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This paper presents a methodology to calculate the contact pressures on the rolling ele-ments and other significant 

parameters applicable to raceway bearings used in aeronauti-cal helicopter gearboxes. The mechanism is modelled by a 

hybrid method where the parts are decomposed in finite elements and the bearings are described by substitution features. 

This hybrid method accounts for the flexibility of the parts as well as geometrical defects. In this method, the contacts 

between rolling element and raceways are solved analytically. The Hertz contact theory is used to calculate the 

contact behaviour. The geometrical defects are included in the model thus changing the value of local displacements. 

Our paper shows the impact of the flexibility of the different mechanical parts and its geomet-rical defects, on the 

behaviour of the bearing raceways. Three most important conclusions are brought to the fore. First the load distribution in 

the bearing is modified by the flexibil-ity of the parts and the bearing raceways. Second, positioning defects in our 

assemblies have insignificant effect on the bearing service life. Third orientation defects increase the pressure in roller 

bearings and the balls orbital speed variation in ball bearings. 

1. Introduction 

In aircraft industry, and in particular in manufacturing of helicopters, the search for maximum performance, whilst min-

imising on-board weight, is essential. A power transmission gearbox of 300 kg in weight can thus transmit several mega-

watts of mechanical power (Fig. 1). 
In this type of helicopter power transmission gearbox, weight saving is achieved by reducing the number of parts and 

their thicknesses. For the rotational guidance of rolling elements, weight saving is achieved by replacing some classical bear-

ing raceways by raceways integrated to the shafts or the housings and by reducing their thickness. A gear incorporating inte-

grated raceway bearings is shown in Fig. 2. A part of this type saves weight, but is, on the other hand, more expensive to 

manufacture due to the complexity of the surfaces and its high geometrical quality. 
In this paper, the impact of geometrical defects on the behaviour under load of integrated raceway bearings is studied. For 

that purpose, it is necessary to implement a complete model of the mechanism in order to account for: the stiffness of the 

parts, the external loads applied to the housing, the clearances in the bearings, the characteristics of the contacts, and the 

geometrical defects. The experience acquired by helicopter and bearing manufacturers has shown that the contact pressure 

between the rolling elements and the raceway is one of the criteria which affect the reliability of integrated raceways and 

their behaviour in-service. In the case of ball bearings, which are subjected to severe distortion of the raceway, the fatigue 

strength of the cage if also affected by the spreading of the rotational speed of the rolling elements. Indeed, during one 
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contact angle in UiZ plane 

rolling element diameter. 

bearing pitch diameter 

load applied to the bearing 

centrifugal force 
diametric clearance. 
equivalent stiffness of substitution element 

contact stiffness between ball and raceways 

roller length. 
moment 
contact load between rolling elements and raceways 

raceway groove radius 
rolling radius 
displacement between the inner and outer raceways in the vicinity of rolling element i 

Cartesian co-ordinates of ball i, such that wi = (X, Ui) = (Y, Vi) in the XY plane 
orbital speed of centre of ball i 
tangential speed at point A of inner raceway 

tangential speed at point B of outer raceway 
Cartesian co-ordinates with Z-axis coincident with the bearing rotational axis, and the X-axis coincident with the 

radial load direction 
displacement at contact 
deflection angle between the inner and outer raceways in the vicinity of roller i 

azimuth angle in XY plane 
angular velocity 

Subscripts 
a refers to axial direction 

h refers to Hertz contact 
i refers to rolling element i 

ir refers to inner raceway 

or refers to outer raceway 
r refers to radial direction 
k refers to laminum position 

Fig. 1. View of a helicopter main gearbox. 
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revolution of the bearing, if all the balls do not rotate at the speed of the cage, it may allow some balls to compensate for the 

cavity backlash (clearance between the cage and the ball). Such kinematical incompatibility may generate stresses in the 

cage, or sliding at the contact between the balls at weakest load and the raceways. In order to determine the pressures 

and angles (for ball bearings only) at the different contacts inside each bearing, it is essential to identify the local load 

distribution. 
The behaviour of rolling bearings has been studied by many researchers in this last century. Professor Stribeck was one of 

the first scientists to publish a paper about loads within bearings. In his report [1], the author proposed studying the ball – 

raceway contact by correlating the Hertz contact theory with several series of tests. Professor Stribeck obtained thus a rela-

tionship between the global radial load applied to the bearing and the highest load affecting the rolling elements. This work 

was the basis of ISO 76 standard [2] dedicated to the calculation of the basic static load. Lundberg and Palmgren [3] studied 

the fatigue behaviour of bearings, and thus developed a criterion which permits dimensioning the bearing. This work con-

tributed to the establishment of ISO 281 standard [4]. A major advance in bearings behaviour knowledge was achieved in the 

middle of the 20th century through the work carried out by Jones [5] and Harris [6]. They aimed their study at the static and 

dynamic behaviour of bearings. The method proposed by Harris [6] is based on the assumption that displacements in a bear-

ing are caused exclusively by the clearances and local deformation in the contact zones. This assumption is no longer valid if 

the bearing raceways are of low thickness, and even more so if the raceways are integrated with the shaft or the housing. It is 

the case for aircraft bearings. In the contribution by Harris and Jones [7], the classical Harris method was modified by intro-

ducing coefficients of flexibility which account for the deformation of the outer raceway of an idler gear. This raceway is 

incorporated in the idler gear immediately beneath the gear teeth. Zupan and Prebil [8] generalised this approach using 

the finite element method (FEM) to calculate the flexibility matrix of the structure in order to account for the overall defor-

mation of the structure. The calculation of the flexibility matrix is however limited by the structure size because the inver-

sion of the stiffness matrix requires long computing times. To overcome this problem, Hauswald and Houpert [9], used a 

matrix condensation technique (condensation of the stiffness matrix at the link nodes). Bourdon et al. [10] developed a hy-

brid model to account for the overall deformation, whereby the mechanism is meshed by classical elements and the rollers 

or balls of each bearing are replaced by non-linear elements attached to the two rings. In the work by Lovell et al. [11], the 

contact between a ball and two parallel plates, was modelled by FEM. The results were found close to those obtained by 

Hertz theory. Zhao [12] used 2D contact FEM, to calculate the load distribution in a bearing subjected to a radial load. Kang 

et al. [13] proposes a modification to Hertz contact law based on the modelling of the local contact by FEM. A similar ap-

proach was also used by Ludwik [14] to characterise the contact behaviour between the roller and the raceways. From these 

results, Ludwik modelled a slewing bearing by replacing the contacts with elements exhibiting non-linear behaviour. 
According to the literature three methods are thus used: analytical, numerical and hybrid. It is essential for the mecha-

nisms and for the type of bearings used in aeronautical applications, to account for the overall deformation of the parts. In-

deed, for the studied mechanisms, about 30% of the relative displacement between the inner raceway and the outer raceway 

is due to the deformation of the parts (ovalisation of the raceways, deformation of the housing, etc.). On average, for inte-

grated raceway bearings used in helicopters: 70% of the relative displacement between the inner and outer raceways is 

due to local contact deformation between the rolling elements / raceways, 20% to deformation of the outer raceway and 

the housing, and 10% to deformation of the shaft (integrated inner raceway). Our previous work [15,16], shows and details 

two methodologies which can be used to study integrated raceway bearings designed for helicopter gearboxes. A numerical 

method based on FEM, managing the contacts between the raceways and the rolling elements was studied. The meshing of 

the structure was also optimised in order to minimise the computing time. A hybrid method (analytical–numerical) was pre-

sented whereby the calculation were performed by the FEM. In this method, the contacts were replaced by substitution ele- 

Fig. 2. Gear with integrated raceway bearings. 

 



ments. The overall objective of our work is now to propose a method for calculating the contact pressures and the contact 

angles on the integrated raceway bearing raceways including not only the deformations but also the geometric defects of the 

parts in the mechanism. This method must be incorporated in an industrial CAD software programme. In this article, we shall 

thus detail a hybrid method which can take into account geometric deformations. For that purpose a subassembly of a heli-

copter gearbox will be considered as case study. Then, the impact of geometric defects and deformations on the behaviour of 

the bearings and the other parts of the mechanism will be predicted. Concerning the bearings, we will focus on the variations 

of the contact pressures and rolling element orbital speeds. 

2. Hybrid numerical method 

2.1. Principle and assumptions 

The modelling of the gearbox is achieved by FEM. The various parts of the gearbox are connected together through 

mechanical links. To simulate the behaviour of the mechanism, these links must thus be modelled. In the case of rolling ele-

ment links, a model which accounts for the non-linear behaviour and the load distribution for each rolling element has been 

established. Contact conditions between the raceways and the rolling elements are replaced by substitution elements. The 

bearing is simply represented by its outer ring, these substitution elements, and the inner raceway integrated with the shaft. 

This modelling permits calculating the internal equilibrium of a bearing accounting for its internal geometry, the deforma-

bility of its contacts, the bearing raceways, the shaft and the housing. 
The presented methodology does not account for the dynamic loads and the friction forces. In the context of the studied 

gearboxes, these can be neglected. The study of error introduced by dynamic load on the contact pressures and the orbital 

rotational speeds of the balls are shown in Section 2.4. The effects of lubrication are also neglected. In this article, the micro-

geometrical defects (surface roughness, indentation etc.) are not taken into account. Only the macro-geometrical defects (po-

sition, misalignment) are studied. Since damage of the mechanism is due to high cycle fatigue, the parts are only deformed 

elastically. Therefore, surface hardness does just have minor influence. The modelling of the mechanism is performed in the 

steady state condition (constant temperature). Thermal expansion is taken into account, in order to deduce the operating 

clearances of the bearings. The preloads are introduced by the boundary conditions in the FEM, either through the displace-

ment, or through the loads on the bearings. The presented method has been integrated in the CATIA FEM. This enables us to 

maintain the link with the geometric model of the mechanism. 

2.2. Calculation procedure 

The resolution of the complete system by FEM and the analytical calculation of the contact behaviour are coupled in this 

calculation procedure. The modelling is performed using the CATIA V5 FEM. The different parts of de mechanism are meshed 

by linear tetrahedral elements. Complementary more precise simulations, using ‘‘SAMCEF” software demonstrated that this 

kind of elements is sufficient to study the behaviour of rolling bearing and the displacement field. At least 100,000 nodes are 

used for the modelling. The behaviour of materials is linear. The meshing of the link zone between raceway and substitution 

element is presented in Fig. 3. The substitution element is connected to the raceway through an area of about three square 

millimetres. The local deformation of the link zone is taking into account in the calculus. 
The calculation procedure is detailed in the flow chart of the Fig. 4. At each iteration, the FEM calculation with its sub-

stitution elements is performed. The variables of the substitution elements (stiffness, orientation) are recalculated at each 

Fig. 3. Link zone between raceway and substitution element. 
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iteration. Convergence is assumed to be achieved when the variation of the stiffness of the substitution element is less than 

0.1% between two successive steps. The analytical method for calculating the substitution elements is based on the Harris 

equations in [6]. The characteristics of the elements are controlled by a VB macro in CATIA V5. At each iteration, the input 

data of the analytical calculations are, for each substitution element, the relative displacements between attachment zones 

and sustained loads. Moreover, geometric defects of the bearings may be added. From these data, the local contact displace-

ment and the orientation of the load may be determined. The analytical module and substitution elements are different if the 

bearing contains balls or rollers. In following paragraphs, the procedure for both ball and roller bearings will be detailed. 

2.2.1. Modelling of a ball bearing 
A ball bearing may be subjected to different types of loads: axial load, radial load and moment. Each ball is able to trans-

mit a load. This load is orientated by the contact angle relative to the plane perpendicular to nominal rotational axis of the 

bearing Z. Fig. 5a shows loads applied to the ball bearing’s inner ring. 
The contact behaviour (balls-raceways) may be described by Hertz contact theory. Using Hertz theory, successively, for 

the contacts between the inner ring and the ball i, and between the ball i and the outer ring, the following relationship can be 

deduced: 

Q i ¼ Kh ðdiÞ1;5 ð1Þ 

CAD model 

F.E.M computation 

Mesh and substitution 

elements creation 

Analytical computation 

Contact pressure 

Orbital speed 

Modification of 
substitution elements 

Ok 

Local loads and Geometrical defects 
displacements 

No Convergence 
test 

Fig. 4. Flow-chart of the hybrid method. 

Fig. 5. (a) Inner raceway loads of ball bearing; and (b) inner raceway loads of roller bearing. 

 



The overall contact stiffness Kh depends on the internal geometry of the  bearing, shown in Fig. 6a. Several articles [6,13,17] 
describe how to determine Kh. 

The deformation di and the angle of contact ai are dependent on the relative displacements between the inner and outer 

raceways in the section (Ui, Z) and on the internal geometry (c.f. Fig. 6b). The relationships linking these parameters are as 

follows: 
qffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffiffi 

di ¼ ðri þ ro ÿ D ÿ J þ UriÞ2 þ ðUai þ daÞ2 ÿ ðri þ ro ÿ DÞ ð2Þ 
U ai sin ai ¼ qffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffiffi  ð3Þ 

ðri þ ro ÿ D ÿ J þ UriÞ2 þ ðUai þ daÞ2 

Relationships (1)–(3) describe the local behaviour of ball i in the bearing. In our model, the substitution elements replace 

the contacts between balls and raceways, as well as the balls. These substitution elements are orientated springs attached to 
the contact zones. This principle is illustrated in Fig. 7a. 

The spring orientation is given by the angle of contact under load ai and the stiffness Ki is given by the relationship below. 

Q i 
K i ¼ 

ðUai sin ai þ Uri cos aiÞ 
ð4Þ

 

At first iteration, the substitution elements get their initial orientation and stiffness. For subsequent iterations, the orienta- 
tion and stiffness of each substitution element are then recalculated. The relative displacements UaiFE 

, UriFE 
and the load Qi for 

each substitution element are obtained by the FEM calculations. To these relative displacements, the geometric defects of the 
bearing can be added in the following way: 

UriFEd 
¼ UriFE 

þ Urid                                                                                                                                                                                                                                                                                                                                                                              
ð5Þ 

UaiFEd 
¼ UaiFE 

þ Uaid                                                                                                                                                                                                                                                                                                                                                                            
ð6Þ 

where 

Urid 
¼ Ur1 

cosðwi þ u
r1 

Þ                                                                                                                                                   ð7Þ 

Uaid 
¼ Uai0 

þ Ua1 
cosðwi þ u

a1 
Þ                                                                                                                                        ð8Þ 

Eqs. (7) and (8) describe the position and orientation defects between the inner and outer raceways of the bearing. These 

defects are induced by the geometrical variations of the parts of the gear box (housing, shaft, casings etc.). For the moving 
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Fig. 6. (a) Ball bearing geometry; and (b) relative displacements in the section of ball i. 
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Fig. 7. (a) Substitution elements of ball bearing; and (b) substitution elements of roller bearing. 
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parts, the calculation of these geometrical defects is very difficult. It is necessary to calculate the geometrical defect between 

the raceways for each position. In consequence, the localisation defects are simulated by the term Ur1 
cosðwi þ ur1 

Þ for the 

radial offset between two raceways in polar coordinates. The term Uai        describes the axial offset between two raceways. 

The term Ua1 
cosðwi þ ua1 

Þ simulates the orientation defects of the bearing (misalignment between two raceways) in polar 

coordinates. The new stiffness and orientation for each substitution element are obtained by calculating the deformation di 
from the load Qi by reversing relationship (1). From the deformation di, the ratio between the radial displacement, UriFEd 

and 

the axial displacement UaiFEd 
obtained from relationships (5) and (6), and (2), the new displacement values (Uri, Uai) may be 

derived. By injecting the values of displacements (Uri, Uai,) in relationships (2) and (4) the new values of stiffness and orien-

tation are finally obtained. The iterative process terminates when the variation in stiffness between two consecutive itera- 
tions is less than 0.1%. 

2.2.2. Modelling of a roller bearing 
A roller bearing may be subjected to different types of loads: radial and moment. Each roller is able to transmit a load and 

a moment along a contact line. Fig. 5b shows the loads applied on the inner ring of a roller bearing. In the same way as for the 

contacts between the raceways and the balls in a ball bearing, contacts between the raceways and the rollers may be de-

scribed by Hertz theory. However, for the model of the contact between two cylinders, Hertz theory does not provide a rela-

tionship linking the applied load to the deformation of the surfaces. Several authors have published relationships of the form 

of Eqs. (9) linking these two parameters. 

Q i ¼ Kh ðdiÞn ð9Þ 

Houpert [17] has compared the different relationships and has proposed an analytical relationship inspired by the work per-

formed by Tripp [18]. This new relationship introduces the contact length, the material coefficients and the equivalent radius 

of the cylinders in contact. Hoeprich and Zantapulos [19] studied by testing, the contact deformation of a cylinder between 

two planes. These tests showed that the equivalent radius has little influence on the contact stiffness. For our study, the rela-

tionship of Harris [6] is chosen because it does not account for the equivalent radius. The values of Kh and n, for steel bearings 

are given by following relationship (10). 

L 8=9 
Kh ¼ 

2; 75 10
ÿ11 

;     n ¼ 10=9 ð10Þ 

Relationship Eqs. (10) is not sufficient to describe the contact behaviour between the roller and the raceways. This type of 

contact can transmit both a load and a moment. For such configuration, the method proposed by Harris [6] is used. The cyl-

inder/cylinder contact is divided into slices of width w as described in Fig. 8. 
For each section, there is a deformation dki and an associated load Q ki. These two parameters are linked by the relationship 

(11). The sum of the loads Q ki per slice provides the full load Qi applied to roller i; the sum of the products of the load Q ki by 

the distance to the centre of contact gives the full moment applied to roller i. 

w 
Q ki ¼ 

2:75 10
ÿ11 

L
1=9 

ðdkiÞ
10=9 ð11Þ 

The deformation dki is linked to the relative displacement between the raceways at roller i in the section (Ui, Z) by relation-

ship Eq. (13). The profile correction of the roller at the edges may be taken into account by the term Ck. This term is detailed 

in [6] for radius edged rollers. 

Fig. 8. Description of roller bearing contact. 

 



2 
dki ¼ Uri ÿ J þ

1
kwhi ÿ Ck ð12Þ 

Relationships(9)–(12) describe the local behaviour of the contacts at roller i. In our model, the substitution elements replace 

the contacts between the rollers and the raceways, and the rollers. These substitution elements are two springs of stiffness 

K1i and K2i symmetrically positioned on the contact line. Fig. 7b describes this principle. At the first iteration of the FEM cal-

culation, the substitution elements get their initial stiffness. For the subsequent iterations the stiffness of each substitution 

element is recalculated. The relative displacements U1ri, U2ri and the loads Q1i, Q2i for each substitution element i have been 

obtained by the FEM calculation (c.f. Fig. 9b). 
The geometrical defects can be added to the relative displacements U1ri, U2ri. These defects are introduced using the same 

method as for the ball bearing, using relationships (5) and (7) with relative displacements U1ri, U2ri. The deformation dki per 
section can be calculated from these new values of relative displacements. The load Q i d 

and the moment Mid 
transmitted by 

the contact of roller i were thus obtained by using relationship (10). Subscript d is then used to identify such data. The load 
Q ie 

and the moment Mie 
transmitted by the contact at roller i can also be derived from the two forces Q1i and Q2i calculated 

by FEM. Subscript e is used for these values. Two estimates of the load Qi and the moment Mi, have thus been obtained. The 

previous one is obtained from the displacements and the second from the loads. The correct value lies between these two 
estimated values. The average of loads Q ie 

and Q id 
have been chosen for the load Qi. The average of moments Mie 

and Mid 

have been chosen for the moment Mi. The displacement Uri and the rotation hi required to obtain these loads are calculated 

by using a Newton–Raphson method. The stiffness of the substitution elements is calculated using relationship Eq. (13). The 
iteration process terminates when the variation in stiffness between two iterations is less than 0.1%. 

i L Q þ M i 

2 

4 
K1i ¼ 

2Uri ÿ L hi 

;
 

K2 ¼ L 
2 

Q i ÿ
4 Mi 

i 
2Uri þ L hi 

ð13Þ 

2.3. Processing of the results 

The load distribution of the rolling element of each bearing is obtained at the end of the calculation procedure. This data 

enables the estimation of parameters which provide information on the in-service behaviour of the bearings. In our case, the 

contact pressures and the orbital speeds of the rolling elements are studied. The pressures provide information on the in-

service performance of the raceways and rolling elements. Speeds of the rolling elements provide information on the behav-

iour of the cage (loading of the cage by speed variation). The pressure fields are calculated by Hertz theory. For the balls, 

Hertzian point contact is assumed. The equivalent radius is calculated at the contact point, identified previously. For rollers, 

a Hertzian line contact per section is assumed. Refs. [6] or [17] describe, in detail, the calculation method for the pressures. 

For our study, the methods described in [6] are used. Speeds of the rolling elements were obtained by a kinematic study of 

the bearing under load. Fig. 10 describes the kinematics of a ball bearing under load. 
Deformations are represented by symbol d, were the subscript specifies the part which is subject to the deformation. The 

second subscript indicates the nature of the deformation: s for structure deformation, and h for Hertz contact deformation. In 

the structure deformation d, the component in the radial direction is considered. The axial component is already covered by 

the calculation of the angle under load. For the kinematic study, only certain defects are taken into account: dimension, posi-

tioning, orientation and shape defects. In our model, we have dissociated the dimensional and shape defects from the posi-

tioning and orientation defects. These last defects affect the equilibrium of the system (load distribution per bearing and per 

ball) and the contact angles. Dimension and shape defects modify, only, the contact geometry. The all geometrical defects are 
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Fig. 9. (a) Roller bearing geometry; and (b) relative displacements in the section of roller i. 

 



included into the FEM calculation which provides the deformations and the contact angles for each ball. At a subsequent 

step, dimension and shape defects are added which modify the radii values of the contact Ri and Ro. These radii can thus 

be written as 

2 
1 

Ri ¼ 
1 ÿ

dm þ dir0 
ÿ Di cos ai

                                                                                                                                                       
ð14Þ 

Ro ¼ 
2

ÿ
dm þ dor0 

þ Di cos ai

                                                                                                                                                      
ð15Þ 

Eqs. (14) and (15) are written in the particular angular position of the moving part. In relationships (14) and (15), the term 
dxx0 

represents the difference between the real diameter and the nominal diameter at the contact point for the inner and 

outer raceways. Variable Di represents the real diameter of the ball in the position i. The rolling conditions without slip at 

A and B provide the speeds of ball i relative to the fixed datum at those points: 

V B ¼ ðRi ÿ dirÞxir                                                                                                                                                                                                                                                                        ð16Þ 

V A ¼ ðRo þ dor Þxor                                                                                                                                                                                                                                                                     ð17Þ 

where 

2 

dir ¼ dirh 
cos ai þ dirs 

;     dor ¼ dorh 
cos ai þ dors 

ð18Þ 

The orbital speed of the balls is obtained by calculating the average of these two speeds. 

V i ¼ 
1

½ðRi ÿ dir Þxir þ ðRo þ dor ÞxorŠ ð19Þ 
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Fig. 10. Kinematic model of ball bearing under load. 
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2.4. Error analysis of dynamic load effects 

The presented methodology does not account for the dynamic loads. This assumption is not usual because dynamic loads 

change balancing of the rolling elements and raceways. The error introduced by these hypotheses on the contact pressures 

and the orbital rotational speeds of the balls are shown in Fig. 11. These results are calculated according to the ratio between 

the centrifugal force (Fi) and the load applied to each ball for a ball bearing (Qi). These plotted curves (Fig. 11) were obtained 

by using the analytical methods described by Professor Harris [6] for a ball bearing, respectively with and without dynamic 

loads. Concerning bearings in helicopter gearboxes, the ratio of the centrifugal force to the applied load is less than 0.2. The 

error introduced by neglecting the dynamic effects, is therefore quite acceptable: less than 1% for speeds and 4% for pres-

sures. Additionally, this error introduces an overestimation of the contact pressures. This guarantees oversizing which en-

sures the mechanism safety. In conclusion, in the context of the studied gearboxes, the dynamic loads can be neglected. 

3. Results and discussions 

In previous paragraph, a hybrid method for modelling the links per bearing in a mechanism is presented. This method was 

validated in [15] and [16], by comparison with Harris method [6] for the case of a ball bearing with rigid raceways. This 

method is applied in a helicopter gearbox modelling. In this article, the results for subassembly of this gearbox are presented. 

The system studied is represented in Fig. 12. 
The system consists of a housing which is mounted on the main housing, and containing a gear pair and four bearings. The 

pinion is guided to the housing via two integrated ball bearings. The wheel is guided to the housing via an integrated race-

way ball bearing and an integrated raceway roller bearing. The average power transmitted by this gearbox is 150 kW. The 

mechanical torque transmitted by the pinion is 300 Nm. The finite element model of the presented gearbox has 120,000 

nodes. The various simulations presented in Figs. 13–17 highlight different phenomena like the impact of the flexibility 

and the geometric defects of the mechanism on the pressures and orbital speeds. For the geometric defects, the presented 

simulations were used to study only the position and orientation defects of the raceways. Our model is able to take other 

Fig. 12. (a) View of gearbox; and (b) view of bearings and gears. 
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types of defects into account. The assemblies of bearings used exhibit a certain flexibility which afford them a low sensitivity 

to positioning defects of the raceways. However, this type of defect modifies the position of the shaft in the housing, which 

may generate overpressure or slippage problems for the gears. In simulations, only orientation defects are studied. 
Fig. 13 shows the impact of the parts flexibility on the distribution of contact pressures on the bearing raceways. The pre-

sented example is a roller bearing whose characteristics are provided to the right of the Fig. 13. It is interesting to note the 

difference in pressure distribution on the inner raceway between the two performed simulations. In considering the defor-

mability of the parts, leads to reduce the maximum pressures on the rolling elements by a few percents. The service life is 

calculated from the cumulative loads applied to the rolling elements, using Harris’s method [6]. This method uses the value 

of each contact load. ISO 281 standard cannot be used for our problem because it treats only stiff raceways. In comparison to 

rigid parts, a 50% increase in the service life is obtained for flexible parts. However, care is needed when interpreting this 

result; in the case of flexible parts, the service life calculation can be estimated with the sum of the stress due to contact 

and the stress due to the deformation of the raceways. This way will be studied in our future works. 
Fig. 14 shows the effect of the deformation and the orientation defect on the orbital speed variation of the balls. The bear-

ing modelled is a nine ball bearing subjected to axial and radial loads and a moment. All bearing balls are loaded. The graph 

shows a major difference between the flexible and the rigid models. The amplitude of the variations is 75% greater for the 
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flexible model compared with the rigid model. The introduced orientation defect in the model was 0.05° between the the-

oretical axis and the simulated axis of the bearing. This defect increases the amplitude of the speed variations and offsets the 

graphs. For the rigid model, the amplitude increase was 15% and for the flexible model it was 10%. In conclusion, the flex-

ibility of the mechanism greatly amplifies the orbital speed variations of the balls but makes the bearing better able to 

accommodate orientation defects. The presented simulation in Fig. 14 leads to increasing the clearance between the balls 

and the cage in order to avoid loading of the cage (compensation of the cavity backlash). 
Fig. 15 shows the variation of the maximum pressure in a roller bearing according to the orientation defect. Two graphs 

are compared, one where the equilibrium of the bearing is calculated with the orientation defect (normal) and the other, 

where the defect is added after calculating the equilibrium (without adaptation). In the first method, the pressure increases 

by 10% compared to its nominal value for an orientation defect of 0.1°. In the second method with the same condition, the 

pressure increases by 15%. In the last result the pressure is over estimated because the bearing adaptation is not included. In 

the case of high orientation defect, it is thus necessary to include this defect in the FEM model. 
Fig. 16 shows the pressure distribution in a ball bearing for different values of orientation defect. This ball bearing was 

subjected to axial and radial loads and a moment. In Fig. 16, the direction of the radial load applied to the bearing and 
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the direction of the orientation defect are added. According to this simulation, the pressure distribution in the ball bearing is 

relatively insensitive to orientation defects. The pressure of the most highly loaded zone does not vary. But in the least 

loaded zone, variations are significant: the pressure can be two times larger. This phenomenon reduces the bearing service 

life by a few percent. In this case, the service life reduces by 6% for the maximum orientation defect. 
The orbital speed variation in a ball bearing is shown in Fig. 17 for different values of orientation defect. In this simulation, 

the defect was introduced in the most detrimental position. The amplitude of the speed variation is increased by the orien-

tation defect. The increase was 50% compared to its nominal value for a maximum orientation defect of 0.1°. 
These simulations bring to the fore the impact of geometric defects and of the parts flexibility on the behaviour of inte-

grated raceway bearings in helicopter gearboxes. In the studied cases, the parts flexibility permits a better pressure distri-

bution and increases the bearing service life. Roller bearings are sensitive to orientation defects, but the mechanism 

flexibility reduces its overpressure effects. Ball bearings are better able to withstand orientation defects, but this last increase 

the orbital speed variations. The combination of the mechanism flexibility and an orientation defect may generate fatigue 

loads on the cage. Cage failure is a serious destruction mode. This failure leads to the crash of the mechanism. This type 

of simulation allows us to predict the service life of integrated raceway bearings. After experimentation, it may lead to 

dimensioning optimisation or to change the value of geometric specifications of integrated raceways. 

4. Conclusion 

The hybrid model presented enables us, on the one hand, to account for the global behaviour of bearings within a com-

plete mechanism, and on the other hand, to determine precisely the local behaviour of the rolling elements. Additionally, the 

deformations and geometric defects of all the parts in the mechanism are included in this methodology. This proposal is, 

directly, embedded in the CATIA V5 environment, used in design. The presented simulations bring to the fore the effects 

of the flexibility and geometric defects of the parts on the bearing behaviour (deformation, contact pressure). The load dis-

tribution in the bearing is modified by the flexibility of the parts and the bearing raceways. The bearing service life is in-

creased by this phenomenon. However, for ball bearings, the flexibility increases the balls orbital speed variation which 

can lead to failure of the cage. Positioning defects in our assemblies have insignificant effect on the bearing service life. Ori-

entation defects increase the pressure in roller bearings and the balls orbital speed variation in ball bearings. In the future, 

we shall study the impact of shape defects on the bearing service life. 
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