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Summary

Let N (µ) be the counting function of the eigenvalues associated with the self–
adjoint operator −∇(ρ(x, z)∇·) in the domain Ω = R×]0, h[, h > 0, with
Neuman or Dirichlet conditions at z = 0, z = h. If ρ = 1 in the exterior of
a bounded rectangular region O, that is, for |x| large, then N (µ) is known to
be sublinear: the proof consists in the spectral analysis of a quadratic form
obtained from a Green formula for −∇(ρ(x, z)∇·) on O. In our case, the
medium is multistratified: the function ρ(x, z) satisfies ρ(x, z) = ρ(z) for |x|
large. Since the direct use of the previous proof fails, we modify the quadratic
form and obtain the estimate N(µ) ≤ Cµ3/2.
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1 Introduction and main results

Consider the propagation of acoustic waves in a perturbed stratified medium
described by the wave equation

∂2

∂t2
u(x, z, t)−∇(ρ(x, z)∇u(x, z, t)) = 0

where t ∈ R, (x, z) ∈ Ω = R×]0, h[, h > 0. The function ρ(x, z) is the square
of the celerity of acoustic waves in the strip Ω. The asymptotic properties of
u(·, x, z) for large t can be derived from the spectral analysis of the self–adjoint
operator A defined by Au := −∇ · ρ(x, z)∇u with domain D(A) := {u ∈
HΩ |Au ∈ L2(Ω) and (ρ∂zu)z=0 = 0 } where HΩ := {v ∈ H1(Ω) | v(x, h) = 0}
and H1(Ω) denotes the usual Sobolev space. In this way the waves satisfy a
Neumann condition at z = 0 and a Dirichlet condition at z = h.
The function ρ(x, z) is real–valued, measurable and satisfies the following con-
ditions: ρ, ρ−1 ∈ L∞(Ω) with 0 < ρmin ≤ ρ ≤ ρmax <∞, and
ρ(x, z) = ρ±∞(z) for ±x > M where M ≥ 0. If ρ(x, z) = ρ±∞(z) almost every-
where in Ω, the medium is said to be ”unperturbed”, the operator A ”free”,
and we then put A± = A. The spectrum σ(A±) of A± is well–known [2, 3, 9].
It is reduced to the essential spectrum σess(A±) = [S±1 (A±),+∞[, where the
number S±1 (A±) is the lower bound of S(A±), the discrete set of thresholds
(see also [2]).

In the general case A is considered as a perturbation of the free operators
A+ and A− coupled to each other. Thus the spectrum of A consists of two
parts. The first is the absolutely continuous spectrum σac(A) which coincides
with the essential spectrum: σess(A) = σess(A+) ∪ σess(A−) = [S1(A),+∞[,
where S1(A) := min(S+

1 (A+), S−1 (A−)). The second, possibly void, is the point
spectrum σp(A) ⊂ [ρmin,+∞[. We prove that σp(A) is a discrete set, and
hence improve [9] where it is shown that the eigenvalues of A, counted with
their multiplicity, cannot have a finite accumulation point, except maybe to
the left at points of S(A−) ∪ S(A+). This last set is conveniently denoted by
S(A) and called ”the set of thresholds” for the operator A. In fact one needs
to know the behaviour of the resolvent near the real axis and near thresholds.
This question is partially solved by the limiting absorption principle developed
in [2, 9], where the following Hilbert spaces equipped with obvious norms are
introduced:

L2,s(Ω) = {u ∈ L2
loc(Ω) | (1 + x2)

s
2u(x, z) ∈ L2(Ω)}

H1,s(Ω) = {u ∈ L2,s(Ω) | ∇u ∈ (L2,s(Ω))2} ,

for any real s. As proved in [9], the operator (A− ζ)−1 defined for ζ ∈ C+ :=
{ζ ∈ C | =mζ > 0} extends continuously to ζ = µ ∈ ZC := R \ (S(A) ∪
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σp(A)) as an operator R+
A(µ) ∈ B(L2,s(Ω), L2,−s(Ω)) which is equipped with

the uniform topology of norms, for any s > 1
2
. The investigation of the analytic

properties of R+
A(·) is the next step to confirm that the point spectrum of A

is discrete. Consider now the counting function NA(µ) := #σp(A) ∩ [0, µ].
Estimates of NA(µ) are well–known when ρ+∞(z) and ρ−∞(z) are constant:

NA(µ) ≤ Cµ+ 0(µ
1
2 ) as µ→ +∞ (1)

and the optimal value for C is known (see [6, 8, 1]). To do this, note that if
µ is an eigenvalue of A with the eigenmode φ, then µ is an eigenvalue of some
operator G(µ), with the eigenmode u = φ|O, restriction of φ to the domain
O :=] −M,M [×]0, h[ (1). The expression of G(µ) is obtained from a Green
formula on O for A, using a Dirichlet–Neumann operator T (µ) (cf. section 2).

However, when the medium is really stratified, such a method fails. That
is why we modify the operator G(µ) in section 3. The problem is then more
complicated, but we obtain the following estimate:

Theorem 1.1
NA(µ) ≤ C∗µ3/2 + 0(µ) as µ→ +∞ (2)

where∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C∗ := C∗+ + C∗−

C∗± := 1
8
M ρ−1

M,minR
±
ρ ρ

− 1
2

±∞,m

ρM,min := inf ess ρ(x, z) in O
ρ±∞,M := sup ess ρ±∞(z)

R±ρ : the lowest integer greater than or equal to
√

2(
ρ±∞,M

ρ±∞,m
)2

ρ±∞,m := inf ess ρ±∞(z) .

(3)

In addition, the remainder 0(µ) in (2) is bounded by C · max(M, 1)(µ + 1)
where C does not depend on M .
This result still holds for any Dirichlet or Neumann boundary conditions at
z = 0, z = h.

The paper is composed of two parts. Section 2 is about the Dirichlet–Neumann
operators T (ζ). In [9] it is proven that the mapping T (·) defined on C+ is
continuous. We show here the analyticity of T (·) and give an explicit formula
for T ′(µ).
In the second part, section 3, we prove that the point spectrum of A is discrete.
In fact by another method we are near to recovering some results of [4] about

1the case M = 0 is trivial since σp(A) happens to be void
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the meromorphic continuation of the resolvent of A through the real axis, and
we complete the proof in [9]. Then we prove theorem 1.1.

We shall use the following notations: Dt denotes ∂·
∂it

for the variable t, and

‖ · ‖r,X the usual norm of the Sobolev space Hr(X).

2 The Dirichlet–Neumann operator

2.1 Definition of the thresholds

There are two ways to ”reduce” the operator A± and thus two ways to intro-
duce the set of thresholds.

First let us consider the operator A±,z := − d
dz

(ρ±∞
d
dz
·) self–adjoint on

L2(]0, h[), with domain D± := {v ∈ H1(]0, h[) | A±,zv ∈ L2(]0, h[), ρ±∞v
′(0) =

v(h) = 0}. It has compact resolvent and discrete spectrum which consists of
positive eigenvalues: the thresholds S±1 < S±2 · · · < S±n · · ·.

It is more convenient to consider for real µ the self–adjoint operatorA±,red :=
−(ρ±∞)−1( d

dz
ρ±∞

d
dz

+ µ) on L2(]0, h[, ρ±∞(z)dz), with domain
D±,red := {v ∈ H1(]0, h[) | A±,redv ∈ L2(]0, h[), ρ±∞v

′(0) = v(h) = 0}. Its
spectrum is discrete and consists of an increasing sequence {K±n (µ)}n≥1 of
eigenvalues, associated with an orthonormal basis U±n (µ; ·). In fact K±n (µ)
vanishes if and only if µ = S±n (cf. figure 1).

We set S(A) := S(A−)∪S(A+) where S(A±) denotes the set of thresholds

of A±. By setting λ
1
2 the square root of λ ∈ C such that arg(λ

1
2 ) ∈] −

π/2, π/2], and by using the spectral representation of the operator A±,red,

we can define the square root A
1
2
±,red of A±,red. The eigenvalues of A

1
2
±,red are√

K±n ≡ ik±n (µ) ∈ iR+ for 1 ≤ n ≤ N±(µ) and
√
K±n ≡ θ±n (µ) ∈ R+ for

n > N±(µ). We also put k±n := iθ±n for n > N±.
Let us define the bounded Dirichlet–Neumann operator T±(µ) from H̃± :=

D(A
1/4
±,red) (2) into its antidual space H̃±

′
by:

< T±(µ)ϕ, ϕ >:= −(ϕ|A
1
2
±,red ϕ)± =

∑
n≥1

ik±n |ϕ±n |2 , ∀ϕ ∈ D(A
1
2
±,red)

where (·|·)± is the scalar product in L2(]0, h[, ρ±∞(z)dz) and ϕ±n := (ϕ|U±n )±.
One sets T (µ) := T−(µ)⊕T+(µ) as a bounded operator from the Hilbert sum

H̃ := H̃−⊕ H̃+ into its antidual space H̃
′
. By setting ‖ϕ‖ 1

2
:=< T (0)ϕ, ϕ >

1
2 ,

(resp. ‖ϕ‖− 1
2

:=< ϕ, T (0)−1ϕ >
1
2 ), one defines a norm on H̃ (resp. on H̃

′
,

the antidual space of H̃) which does not depend on µ. Note that the trace

2note that H̃± does not depend on µ

4



operator γ is continuous and onto from Ho := {v ∈ H1(O) | v|z=h = 0} into H̃
(cf. [9]).

Remark 2.1 Similar definitions hold for A±,red with boundary conditions of
Dirichlet or Neumann type at z = 0, z = h.

2.2 Characterization of R+
A(µ) and ker(A− µ)

It is usual to study R+
A via the operator T (µ). In fact one has

Proposition 2.1 Let µ ∈ ZC, let f ∈ L2(Ω) with support in Ō. Then the
function φ := R+

A(µ)f ∈ D(A)loc ∩ L2,−s(Ω) is determined by:

φ(x, z) =

∣∣∣∣∣ W±(µ)γ±u (|x| −M, z) for ± x > M

u(x, z) for |x| < M .
(4)

where

• γ± is the trace operator from Ho into H̃±

• the operator W±(µ) is defined (for any real µ) on H̃± by:

W±(µ)ϕ(x, z) :=
∑
n≥1

ϕneik
±
n xU±n (z)

• u := φ|O is the unique (3) solution in Ho of the following variational
problem:

∀v ∈ Ho , b(µ;u, v) =

∫
O
fv̄ dx dz (5)

where for any µ ∈ R, b(µ; ·, ·) is the continuous sesquilinear form on
Ho ×Ho:

b(µ;u, v) :=

∫
O
{ ρ∇u∇v − µuv̄ } dx dz − < T (µ)γu, γv > .

The main results of [9] on the point spectrum of A are resumed by

Proposition 2.2 Let µ ∈ σp(A)∩ [S±N± , S
±
N±+1[ and φ ∈ D(A). Then the two

following statements are equivalent:
1) φ does not vanish and Aφ = µφ.
2) With the notations of proposition 2.1, φ is determined by the relations (4),
where u is a non–trivial solution of the homogenous problem (5) (i.e f = 0),
and ϕ := γu satisfies ϕ±n = 0 for 1 ≤ n ≤ N±(µ).

3because µ 6∈ Z

5



If the above conditions 1) and 2) hold, then µ and u are associated eigenele-
ments of the unbounded self–adjoint operator G(µ) on L2(O), characterized
by the following quadratic form Q(µ) on Ho:

Q(µ)(u) :=

∫
O
ρ|∇u|2dx dz− < TR(µ)γu, γu >

where TR(µ) denotes the real part of T (µ): TR(µ) := 1
2
(T (µ) + T (µ)∗), and

T (µ)∗ the adjoint of T (µ).
This method is successful for a homogenous medium (i.e ρ±∞ independent

of z), in order to compute eigenvalues or to estimate NA(µ). Each eigenvalue
λn(µ) of G(µ) is a function of µ whose regularity comes from that of T (·). Par-
ticularly with regard to analytic regularity. The same concerning the regularity
of R+

A(·). This is the interest of the following section.

2.3 Analyticity of the family {T (µ)}µ
The main results of this part are theorems 2.2 and 2.3 which render precise
the analytic continuation of T (·). Finally an explicit representation of the
derivative T ′(µ) is given.

For the sake of simplicity, we assume that A = A+ = A− and we suppress
the indices + and −. In particular, we write H̃ and ρ∞ instead of H̃± and ρ±∞.
Setting Ω+ :=]0,+∞[×]0, h[ and defining γu as the trace of u on Σ := {0}×]0, h[,
note that for any u ∈ H1(Ω+) satisfying γu = 0, the function u can be uniquely
extended to the Hilbert space H1

i defined by

H1
i := L2

i ∩ H1(Ω) , with

L2
i := {u ∈ L2(Ω) | u(x, z) = −u(−x, z) almost everywhere in Ω} .

This continuation will be still denoted by u.
For any fixed ω ∈ C∗ with 0 < arg(ω) < π/2, one defines the following

operator B(ω) with domain D(ω):
B(ω) := B(ω) ≡ Dzρ∞(z)Dz + ω−2ρ∞(z)D2

x and
D(ω) := {u ∈ H1

i | B(ω) ∈ L2
i , (ρ∞Dzu)|z=0 = u|z=h = 0}. Note that if u ∈ H1

i

then γu = 0. If in addition u ∈ D(ω), then B(ω)u ∈ L2
i . The operator B(ω)

is closed and unbounded on L2
i , but not symmetric. Its domain is dense in L2

i ,
and we shall see in the proof of theorem 2.1) that it does not depend on ω :
D(ω) = L2

i ∩D(A).

Theorem 2.1 The resolvent set of B(ω) contains the domains C+ and
R \ S(A).

Proof
2
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Remark 2.2 The above proof shows that ξ2û ∈ L2(Ω). In particular D2
xu and

Dzρ∞Dzu belong to L2(Ω). Thus D(ω) = L2
i ∩D(A) is independent of ω.

Let ϕ ∈ H̃, and µ ∈ R \ S(A). Let us consider the following vector uµ in
H1(Ω+)

uµ(x, z) :=
∑
n≥1

ϕn e
ikn(µ)ωxUn(µ; z) with ϕ :=

∑
n≥1

ϕn(µ)Un(µ; z) .

One easily checks that B(ω)uµ = µuµ in L2(Ω+), and

(ρ∞
∂uµ
∂x

)|Σ = ω T (µ)ϕ (6)

Here T means T+ or T−. Setting vµ := uµ − u0, one has γvµ = 0 and (B(ω)−
µ)vµ = µu0. The functions u0 and vµ being uniquely extended to L2

i , one has:

vµ ∈ D(ω) and vµ = µ (B(ω)− µ)−1u0

which is analytic on C+ according to µ. Since uµ = u0 + vµ and

T (µ)ϕ = T (0)ϕ+ ω−1(ρ∞
∂vµ
∂x

)|Σ ,

one has

Theorem 2.2 The family {T (µ)}µ defined for µ ∈ R admits an analytic con-
tinuation in C+ \ S(A). In addition, T (µ) − T (0) is a relatively compact
perturbation of T (0), since this operates from H̃ into itself (see remark 2.2).

Let us now define for N ≥ 1 the operator TN(µ) ∈ B(H̃, H̃
′
) by:

TN(µ)ϕ := T (µ)ϕ+

{
−ikN(µ)ϕN(µ) ρ∞UN(µ; ·) if µ ≥ SN

θN(µ)ϕN(µ) ρ∞UN(µ; ·) if µ ≤ SN
(7)

By applying the theory of Kato on analytic perturbations (cf. [7]) to the family
of operators Ared, one proves that UN and KN are analytic in µ ∈ R. Thus
TN is analytic on R \ S(A), since KN never vanishes on this set. In addition
there exists a complex domain V containing SN such that (TN) |]SN−1,SN [ can

be analytically extended onto V ∩ C+ \ [SN ,+∞[ as an operator T̃N , similarly

to the function (KN)
1
2 . Because lim θN(ζ) = −ikN(µ), one can check that

lim T̃N(ζ) = TN(µ), as ζ → µ ∈]SN , SN+1[, with ζ ∈ V ∩ C+. For µ ∈ R
consider the following characterization of the adjoint operator T (µ)∗ of T (µ):

T (µ)∗ϕ = −
∑

1≤n≤N

ikn(µ)ϕn ρ∞Un(µ; ·)−
∑
n>N

θn(µ)ϕn ρ∞Un(µ; ·).

7



It admits an analytic continuation to C− := {ζ ∈ C| ζ̄ ∈ C+}, and T (ζ)∗ =

T (ζ̄). It is then not hard to prove that (TN) |]SN−1,SN [ can be uniquely continued

into V ′ ∩ C−, where V ′ is some open complex domain containing SN .
Because lim θN(ζ) = ikN(µ) as ζ → µ ∈]SN , SN+1[ with ζ ∈ V ′ ∩ C−, one

obtains under these contraints: lim T̃N(ζ) = TN(µ).
Choosing V bounded, the operator TN is then analytic in V ∩ V ′ \ {SN} and
bounded in V . Thus it is analytic in the neighbourhood of SN . Let θ ∈ R,
set D(θ) := {ζ ∈ C | arg(ζ − SN) = θ}, choose a > 0 small enough to have
Ba,N ⊂ V ∩ V ′, and set C(θ) := {KN(ζ) | ζ ∈ D(θ) ∩ Ba,N}. As the following
estimate holds uniformly in Ba,N :

KN(ζ) = (SN − ζ)|K ′N(SN)|+ 0(|ζ − SN |2)

whereK ′N(SN) = −‖UN(SN ; .)‖2
0,]0,h[ < 0, C(θ) is then a cut in the setKN(Ba,N)

and there exists an analytic determination of KN(ζ)
1
2 on KN(Ba,N)\C(θ). This

result completes theorem 2.2. Moreover one has

Theorem 2.3 The mapping ζ → T (ζ) defined for ζ ∈ C+ can be analytically
continued into a neighbourhood of the real axis with branching points SN , N ≥
1. This analytic continuation has the following form:

T (ζ) = TN(ζ) +
N∑
n=1

√
ζ − SnT1,n(ζ)

where
√
ζ − Sn is defined by the condition

√
ζ − Sn > 0 for ζ > Sn; the opera-

tors TN(ζ) and T1,n(ζ) (n ≤ N) belong to B(H̃, H̃
′
), and the range of T1,n(ζ) is

one. For any integer n, the function ζ → T1,n is holomorphic in a neighbour-
hood Vn of R and the function ζ → Tn(ζ) is holomorphic in Vn \ [Sn+1,+∞[.

Proof
Let us set TN(µ)ϕ :=

∑
n>N iknϕnρ∞Un(·) for µ ∈ R, N ∈ N. The required

property for TN comes from the properties of T n (defined by (7)) for 1 ≤ n ≤
N . The conclusion is straightforward. 2

Remark 2.3 If µ ∈ [SN , SN+1[, then TN(µ) coincides with the real part TR(µ).

2.4 Calculation of T ′(µ):

For µ, λ ∈ R, one has (B(ω) − µ)(vµ − vλ) = (µ − λ)uλ. The derivative of vλ
at λ = µ ∈ R \ S(A) is then:

qµ :=
dvµ
dµ

= (B(ω)− µ)−1uµ (where uµ ∈ L2
i ). (8)
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This implies

T ′(µ)ϕ = ω−1(ρ∞
∂qµ
∂x

)|Σ . (9)

Let us fix µ in ]SN , SN+1[, and suppress the corresponding indices to simplify:
uµ := u, qµ := q etc. Setting

ũ(x, z) :=
∑
n≥1

ϕn e
iknωxUn(z) (10)

we get γũ = ϕ̄, (B(ω)− µ)ũ = 0. The Green formula∫
Ω+

uũ dx dz =

∫
Ω+

(B(ω)− µ)qũ dx dz = ω−2

∫
Σ

(ρ∞
∂q

∂x
) γũdz

gives

〈T ′(µ)ϕ, ϕ〉 = ω

∫
Ω+

uũ dx dz.

The last value, denoted by J(ϕ), is independent of ω. A short calculation gives

J(ϕ) = −
∑
n,m≥1

ϕnϕm
ikn + ikm

an,m , with an,m :=

∫ h

0

Un(z)Um(z) dz (11)

In particular one has 〈T ′N(µ)ϕ, ϕ〉 = <e(J(ϕ)) which is non–negative for
ϕn(µ) = 0, 1 ≤ n ≤ N . In fact in this case <e(J(ϕ)) is the square norm
in L2(Ω+, dx dz) of the vector

∑
n>N ϕn e

−θnx Un(z).

3 Counting of the point spectrum of A

3.1 Absence of accumulation point of eigenvalues

The following theorem proved by another method in [?] completes the result
in [9]:

Theorem 3.1 The point spectrum of A is discrete.

The proof uses the non–negativity of T (µ) and <e(J(ϕ)) (see section 2).
Proof
2
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3.2 Counting the eigenvalues of A

This part is devoted to the proof of theorem 1.1, which is also valid for Dirichlet
or Neumann boundary conditions. One denotes by NA(µ) the finite number
of eigenvalues of A (counted with their order of multiplicity) less or equal to
µ.
Proof

One proceeds in three steps. It is assumed until the second step that
ρ+∞ = ρ−∞ =: ρ∞. The indices + and − are thus suppressed until we deal
with the general case in the third step.

1. Setting S0 := 0, recall that (cf. section 2) if for some N ≥ 0, µ ∈
[SN , SN+1[ is an eigenvalue of A associated with the eigenmode φ, then u = φ|O
is a non–trivial solution in Ho of the following equations:

∀v ∈ Ho , b(µ;u, v) = 0

and (γu)n(µ) is null for 1 ≤ n ≤ N . Thus (µ, u) is a pair of eigenvalue and
eigenmode for the unbounded self–adjoint operator G(µ) on L2(O), which is
associated with the following quadratic form Q(µ) defined on Ho:

Q(µ)(u) :=

∫
O
ρ|∇u|2dx dz− < TR(µ)γu, γu > +t(µ)(V (µ)γu|γu)

where t(µ) is an arbitrary real function, V (µ) is the finite range operator
defined by V (µ)ϕ :=

∑N
n=1 ϕn(µ)Un(µ; ·), and (·|·) denotes the scalar product

in L2(]0, h[, ρ∞(z)dz) .
Let us consider a subdivision 0 = µ0 < µ1 < · · · < µk · · · of R+ which con-

tains the thresholds. The number of intervals [µk, µk+1] contained in [Sn, Sn+1]
is Rn. On the interval Jk :=]µk, µk+1] ⊂ [SN , SN+1], we choose a non–negative,
differentiable, non–increasing function t(µ) satisfying

(i) Q′(µ) ≤ 0 .

Lemma 3.1 Denoting by NA(J) the number of eigenvalues of A in the set
J ⊂ R+, one has under condition (i):

NA(Jk) ≤ ρ−1
M,minCM µk+1 + max(M, 1) 0(µ

1
2
k+1)

where CM depends only on M and the remainder 0(µ
1
2
k+1) is independent of M .

Proof
2
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Lemma 3.2 If the condition (i) is satisfied and if the sequence {Rn}n is
bounded, then the required estimate holds:

NA(µ) ≤ 1

2
Rρ−1

M,min ρ
− 1

2∞,mCM µ 3/2 + max(M, 1)0(µ) as µ→ +∞.

where R is a bound for {Rn}n and the remainder 0(µ) is independent of M .

Proof
2

2. On condition that we find the adequate subdivision {µk} and function t(µ),
theorem 1.1 is proved.

Lemma 3.3 Let µ ∈ Jk ⊂ [SN , SN+1], µ 6∈ S(A). For any u ∈ H1(O) one
has

−Q′(µ)[u] ≥ ρ−1
∞,M b2 − (C2,N + C1,N t(µ))ab− t′(µ)a2

with the notations:∣∣∣∣∣∣∣∣∣∣∣∣∣

a := (
∑N

n=1 |ϕn|2)
1
2

b := (
∑

m>N
|ϕm|2
θm

)
1
2

ϕ := γu

C1,N := 2 ρ−1
∞,m ρ

3/4
∞,M (SN+1 − SN)−3/4

C2,N := 2
√

2 ρ−1
∞,m ρ

1/4
∞,M (SN+1 − SN)−1/4

(12)

Proof
2

2

Remark 3.1 Some additional calculations show that the numerical constant
1/8 in (3) can be improved. However the estimates (2) on C1,N and C2,N are
optimal. Putting ϕn := 0 if and only if n 6∈ {N,N + 1}, this is easily checked.

Remark 3.2 The use of CM (instead of its present value M/4) generalizes the
results to a non–rectangular domain O. In fact, the case of a non–rectilinear
strip Ω can be treated too (cf. [5] for example).

11



References

[1] T. CHRISTIANSEN. Private communication.

[2] E. CROC and Y. DERMENJIAN. Spectral analysis of a multistratified
acoustic strip, part II: Asymptotic behaviour of acoustic waves in a strati-
fied strip. SIAM J. Math. Anal., 27(6):1631–1652, 1996.

[3] E. CROC and V. IFTIMIE. Wave operators in a multistratified strip.
I.E.O.T, To appear, 1998.

[4] Y. DERMENJIAN, O. POISSON, and B. VAINBERG. Resonances for
multistratified acoustic waveguides. Applicable Analysis, 71:413–440, 1999.

[5] P. DUCLOS, P. EXNER, and P. STOVICEK. Curvature induced reso-
nances in a two–dimensional dirichlet tube. Annales de l’I.H.P, Physique
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