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This article presents an approach toward surface best-fit based on Bayesian inference sta-tistics. The objective is to 

propose a best-fit criterion which integrates the distribution of points around the best-fit feature. This approach is used 

to guarantee a better estimate of the best-fit feature parameters. The best-fit criterion proposed in this article accounts 

for varied distributions that are not necessarily symmetric, such as those generated by turning and milling processes. 

It forms a generalization of least squares and enables the user to add information concerning the expected residual 

distribution shape. Therefore it provides the same results as the least squares method when the hypothesis of normal dis-

tribution is chosen. This article shows that using the proposed criterion will bring about a better estimate of the 

orientation of the best-fit feature and will lead to an evaluation of the form defect which is the closest to actual fact. 

1. Introduction 

This article focuses on surface best-fit within the frame-

work of mechanical parts checking. The best-fit process

 

aims to build mathematical models which represent real

 

surfaces. It is based mainly on the determination of feature

 

mathematical models, the use of best-fit criterion and the

 

measurement of points set by coordinate measuring ma-

chines (CMM). The best-fit criterion is a key element in

 

the process. Its role is to estimate the parameters of the

 

mathematical models according to the coordinates of the

 

sets of points. The evolution in manufacturing processes

 

over the past few decades has brought about a great in- 
crease in the geometric quality of mechanical systems. Tol- 

decreasing as a consequence. The checking process has

 

been forced to adapt to this evolution. Today, the use of a

 

mathematical model representing a surface is no longer

 

satisfactory. It is also necessary to have a knowledge of

 

the deviation which exists between this model and the real

 

surface. It permits qualifying and quantifying the uncer- 

tainty of the parameters of the obtained model. As a result, 
mastering this deviation has become one of the major 
stakes of modern metrology. Brought about through the

 

evolution in the means of measurement and by integrating

 

statistical concepts, a great number of approaches to sur-

face best-fit incorporating the notion of uncertainty have

 

been proposed over the last twenty years. 
This article will attempt to add new elements as a re-

sponse to the necessity of mastering the deviation between

 

a surface and its best-fit mathematical model by using a

 

statistical point of view of the best-fit process. The aim is

 

to propose a best-fit criterion capable of accounting for

 

the distribution of real surface points around an associated 
feature. This approach has proven to be interesting as it 

erance levels and, indirectly, conformance zones are 

can simultaneously quantify the parameters of the associ- 
ated feature as well as the deviation between this feature 

and the real surface. 
This article has been divided into four parts. In the first

 

part, the article will deal with different paths enabling con-

trol over deviation between the surface and its mathemat-

ical model. Existing approaches will be discussed and

 

classified. The following section will sketch out the basis

 

of the best-fit approach that we propose and will introduce 
a new best-fit criterion based on the use of likelihood 
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maximization estimation (LME). The third and final sec-

tions will be devoted to the implementation of the pro-

posed best-fit criterion and the analysis of the results 

obtained. As a conclusion, the article will end by reviewing 

the objectives reached and detailing future prospects. 

2. State of the art of best-fit approaches 

2.1. Main directions in research 

Two points of view stand out among the numerous ap-

proaches that are proposed to solve the problem of surface 

best-fit. The first point of view considers the best-fit pro-

cess as a purely geometrical operation. The goal is to min-

imize a function of the distances between the sampled 

surface and the best-fit feature. These distances are often 

called residuals. The proposed solutions generally consist 

in making complex the mathematical representation of 

the feature until weak and purely random residuals are ob-

tained. This point of view is interesting insofar as it pro-

vides additional information about the topology of the 

best-fit feature (form, undulation, etc.) and insofar as it 

generates a Gaussian distribution of uncertainty. With 

the second point of view, the best-fit process is considered 

as a statistical approach similar to regression analysis. The 

objective is not to reduce the deviation between the best-

fit feature and its mathematical representation but to use it 

as a source of information. In the end, a representation of 

the real surface and not the sampled surface can be deter-

mined. In order to achieve this, the deviation between the 

real and nominal geometries must be modeled in the form 

of a probability density function (PDF). Thus, a link be-

tween the knowledge of the measured coordinates and 

the points of the real surface can be established. The main 

interest in this point of view come from it ability to deter-

mine a representative feature of the real surface. 
Whatever point of view is favored, every approach 

aimed at improving surface best-fit is confronted with 

the necessity of integrating more information about the 

deviation between the real and nominal features. Two 

strategies are used to achieve this goal. The first one con-

sists in increasing the number of parameters describing 

this deviation, at the risk of generating additional costs in 

terms of calculations. According to the statistical or deter-

ministic point of view; a line will be replaced by a polyno-

mial equation of n-degree or a Fourier series in order for all 

measurable geometric flaws to be describable; a PDF will 

be modeled by a general law such as a beta one. The second 

strategy consists in using trade knowledge to predict this 
deviation in a significant and sufficient way. As a function 
of the manufacturing parameters, perturbations are added 

to the geometrical best-fit feature or to the PDF. They come 

from a catalog of elementary deviations. 
The illustration in Fig. 1 establishes a classification of 

the approaches and research work in the form of a refer-

ence system. The horizontal axis shows the adopted point 

of view. The vertical axis differentiates the strategies in 

deviation modeling. All in all, four distinct orientations, 
each corresponding to a quadrant of the referential system, 

following paragraph will give a detailed explanation of 

these approaches and will present different research pa-

pers that fall within their scope. 

2.2. Classification of current approaches 

Quadrant 4 of the referential system (Fig. 1), shown in 

detail in Fig. 2, corresponds to an approach based on a geo-

metrical point of view. Kurfess and Banks [1] propose a 

method resting upon the implementation of a catalog for 

cylindrical surface defects: tri-foil, diabolo, etc. The most 

likely geometrical deviations set is selected using a rule 

based on LME. It leads to the building of a mathematical 

model which is the closest possible to the real geometry. 
The Henke and Summerhays approach [2,3] distin-

guishes itself from the previous model in the simultaneous 

integration of every geometric deviation into the surface 

mathematical model. This model is made up of the nomi-

nal geometry, here a cylinder, to which a perturbation 

f(h, z) = a1  f1(h, z) + a2  f2(h, z) + . . . + an  fn(h, z) is added. 

This modifies the value of the radius as a function of the 

angular position (h) and the position on the axis of the cyl-

inder (z). Functions fi characterize a series of elementary 

corrections whose effects are weighted by scalars ai. The 

authors propose an implementation of this method based 

on the functions fi of the Fourier series, Eigen shapes and 

also polynomial equations. Killmayer and Babu [4] adopt 

a very similar approach to the one proposed by Kurfess 

and Bank. The originality of this approach comes from 

the implementation of a genetic algorithm which ensures 

the selection of the most pertinent geometric deviations. 
Quadrant 1 of the referential system proposed in Fig. 3 

focuses on a geometric point of view without any prior 

knowledge. This point of view consists in building a 

generic model of the surface which is able to describe 

any surface geometry. Tilo Pfeifera et al. [5] proposes an 
identification method of the geometry based on the topog- 
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raphy decomposition. The real geometry is divided into 

three generic shapes, each one associated with a scale of 

magnitude. This geometric representation obviously re-

quires the establishment of a mathematical definition of 

the three deviations in shape, but also specific best-fit cri-

teria. 
A

 for Tuck
e

r and Kurfess [6,7], they developed a 

method of best-fit parametric surfaces. This was carried 

out by stretching the analytical approach as far as possible. 

This type of advance has shown itself to be important since 

research based on a deterministic point of view without 

estimations is not currently being explored to any large ex-

tent because of the enormous calculation costs. 
Quadrant 3 of the referential system proposed in Fig. 4 

is founded on a statistical point of view with prior estima-

tions of deviations. Choi and Kurfess [8] propose a study on 

the determination of uncertainty relative to shape devia-

tion as a function of probed points. They propose treating 

form defect like a random variable sensitive to surface 

sampling. To evaluate this uncertainty, the authors under-

line the necessity of starting by modeling the distribution 

of the points of a machined surface around its nominal 

geometry. They advise against using a Gaussian law in this 

context. According to the authors, beta distribution ap-

pears to be a much better candidate in this specific case. 

It corresponds ideally to the description of plateau-type 

profiles and can, if necessary, give a rough estimate of 

the uniform or Gaussian distributions by making a judi-

cious choice of parameters. Mestre [9,10] was interested 

in the reconstruction of missing information when mea-

suring with CMM. This kind of measurement only gives 

partial information on the surface geometry. To counteract 

this problem, Mestre underlines the necessity of resorting 

to inference statistics and creating a catalog of geometric 

deviations. 
Quadrant 2 of the referential system proposed in Fig. 5 

carries on with the statistical approach but does without 

prior knowledge. Continuing on the research discussed 

above, Choi and Kurfess
 
11] presented a method of deter-

mining uncertainty on the exterior tangent feature based 

on the BOOTSTRAP technique. Linares et al. [12,13] pro-

posed a method of determining uncertainty on the best-

fit feature using the least square criterion (LSC). As for 

Cox [14,15], he was interested in using the LSC in cases 

when residual distribution is not necessarily Gaussian. He 

proposes first using the v2 test in order to estimate least 

square conformity. In case this appears to be unsatisfac-

tory, he suggests solving the problem by modifying data, 

the model or even by distorting input data. 

3. Best-fit method within the context of LME 

A great number of approaches underline the importance 

of the distribution of points making up the real surface 

around the best-fit feature: either to determine uncer-

tainty or in the selection of criterion. For example, Kurfess 

proposes modifying the input data to guarantee an adapted 

residual distribution. It is this adaptation of distribution 

which guarantees that the calculated feature truly de-

scribes the real surface and not just the point sample. 
Another solution may be to propose a best-fit criterion 

which imposes no particular hypothesis on point distribu-

tion. The criterion should not try to correct PDF but uses it 

as it comes as a source of information. It is this last path 

that has been chosen. 

3.1. Best-fit principal within the context of LME 

The approach proposed in the next pages belongs to 

quadrant 3 of the referential system (Fig. 4). It rests upon 

a statistical point of view of surface best-fit. 
The surface is considered to be an unknown population 

made up of infinite points. The only source of available 

information about it is a sampling of measured points. 

The purpose of best-fit surfaces is to estimate the real sur-

face’s geometric characteristics (position and orientation) 

from this sampling. It is important to note that the objec-

tive is to determine the features of the real surface and 

not those of the representative surface of the point sam-

ples. Determining extreme-fit in the usual way by metrol-

ogy software calculations does not meet this objective. It is 

based on the hypothesis that extreme points in the sample 

measurements are representative of extreme points on the 

real surface. This hypothesis is not realistic if the small 

number of evaluated points is taken into consideration. 
Only the extreme-fit to the sample can, in these conditions, 
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be determined. To apprehend extreme-fit, the infinite 
points making up the real surface must be worked on. If 
_ these are unknown, the only available data is an estimation 
f ðxÞ of their distribution around the mean surface. The ex- 

_ 

_ 

treme point cannot be apprehended with this data, but 

using the data offers the possibility of determining, with 

a given risk, a limit beyond which points should not exist 

(Fig. 6). 
The distribution f(x) of points around the mean surface 

is mostly imposed by the manufacturing process used to 

generate it. It represents a signature, translating the topol-

ogy imposed on the surface in statistical form, through the 

movement of generation and the cutting-edge geometry of 

the tool. It can thus be estimated from the knowledge of 

the manufacturing conditions of the surface. 
This estimation can be obtained in several ways: creat-

ing an experimental catalog of PDF, training a neural net-

work to estimate the parameters of a generic PDF or 

running a machining simulation. This aspect will not be 

dealt with in this article. It will be taken for granted that 

it is always possible to obtain an estimation of the distribu-

tion of points making up the real surface around the nom-

inal geometry. This estimated distribution will be marked 

f ðxÞ in order to not be confused with the real distribution 

f(x) which cannot be known. As many researchers have 

underlined, the shape of f ðxÞ is principally a function of 
the manufacturing process used. A surface of very good 

quality will present a symmetrical distribution with a nor- 
mal tendency, whereas a turned or milled surface will 
present     an     asymmetrical     and     possibly     multimodal 
distribution. 

The importance of accounting for the signature of the 

manufacturing process is not only limited to determining 

extreme-fit. As shown in Fig. 6, best-fitting with a criterion 

who imposes a distribution which is non-representative of 

distribution of the surface can also lead to a poor estima-

tion of the parameters of the best-fit feature. A good esti-

mation can be obtained by considering the surface best-

fit as a regression analysis. The goal is, in this case, to 

determine the parameters of the best-fit geometry which 

maximizes likelihood between the residual best-fit distri-

bution and the theoretic signature of the surface. Through 

this approach, inference statistics properties can be used. 

The best-fit method is comprised of three steps (Fig. 7). 

First of all, an initial estimate of the distribution shape of 

points is determined as a function of manufacturing 

parameters. This is called prior distribution because it con-

sists in a hypothesis of residual distribution. Next, a best-fit 

criterion is applied to determine parameters which maxi-

mize likelihood as a function of the predicted distribution. 

The parameters determined by the criterion are the posi-

tion of the best-fit feature, its orientation, its possible 

intrinsic parameters, as well as the mean and standard 
deviation of the prior distribution. This leads to the final 
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step, where a new estimate of distribution is made as a 

function of the parameters calculated in the previous step. 

It is called posterior distribution because it takes into ac-

count the knowledge included in the points sample. These 
last two steps may be repeated if the prior and posterior 
PDFs are too far apart. The following paragraph introduces 

a best-fit criterion within the context of the LME which 
represents the key element in this approach. This criterion 
will be logically called as maximum likelihood criterion 

(MLC). 

3.2. MLC: best-fit criterion based on LME 

~ 
The first step, in the development of a MLC, consists in 

determining the cost function CðhÞ. By maximizing it, the 
optimum parameters of the best-fit model should be ob-

tained. Using the parameterization proposed in Fig. 7, 

and considering points Mi as independent, the cost func- 
tion of the estimate is written: 

~ 
n Y 

CðhÞ ¼ PðMi=f Þ 
i¼1 

It can be rewritten as a function of the cumulative dis-

tribution function f(ei) (CDF): 

~ 
Y Y ! n n 

CðhÞ ¼  f ðMimi; f Þ ¼ f ðei; h Þ ð2Þ 
i¼1                                     i¼1 

This new formulation of the cost function is often called 

the likelihood function. The optimum parameters sought 
out are those which maximize this function, seeking out 
the best-fit feature amounts to solving the equation: 

n 

f ðe Þ 

! 

@h i ! 
X f ðeiÞ0 @eið h Þ 

¼ 0 with f ðe Þ0 ¼ 
@f ðeiÞ 

ð3Þ 
i¼1 

i k @eið h Þ 

Because this equation cannot always be solved directly, 

it is interesting to linearize it by replacing f(ei) with its Tay-

lor limited development to the second order: 

f ðeiÞ ¼ f ðei0Þ þ f ðei0Þ0 ðei ÿ ei0Þ ¼ f ðei0Þ þ f ðei0Þ0 
dei 

with dei ¼ ðei ÿ ei0Þ ð4Þ 

Thus rewritten, the equation to be solved becomes: 
n 0 

f ðe Þ f ðe Þ 2 

" # 
~ 

dh 
X 

¼ 
f ðe

i0
Þ 
þ

f ðei0Þ00
f ðei0Þ ÿ f ðei0Þ02 

dei      

deiðhÞ 
¼ 0 ð5Þ 

i¼1 
i0 i0 k 

This equation is particularly interesting, because it can 
be reduced to weighted least squares: 

X X 

s s 2 2 @a     @a @a 

n       
1 

 
@xi 

 
@xi 

dl ¼ 
n       

1 
 

@xi 
yi i¼1      

i k l 
i¼1      i 

k 

By setting out: 

2 i0 f ðe Þ 

y ¼ 

2 
xi ¼ ei;     ak ¼ hk;     s

i 
¼ 

f ðei0Þ00
f ðei0Þ ÿ f ðei0Þ02 

; 

f ðei0Þf ðei0Þ0 
i 

f ðei0Þ00
f ðei0Þ ÿ f ðei0Þ02 

This analogy is very practical since it enables the use of 

the same procedures leading to a solution as those devel- 
oped in the framework of the LSC. 

It is also possible to show the equivalence between the 

proposed criterion and the LSC when the imposed distribu-

tion shape f(ei) is normal. Using the hypothesis of a Gauss-

ian residual distribution, it is possible to write the imposed 
distribution as: 

1 
2 p 

2 r f ðeiÞ ¼ 
r
pffi ffi ffi ffi ffi ffi eÿ1ð

e
i
ÿl

Þ2 

ð8Þ
 

where l is the mean and r is the standard deviation 
By using this expression into the definition of the vari-

ables equivalent to LS, which were obtained in the above 
paragraph, it is easy to show that the following is obtained: 

i 
i0 f ðe Þ 2 

s2 ¼ 
f ðei0Þ

00
f ðei0Þ ÿ f ðei0Þ

02 
¼ ÿr2       and 

y 
f ðei0Þf ðei0Þ0 

i 
f ðei0Þ00

f ðei0Þ ÿ f ðei0Þ02 i
 

¼ ÿ ¼ ÿðe ÿ l Þ ð9Þ 

These equalities demonstrate that the proposed crite- 
rion is equivalent to the LSC using the hypothesis of a nor- 

ð1Þ           mal residual distribution. This equivalence makes possible 

using the same solving method than the many ones devel- 
oped for LSC. 

_ 

3.3. Method of estimating the imposed distribution f ðxÞ 

_ 
As the followed objective is taking into account any dis-

tribution shape, a generic formulation of the imposed PDF 

f ðxÞ has to be developed. Three constraints should be re- 
spected in this formulation: 

_  Considering the prediction model of the distribution 

used in our best-fit method, this function f ðxÞ should 

be derived from a set of values forming a sampling of 
distances between the nominal surface and the theoret- 

_ 

_ 

ically manufactured surface. 
 Because of the expression of the proposed criterion, the 

model chosen must also give a good estimation of the 

first and second distribution derivatives of f ðxÞ. 
 In order to ensure the convergence of the criterion, the 

model of function f ðxÞ must lead to a coherent estima-

tion of the probability of observing a distance x as much 

within the definition interval of xi as outside it. 

_ 
A first approach would consist in approximating the 

PDF by a histogram. In other words, it consists in 
estimating the density f ðxÞ of the random variable xi in 
relation to the ratio ni/N, where ni represents the occur-

rences of xi     belonging to the ith     class associated to a 
ð6Þ           given value x and N represents the total number of real-

izations. As the density is thus the same whatever the 
position of x between the extremities of this class, this 

approach does not guarantee the convergence of the 

best-fit procedure. It does not provide a continuous 

and regular estimate of density. For this reason, it has 
been abandoned and replaced by a more effective esti-

ð7Þ mation method. 
An improvement consists in using a mobile window 

around value x and a density estimation function K(u), 

called core. The estimation of the probability of observing 
value x knowing n of its xi realizations is given by: 

 



_ X n 

h 

P np 

P 
X 

h 

Variable h is called the window opening factor. It deter-

mines the level of fitting operated by the core. The greater 

its value, the more the probability function is best-fitted 

and the less informative it becomes. The optimal value of 

h, which leads to an evaluation that is both regular and suf-

ficiently detailed, is generally close to nÿ1/5. 
The preceding equation determines the probability of 

observing a value as a function of several realizations of 

the random variable. In this case, each realization has as 

many chances of occurring as another. It is also possible 

to express the probability of observing a value as a function 

of n probabilities of observing particular xi values. For this 

to happen, the equation must contain the probability 

p(x = xi) of observing a value xi, noting that the number of 

occurrences of value x must, theoretically, be observed 

for N realizations is ni = N  p(x = xi). The total number of 
observations is equal, in this case, to n ¼ N 

i¼1
pðx ¼ xiÞ 

and the expression of the probability function becomes: 

f
_

ðxÞ ¼  
np

1 
 

np 

N pðx ¼ xiÞ K
xi ÿ x

 
h N       

pðx ¼ xiÞ i¼1 
i¼1 

ð11Þ 

_ 

_ 
P 

X 

h 

By eliminating the total number of N realizations, we 

obtain an alternative formulation of f ðxÞ which is a direct 

function of the probabilities of observing np values xi: 

f alternativeðxÞ ¼  
np     

1 
 

np 

pðx ¼ xiÞ K
xi ÿ x

 
h       

pðx ¼ xiÞ i¼1 
i¼1 

ð12Þ 
_ _ 

One or the other expressions, f or f alternative, can be used 
depending on the scenario. The first expression will be 

used to construct an estimate as a function of a set of val-

ues obtained through a simulation of machining. The sec-

ond one will be used to construct an estimate from a 

known law in order to apply a standard criterion. To guar-

antee the derivability and continuity of the estimate, the 
choice was made to use a Gaussian core: 

1 
2 p 

2 f ðxÞ ¼ 
n

1

h 
 

i¼1 

K
xi ÿ x

 
ð10Þ KðuÞ ¼ pffi ffi ffi ffi ffi ffi e

ÿu2 

ð13Þ 

_ 

Using this type of core entails a slightly Gaussian shape 

of the estimated probability function. This shape, gener-

ated by the core, is not penalizing, however. The PDF which 

describes the distribution of measured points is the result 

of the convolution between the manufacturing signature 

and that of the CMM. Since the latter is generally Gaussian, 

the effect of this fitting is in line with a coherent hypothe-

sis on the prior PDF. Another advantage in the formulation 

of the core that has been retained is that it guarantees one 

of the conditions for the existence of f ðxÞ: 

Z x¼þ1 _
 

f ðxÞdx ¼ 1 ð14Þ 
x¼ÿ1 

In the end, Gaussian core-fitting is an interesting way 

for estimating the function f(x): 

 it builds a continuous and regular estimate of PDF 

directly from a points sampling, 
 it can be effective with a reasonable number of points,  

it ensures the convergence of the best-fit criterion by 
guarantying the existence of a weak and non-zero esti-

mate of the probability of observing a point outside of 

the interval in which the surface points belong. 

Two applications have been carried out to evaluate the 

efficiency of core-fitting. The first application consists in 

the construction of an estimate by core-fitting of a known 

law thanks to its formula. This enables us to implement a 

classic criterion (LS, uniform). The second application con-

sists in estimating a known law with a set of deviations be-

tween the nominal surface and the theoretically generated 

one. The later is the most interesting way. It permits to 

implement a criterion with a distribution estimate ob-

tained through a machining simulation. 
Figs. 8 and 9 correspond to the first application. They 

present PDFs constructed from a discretized distribution 

of N = 200 ordered pairs (xi; p(x = xi)). The xi ordinates have 

been placed at regular intervals between xmin = ÿ5 and 
xmax = 5 and the corresponding probabilities p(x = xi) have 
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_ 

_ 

been evaluated from the theoretical law. Reconstruction 

was obtained by using the alternative distribution estimate 
f alternative (Eq. (12)). In order to evaluate fitting efficiency, a 

Chi-square test was carried out for each reconstructed PDF. 

The test result is displayed in the Figures. It indicates the 

percentage of chances that the initial or reconstructed dis-

tributions match. Core-fitting can thus be seen as effective 

in these cases. 
Fig. 10 presents the PDF reconstructed from a sampling 

of simulated values thanks to the Monte Carlo method 

(MCM) according to a known law. A sampling of 4000 

was generated. In this Figure, the thin dotted line shows 

the shape of the law retained for this paper (a beta law 

B[2, 4]). Superposed on this line is a thick solid line show-

ing the estimate reconstructed from the proposed fitting 

method accounting for the 4000 points available and in 
using the formulation of f ðxÞ described by Eq. (10). 

In view of the body of results, fitting with Gaussian 

cores seems to lead to a good PDF estimate. Results, not 

commented here, show that a minimum of 50 points taken 
by MCM is necessary in order to reach a suitable estimate 

and that an optimum between estimation quality and cal-

culation time appears to be around 200 points. 

4. Validation and efficiency with the LSC 

4.1. Validation of the equivalence with the LSC 

The equivalence between the MLC and the LSC was 

demonstrated in Section 3.2. This equivalence, which ex-

ists as long as prior distribution is normal, has been used 

to validate the best-fit method proposed. A great number 

of point samplings have been successively associated with 

the both criteria and compared two by two. The mean val-

ues of the parameters determined in the two scenari only 

differ by 10ÿ9 lm for a distribution defined by 200 points. 

4.2. Estimation efficiency for large samplings 

The method proposed in this article was devised so as to 
be able to account for non-Gaussian and asymmetric 
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Fig. 10. Core-fitting using a beta law B[2, 4] of 4000 points defined in the interval [0, 4]. 
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distributions. It is important to check its ability to identify 

surface parameters as a function of prior distribution, 

when the later is fully known. To evaluate this aspect, 

two files of 1681 points were generated by MCM. Each file 
simulates the measurement of a plane of normal z , of an 

0.1 mm. Each file presents a distinctive distribution of 

deviations following z. The first file presents a uniform dis-

tribution U[ÿ0.05, 0.05] and the second one shows a dis-

symmetric distribution following a beta distribution B[2, 

5] . 
File 1 has been successively processed with the LSC and 

the MLC based on the appropriate hypothesis of uniform 

distribution U[ÿ0.05, 0.05]. Table 1 presents the: 

! 
 values of the solid angle between the normal to the best-

fit surface and the axis z , 
 form defect (some flaws in shape) present in the 

residual, 
 standard deviation in calculated residuals for each best-

fit scenari. 

It also indicates the theoretical values (truly present in 

the files) and the error resulting from each criterion. The 

cases shown in bold character indicate the most accurate 

results. 
The solid angle is well evaluated by the two criteria. The 

error of the LSC is only about 6 lm/m. The form-error is 

evaluated adequately by the MLC leading to an error of 

0.0004 lm compared to 3 lm for the LSC. Standard devia-

tion is poorly evaluated in both cases. The criteria have an 

error of 12 lm. 
File 2 has been successively processed with the LSC and 

the MLC based on the appropriate hypothesis of a beta dis- 
tribution B[2, 5]. Table 2 below presents the results ob-

tained for this file: 
The solid angle is well evaluated by the two criteria. 

The error induced by MLC is once again the lower than 
0.0002 lm/m. The form-error is well evaluated by the 

MLC. The error on the estimated form-error is 0.06 lm 

for the MLC compared to 0.2 lm for the LSC. Standard 

deviation is better evaluated than in the case of File 1. 

All the criteria have satisfactory results and the best esti-

mate is obtained with the MLC which is off only by 

0.002 lm. 
In view of these results, it is possible to conclude that 

area of 40 1 40 mm and presenting a form-error of the proposed criterion proves to be efficient in determining 
the geometric characteristics of best-fit features such as 

position and orientation. It is also possible to assert that 

it serves as a good estimator of form-error. However, the 

MLC does not seem to be the best estimator of standard 

deviation in residuals. It gives results that are similar to 

those of LS which only applies to the information con-

tained in the sampling and not on the information from 

the real population. Additional research should be carried 

in this direction. 

4.3. Estimate efficiency for limited samples 

The previous paragraph showed how the proposed cri-

terion could use the knowledge of theoretic residual distri-

bution to draw out better additional information about the 

set of points. This information gives a better estimate of 

form-error when the imposed distribution and the distri-

bution present in the sample of measured points match. 

This paragraph is concerned with the situation where the 

number of points representing the measured surface is 

limited and leads to a poor estimate of real distribution. 

To do this, sub-samples of 50, 200 or 300 points are sam-

pled without replacement from the previous Files 1 and 

2. They are best-fit with the method proposed and the 

LSC in order to estimate the form-error present on the sur-

face. This form-error has been chosen as the subject of 

study because it is adequately estimated by the proposed 

criterion. 

4.3.1. The case of a set of points presenting uniform 

distribution 
The graph in Fig. 11 shows the form-error evaluated 

after best-fitting a series of 14 sub-samples of 300 points 

taken from File 1. Each sample has been best-fit with 

MLC (the solid line) and LSC (the thin line). The theoretical 

value of the form defect, shown by the thick line, is the one 

from File 1, i.e. 0.1 mm. 
It can be observed in this graph that MLC provides more 

stable and, globally-speaking, more accurate results. The 

mean error is about 0.75 lm with a standard deviation of 

0.67 lm compared to five times that for the mean error 

committed by the estimate based on LSC. As for maximum 

error, it is not higher than 2.57 lm. 

4.3.2. The case of a set of points presenting dissymmetric 

distribution B(2,5) 
The following graphs (Fig. 12) present the evaluation of 

the form defect obtained after best-fitting three series of 
14 sub-samples taken from File 2. The three series are 
made up of samples consisting of 50, 200, 300 points 

respectively. The graphs are devised as in the former 

graphs and their analysis leads to the same conclusion: 

MLC proves to be a better estimator of form defects. An 

additional remark can be made. If the MLC is efficient in 
determining form defects, it is even better if the sample 

Table 1 
Comparison of the results of best-fit for a uniform distribution. 

Solid angle/z Form-defect Standard-

deviation 
Theoretical 

LSC value 

MLC value 

LSC error 
MLC error 

0 
9.34005E ÿ 05 

6.35323E ÿ 06 

9.34005E ÿ 05 
6.35323E ÿ 06 

0.1 

0.102624175 

0.100003992 

0.002624175 
3.99163E ÿ 06 

0.016552014 

0.028872132 

0.02889064 

0.012320117 
0.012338626 

Table 2 
Comparison of the results of best-fit for a beta distribution. 

Solid angle/z Form-defect Standard-deviation 
Theoretical 

LSC value 

MLC value 

LSC error 
MLC error 

0 
4.19013E ÿ 05 

6.77056E ÿ 06 

4.19013E ÿ 05 
6.77056E ÿ 06 

0.1 

0.099795933 

0.099942699 

0.000204067 
5.7301E ÿ 05 

0.016552014 

0.016544583 

0.01655385 

7.43116E ÿ 06 
1.83591E ÿ 06 

 



is made up of at least a few hundreds of points. Thus, for 

very small-sized samples, the MLC is not significantly more 

efficient than the LSC. This comes from the fact that the 

sample does not contain enough information to make good 
use of distribution knowledge. 

4.4. Efficiency of the criterion to maximize likelihood between 

residual and prior PDFs 

A final idea for evaluating the relevance of the MLC lies 
in the analysis of best-fit residuals. The proposed criterion 

Fig. 11. Comparison between LSC and MLC results for a uniform distribution. 

Fig. 12. Comparison of LSC and MLC results for a beta distribution. 

 



aims to determine the best-fit feature so that the latter 

maximizes likelihood between the best-fit residual distri-

bution and the theoretical signature of the surface. In other 

words, using this criterion must lead to the shape of resid-

ual distribution after best-fitting being roughly identical to 

the shape of the theoretical signature. If this will happen, it 

provides, obviously, that the hypothesis on the residual 

PDF is coherent. Nevertheless, the residual PDF here is nec-

essarily founded, in light of the artificial generation of the 

point sample. To check the likelihood between the ex-

pected residual distribution and that obtained after best-

fitting with the proposed criterion, four samples were gen-

erated from a virtually measured surface. Each plane has a 

known theoretical distribution in z direction: Gaussian for 

the first one, uniform for the second one, dissymmetrical 

unimodal for the third one and dissymmetric multimodal 

for the last one. Each sample was successively best-fit with 

the LSC and the MLC. The best-fit residual distributions 

were then compared with the known theoretical distribu-

tions. The comparison was made with a Ki-2 test applied to 

the central-reduced distributions, just accounting for the 

shape of the distributions. The risk linked to the hypothesis 

of non-fortuitous equivalence between the two distribu-

tions can be estimated. The lower is the risk the better is 

the agreement. 
The table below sums up the results obtained. It shows 

that in any case, except for a Gaussian signature, the MLC 

leads to a more accurate estimate of the shape of residual 

distribution. In the case of a normal distribution, both cri-

teria are equivalent and lead, quite naturally, to the same 

results. In this case, using the LSC is advised on the grounds 

of rapidity (Table 3). 

5. Conclusion 

This article introduced a new criterion for best-fitting 

geometrical features, called Maximum Likelihood criterion 

(MLC). This criterion is supported by the principles of LME 

and aims at better controlling deviation between the real 

surface and the best-fit geometry. Additional information 

about the shape of the theoretical distribution of points 

around the best-fit feature is introduced into the best-fit 

process in order to achieve the goal. This information is 

important as it enables better estimates of the parameters 
of the best-fit geometry. 

The proposed criterion proves to be reliable when 
implemented. It demonstrated its ability to find the real 
signature of the surface, with relevance, and to be a good 

estimator of the orientation of the best-fit feature. It also 

proved to be pertinent in estimating form defects for the 

samples made up of a few hundreds of points. 
Several important conclusions must be drawn from this 

research. First of all, using the LSC in situations where the 

residual distribution is not, a priori, Gaussian, leads to a 

non-relevant estimate of the residual distribution. A crite-

rion based on LME appears to be a better solution only if 

there is a prior estimation of the shape of the real residual 

distribution. 
Furthermore, it is important to note that no criterion 

has proven to be capable of providing relevant results 

on the estimation of surface form defect for samples of 

fewer than 100 points. Implementing the proposed crite-

rion is only efficient with samples of a minimum of 200– 

300 measured points. Under this threshold, there does 

not seem to be enough exploitable information in the 

sample. 
Finally, it is interesting to note that the proposed ap-

proach marks a generalization of certain standard best-fit 

criteria. It is, for example, strictly equivalent to the LS 

when prior distribution is felt to be Gaussian. Moreover, 

it makes working with non-symmetric and slightly multi-

modal distributions possible. 
New possibilities are opening for the determination and 

utilization of uncertainties linked to parameters estimated 

by the MLC. 
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