic internal fields equal zero throughout all space

A solution of Eq. (5) in the whole space is globally constant if it is constant outside a 

bounded set (provided it is smooth enough such that the derivatives exist). If Hint = χint * d 
is harmonic in Ω (∇2Hint = 0) then χint satisfies Eq. (5) in Ω. On the other hand, χint is by 
definition constant outside Ω and on its boundary. Consequently, it follows from the 

uniqueness of the 2D wave equation that χint is constant in the whole space and, since a 

constant susceptibility distribution does not perturb the field, this implies Hint = 0 in all 

space. In other words, harmonic fields generated by susceptibility distributions that satisfy 

the definition of the internal field are constant zero throughout all space. This finding 

implies that background field elimination algorithms that eliminate harmonic fields in the 

ROI cannot remove information about the susceptibility distribution in the ROI.

A.3 Hilbert space projection theorem

The Hilbert projection theorem states that every element x of a Hilbert space has a unique 

projection x̂ onto the closed subspace G, and that this projection is characterized by x̃ = (x
−x̂) ∈ G⊥, where G⊥ is the orthogonal complement of G. The projection of x onto G, x̂, is 

characterized by the solution of the minimization problem

(A.1)

where ||·|| is the norm generated by the inner product associated with the Hilbert space. In 

simpler words, the specific element x̂ of a given subspace G that has the minimum distance 

(norm) from x is unique and orthogonal to x̃. Hence, a decomposition of x (e.g. the total 

field, H) into two components where one of the components is an element of a chosen 

subspace (e.g. the subspace spanned by all background fields) may be found by solving a 

projection-type least-squares problem:

(A.2)

A.4 Formulation of Equation (17) as an unconstrained optimization problem

Equation (17) may be rewritten as an unconstrained problem,

(A.3)
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where the term on the left-hand side (A) in the objective function (top row) represents the 

constraint in Eq. (17) and the quantity L′ is the Laplacian of the corrected field. The 

corrected field may be obtained from the solution of Eq. (A.3) by applying the inverse 

Laplacian to (M′·∇2·H⃗+(1− M′)·Lmin). Equation (A.3) illustrates that we may understand 

Eq. (17) as a projection of the masked Laplacian of the total field onto the subspace spanned 

by all function that are zero inside the ROI (compare with Eq. A.2 in Appendix A.3)—this 

projection will always be zero.
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Figure 1. 
Schematic illustration of the definition of the ROI (light gray) and the different fields 

associated to it (white arrows). Sources located within the ROI generate the internal fields, 

which extends outside the ROI. Sources located outside the ROI generate the background 

fields, which extend into the ROI. Susceptibility jumps at the boundary generate the 

boundary field. The enlargement on the right illustrates the boundary region, Ω̃, (orange) in 

discretized space. The light gray voxels belong to the eroded ROI. Fields generated by 

susceptibility changes within the boundary region can neither be regarded as internal nor as 

external fields. The yellow cross illustrates voxels involved in the calculation of the finite-

differences Laplacian for the voxel in the eroded ROI marked with A. Besides voxels in the 

erode ROI (voxels A and C), the calculation of the Laplacian at voxel A involves voxels in 

the boundary region (marked with B).
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Figure 2. 
Schematic illustration of the boundary field. The susceptibility distribution generating the 

internal field (right) is traditionally understood as having a constant susceptibility value 

outside the ROI (middle) and susceptibility variations only inside the ROI (left). However, 

the change of susceptibility at the boundary itself generates fields that depend on the 

susceptibility jump at the boundary and the overall geometry of the ROI. If the susceptibility 

difference at the boundary is zero (indicated by *), the boundary does not contribute the 

boundary field. If the susceptibility difference is different from zero (indicated by **) it can 

generate boundary fields.
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Figure 3. 
Comparison of the different background correction strategies discussed in this article. The 

model and the ROI definition are shown in the top row. The contrast of the background 

corrected images and the ground truth is −0.8 to 0.8 rad (black to white), that of the 

difference images is −0.3 to 0.3 rad, and that of the total phase is −3 to 3 rad.
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Figure 4. 
Quantitative comparison of the different background correction methods. Shown is the 

NMRSE in a 1 mm thick shell (logarithmic scale) over the distance of the shell from the 

surface of the brain. The direct solution and NOS methods are plotted in red, NOHA 

methods are plotted in black, MOIN methods are plotted in blue, and homodyne filtering is 

plotted in green.
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Table 1

Summary of assumptions, limitations and benefits of the background elimination methods reviewed in this 

article.

Assumptions Method Limitations Benefits

None or limited low 
frequency content

Direct solution Artifacts due to finite-differences calculation of 
the Laplacian at the boundary between eroded 
ROI and boundary region (see Fig. 1). 
Suppression of artifacts requires regularization, 
equivalent to removing low frequency content.

Limited implicit assumptions about 
field sources. Numerically efficient.

No sources close to 
boundary (NOS)

SHARP (V-SHARP) Artifacts due to violation of the assumption close 
to the boundary. Reduced spatial support with 
SHARP and inaccurate internal field close to 
boundaries with V-SHARP. Suppression of 
artifacts requires regularization.

Robust. Numerically efficient.

No harmonic internal 
and boundary fields in 
the boundary region 
(NOHA)

iSMV Very slow convergence. Minimal artifacts in internal field.

LBV Minimal artifacts in internal field. Fast 
convergence.

Minimization of an 
objective function 
involving a norm 
(MOIN)

HARPERELLA Optimal filter kernel F unknown. Artifact level similar to NOHA 
methods.

iHARPERELLA Approximate orthogonality leads to residual 
background fields close to the boundary of the 
ROI and overfitting of internal field sources 
close to the boundary. PDF uses only a sub-
space of harmonic functions.

Robust techniques. Relatively low 
artifact level in internal field.

PDF

Minimum norm

RESHARP Regularization introduces artifacts in internal 
field. Regularization parameter choice 
determined internal field outcome.

Elimination of unwanted non-
harmonic background contributions
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