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Abstract

This paper investigates the behavior of a non-linear mechanical model

where a block is driven by an oscillating ground through Coulomb friction, a

linear viscous damper and a linear spring. The governing equation is solved

analytically for different partial configurations: friction only, friction with

viscous damping, friction with a linear restoring force, and for the complete

model. Using dimensionless groups, the analysis of the block motion provides

a comprehensive set of information on the motion regime (stick, stick-slip or

permanent sliding), on the dominant energies or forces, on the resonance

and on the amplification of the ground oscillation by the system. The limit

between the stick-slip regime and the permanent slipping regime is found

either analytically or numerically. It is also shown that there exists a set of

parameters for which the friction force, the viscous dissipative force and the

elastic restoring force are equal.
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1. Introduction

While the mass-spring-dashpot system is extensively presented in physics

textbooks, the addition of a strongly non linear force such as the Coulomb

friction force leads to a more complex problem. Indeed, when an external

energy is brought to the system not only by the spring but also through the

dry friction between two solid surfaces, the friction force is both a damping

force and a driving force.

The coupling of friction and an external vibration is interesting in many

physical and mechanical systems. A vertical pile of rigid blocks is a paradigm

for many old built structures such as greek columns [1], medieval churches [2]

or five-stories wooden pagodas in Japan [3]. When the ground is shaken be-

cause of seismic activity, the friction force between the blocks may not be

sufficient to prevent the collapse of the structure. Much more recently in the

building history, the development of anti seismic buildings [4, 5] is reached by

the use of soft and dissipative links between beams and columns, as sketched

in Fig.1(a): a reinforced elastomer supplies elasticity while a dashpot supplies

viscous dissipation between the pillar and the beam. Another recent system

for seismic-response reduction is the friction pendulum system (FPS) where

a contact element coated with teflon slides on a spherical concave surface (as

sketched on Fig .1b). A simple non-linear mechanical model of the horizontal

restoring force implies a Coulomb friction force as well as an elastic restoring

force [6]. Despite these solutions are already implemented on actual build-

ings, the understanding of the relative importance of the different mechanical

elements is still to establish.

This paper aims to bring a fundamental insight on the energy transfer
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Figure 1: (a) Sketch of a damping link between a column and a beam in a anti seismic

building. (b) Sketch of a simple friction pendulum system. (c) Corresponding mechanical

model studied in this paper.

through a friction-elastic-viscous link between an oscillating ground and a

rigid block. We focus here on the role of the non-linear friction force on the

resonance frequency and on the relative motion between the block and the

ground. The transition between the stick regime, the stick-slip regime and

the permanent slip regime is investigated both theoretically and numerically

with the use of dimensionless groups.

2. The governing equation and analysis method

2.1. The model

The mechanical model of the pillar-beam link is presented on Fig. 1(c).

We consider a single block of mass M linked to a horizontally shaking ground

through a friction-viscous-elastic set of forces. We note X the position of

the block relatively to the ground, Ẋ its velocity, K the spring stiffness (in

N·m−1), γ the viscous dissipation constant (in kg·s−1), and µ(Ẋ) the friction

law. The ground has a monochromatic horizontal motion with an amplitude
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static friction coefficient kinematic friction coefficient

friction model 1 µs µk = µs

friction model 2 µs µk = 0.7µs

Table 1: Description of the two friction models used in this study.

A0, a frequency Ω/2π, and an initial phase ϕ. This system is slightly different

than the model studied by Hundal [7], López [8] or Chatterjee [9]: in this

present model, the spring and dashpot is a link between the mass and the

oscillating ground and not between the mass and a non-moving wall. Taking

the oscillating ground as a reference frame, the relative motion equation of

the block is

MẌ = −µ(Ẋ)Mg
Ẋ

|Ẋ|
−KX − γẊ −MA0Ω

2 cos(ΩT + ϕ). (1)

In this study, two Coulomb friction models µ(Ẋ) are considered. The first

and simplest model is the Coulomb friction model with a unique friction

coefficient µs. The second model introduces a kinematic friction coefficient

µk when the block slides on the ground, usually lower than the static friction

coefficient µs. The table 1 summarizes the values for models 1 and 2. Many

other friction models exist (for example see the review [10]) but since they

need more than two parameters, they we prefer simple Coulomb models to

highlight the role of the friction force.

Introducing the following dimensionless variables and groups

x =
X

A
, ẋ =

Ẋ√
A0g

, k =
K

M

A0

g
, η =

γ

M

√
A0

g
, α =

A0Ω
2

µsg
, ω =

√
αµs
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the motion equation (1) becomes

ẍ+ µ(ẋ)
ẋ

|ẋ|
+ kx+ ηẋ+ ω2 cos (ωt+ ϕ) = 0. (2)

In this non-dimensional model, the governing parameter is the reduced accel-

eration α, and the non-dimensional frequency is ω =
√
αµs, which depends

on the static friction coefficient. In addition, we assume the following initial

conditions : x(0) = 0, ẋ(0) = 0 and we set ϕ = π/2 to ensure an initial zero

acceleration of the ground.

2.2. Analysis method and motion characteristics

Despite the non-linear behavior of the friction force, the motion equation

(2) is piecewise linear, and the block either sticks or slides on the ground.

With the given initial conditions (see above), the block starts to slide at

a time t0 > 0 when the inertia force overcomes the static friction force.

An analytical solution of Eq. (2) may be found, and since two integration

constants arise, these constants are solved using the initial conditions x(t0)

and ẋ(t0) = 0. The block then stops at a time t1 > t0 when its velocity is zero

again ẋ(t1) = 0. This time t1 is numerically solved using a Newton method.

At t = t1 the block either sticks to the ground if the sum of the inertia and

elastic forces is lower than the static friction force, or slides again with a

velocity sign change if the sum of the inertia and elastic forces is greater

than the static friction force. The first case leads to a stick-slip motion and

the block sticks until time t2 > t1 where the start condition is reached again

i.e. when the sum of the inertia force and the elastic force is greater than the

static friction force. The second case leads to a permanent slipping motion

and the next start time is simply t2 = t1, with t2− t1 = π/ω, the half-period
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of oscillation of the ground. The sequel of the motion is calculated with the

same method as previously with a new start time t2 instead of t0 for the

computation of the integration constants, and subsequently the analytical

solution of Eq. (2) is given through a list of {ti} times, where even i are

start indexes, and odd i are stop indexes. An illustration of the ti times is

given on Fig. 2(a) for a stick-slip motion. We checked our analytical method

with a numerical solving of Eq. (2) using an implicite numerical scheme with

a10−3 time-step. Both methods were implemented using Python packages

and codes.

The block behavior is characterized with different measurable quantities.

First, we measure the the block amplitude A which is half of the peak-to-

peak block displacement x. We also introduce the time-ratio ζ which is the

time when the block slips on the ground compared to the total time:

ζ =
∆tslip

∆tslip + ∆tstick
=

(ti+3 − ti+2) + (ti+1 − ti)
ti+4 − ti

(3)

where i is the index of a start time. A permanent stick regime is thus observed

for ζ = 0 (ST), a stick and slip motion for 0 < ζ < 1 (SS) and a permanent

slip regime is observed for ζ = 1 (SL). A last relevant quantity is the root

mean squared velocity defined by

ẋrms =

√
1

τ

∫ t+τ

t

ẋ2(t′)dt′. (4)

2.3. Forces and energies

The relative importance of the three forces in the system can be assessed

through non dimensional groups. Assuming that a steady state is estab-

lished with a bounded oscillation amplitude, a generic solution is x(t) =
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A(µs, µk, k, η)F (ωt) where F is a periodic bounded function with |max(F )| =

1. We therefore introduce

ρev =
k2

η2αµs
, ρvf =

η2A2αµs
µ2
k

, ρef =
kA

µk
(5)

which are the ratio of the elastic force to the viscous force, the ratio of the

viscous force to the friction force, and the ratio of the elastic force to the

friction force respectively.

By multiplying Eq. (2) with the relative velocity ẋ and integrating over

time, the energy conservation equation is∫ t

0

ẍẋdt′+

∫ t

0

ẋxdt′+µk

∫ t

0

|ẋ|dt′+η
∫ t

0

ẋ2dt′+αµs

∫ t

0

ẋ cos (ωt′ + ϕ) dt′ = 0

(6)

which may be written as

ek + ep + ef + ev = −wi (7)

where ec is the kinetic energy, ep is the potential energy, ef is the friction

dissipated energy, ev is the viscous dissipation energy, and wi is the work of

the inertia force.

If the time integration is taken over one cycle (between t and t + τ ,

τ = 2π/ω), there is no variation of the kinetic and potential energies because

of the periodicity of the x(t) and ẋ(t) functions, and the energy conservation

equation is reduced to

∆ef + ∆ev + ∆wi = 0 (8)

The first term ∆ef is the energy dissipated by Coulomb friction during slid-

ing. Over one cycle of oscillation, it is equivalent to

∆ef = µk

∫ t+τ

t

|ẋ(t′)|dt′ = µk

∫ t+τ

t

|dx| = 4µkA (9)
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configuration friction viscous damping elasticity damping

configuration 1 •

configuration 2 • •

configuration 3 • •

configuration 4a • • • weak

configuration 4b • • • critical

configuration 4c • • • strong

Table 2: Configurations studied in this paper.

where A is the amplitude of the block motion. The second term is the energy

dissipated by viscous dissipation over one cycle:

∆ev = η

∫ t+τ

t

ẋ2(t′)dt′ = ητ(ẋrms)
2. (10)

Finally, the the third term of Eq. (8) is the work of the inertia force

∆wi = ω2

∫ t+τ

t

ẋ(t′) cos (ωt′ + ϕ) dt′ (11)

which is the energy input per cycle of ground oscillation.

In this paper, we investigate separately the role of the friction force, of

the elastic restoring force and of the viscous dissipation force, and we seek to

highlight the effects of these forces on the amplitude A, and on the time-ratio

ζ depicting the sliding regimes. The different configurations are summarized

in table 2. All the results presented in this paper correspond to a permanent

periodic motion, i.e. when the transient motion has vanished.
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3. Results for configurations 1-3

In this section we study three partial models where only the friction force

applies (configuration 1), the friction force and the viscous dissipative force

are present (configuration 2) and where the friction force is coupled with the

elastic restoring force (configuration 3).

3.1. Configuration 1: friction only

When the friction is the only applied force (k = 0, η = 0), it plays the

ambiguous role of the driving force and the damping force. The Eq. (2) then

reduces to

ẍ = −µ(ẋ)
ẋ

|ẋ|
− ω2 cos (ωt+ ϕ) . (12)

Such a mechanical model is known to present two acceleration thresholds.

The non-dimensional acceleration threshold between the sticking regime and

the stick-slip regime is simply αSS = 1. The criterion α > αSL for the

permanent slipping regime may be calculated as follows. Naming

t0 = ω−1[arccos(−µs/ω2)− ϕ] (13)

the time when the block starts to slide and tf the time when the block stops

sliding, the sliding duration tf − t0 is governed by

µk(tf − t0) + ω [sin(ωtf + ϕ)− sin(ωt0 + ϕ)] = 0. (14)

Since the block is sliding at any time when tf − t0 = π/ω (half of a period),

this gives a criteria on the vibration parameter

αSL =

√
1 +

π2

4

(
µk
µs

)2

. (15)
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With a unique friction coefficient (µs = µk), this model has been proposed as

early as the 1930’s by Den Haartog [11], then by Alspaugh [12], and extended

by Westermo & Udwadia [13] with αSL =
√

1 + π2/4 ≈ 1.86 (see López [8]

or Benedetti et al. [14] for the analytical calculation of αSL).

During the sliding, the solution of Eq. (12) is

x(t) = c1 + c2t−
1

2
µkt

2 + cos(ωt+ ϕ) = 0 (16)

where the constants c1 and c2 are the solutions of 1 t0

0 1

 c1

c2

 =

 x0 + 1
2
µkt

2
0 − cos(ωt0 + ϕ)

ẋ0 + µkt0 + ω sin(ωt0 + ϕ)

 (17)

An example of the block trajectory and its corresponding velocity is shown

on Fig. 2a, showing a typical stick and slip motion for α = 1.2. It must be

noted that even with a single friction coefficient (red curves), the stick-slip

regime exists. This model is indeed different from the traditional mass-

on-belt model where the stick-slip phenomenon occurs only for a kinetic

friction coefficient different (and lower) than µs. With the friction model

2 (black curves), the block shows a larger displacement amplitude and a

larger peak velocity (Fig. 2b) due to the lower friction coefficient during the

sliding motion. We show the influence of α on ζ and A on Fig. 2(e) and (f)

respectively. With this friction-only model, the block amplitude A increases

with the vibration parameter α from the unity threshold and tends towards

unity for a large acceleration parameter α (Fig. 2f), whatever the friction

model. There is no obvious discontinuity on the amplitude curves when the

motion regime changes from stick-slip (SS) to permanent slip (SL). For a
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Figure 2: Configuration 1. (a) position and (b) velocity for α = 1.2, (c) position and

(d) velocity for α = 2.0. The red curves are computed for the friction model 1, and the

black curves are computed for the friction model 2. Full symbols indicates a stop of the

motion whereas empty symbols indicates a start of the motion. For this example the

static friction coefficient is µs = 0.25. (e) solid line: sliding time-ratio ζ increasing with

the acceleration parameter α, for friction model 1 (red curve) and model 2 (black curve).

Dashed line: characteristic velocity ẋrms. (f) the block amplitude A varying with the α

vibration parameter for the friction model 1 (red curve) and the friction model 2 (black

curve). The stars indicates the threshold between the stick-slip regime and the permanent

slip regime.
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larger acceleration α > αSL, the block slides continuously (Fig. 2c,d), the

direction change is indicated by a slope discontinuity on the velocity curve.

3.2. Configuration 2: friction and viscous dissipation

When the viscous dissipation term is non-zero, without the elastic restor-

ing force (k = 0), the governing equation is

ẍ+ µ(ẋ)
ẋ

|ẋ|
+ ηẋ+ ω2 cos (ωt+ ϕ) = 0. (18)

with an explicit solution for t > t0 (when sliding)

x(t) = c1−
c2
η

e−ηt− µk
ηω

(ωt+ϕ) +
1

η2 + ω2

[
ω2 cos(ωt+ ϕ)− ηω sin(ωt+ ϕ)

]
(19)

where the constants are the solutions of 1 − 1
η
e−ηt0

0 e−ηt0

 c1

c2


=

 x0 + µk
ηω

(ωt0 + ϕ)− 1
η2+ω2 [ω2 cos(ωt0 + ϕ)− ηω sin(ωt0 + ϕ)]

ẋ0 + µk
η

+ ω2

η2+ω2 [ω sin(ωt0 + ϕ) + η cos(ωt0 + ϕ)]

 (20)

We show on Figs. 3(a,b) the αSL(η) curves for both friction models. For a

weak dissipation parameter (η 6 2), these curves may be well approximated

by

αSL(η) =

[
1 + (−0.48

µs
µk

+ 1.18)η

]√
1 +

π2

4

(
µk
µs

)2

(21)

with a linear increase of the threshold with the viscous parameter η. This

expression is plotted as blue dotted lines in Figs. 3(a,b).

Compared to the configuration 1, adding a viscous dissipative force helps

to reduce the block amplitude, as shown on Fig. 3(c), computed for α = 2.5.
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Figure 3: Configuration 2. (a) the permanent slip threshold αSL (bold red line) and the

ρvf = 1 line (dashed red line) as a function of the viscous parameter η for friction model 1.

(b) the permanent slip threshold αSL (bold black line) and the ρvf = 1 line (dashed black

line) as a function of the viscous parameter η for friction model 2. The blue dotted lines

in (a,b) represent the expression (21) for both friction models. (c) Block amplitude vs η

for friction model 1 (red) and friction model 2 (black). (d) The variation of the energy

dissipated by the dashpot during one vibration cycle. (e) The ratio ∆ev/∆ef as a function

of η. The stars indicate ∆ev = ∆ef . (f) The mean rms velocity as a function of η. Plots

(c)-(f) are computed with α = 2.5.
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As a consequence, the energy dissipated by friction ∆ef is also decreasing

with an increasing viscous parameter η. The energy dissipated by the dashpot

∆ev increases for low values of η, reaches a maximum, then decreases for

increasing η (Fig 3d). And the ratio ∆ev/∆ef as a function of η shows

that there exists a η∗(α) value which separates two regimes of dissipation:

a viscous regime for η > η∗, and a friction regime for η < η∗ (Fig 3e).

This threshold value depends on α and the limit curve separating these two

dissipation regimes is plotted as a dotted line on Figs 3(a,b). The viscous

parameter η has a strong effect on the characteristic velocity ẋrms (Fig. 3f),

very similar to the amplitude.

3.3. Configuration 3: friction + spring

When an elastic restoring force is coupled with the friction force, the

motion equation is

ẍ+ µ(ẋ)
ẋ

|ẋ|
+ kx+ ω2 cos (ωt+ ϕ) = 0. (22)

and its solution is

x(t) = c1 cos(
√
kt) + c2 sin(

√
kt)− µk

k
− ω2

k − ω2
cos(ωt+ ϕ) (23)

where the constants c1 and c2 are the solutions of cos(
√
kt0) sin(

√
kt0)

−
√
k sin(

√
kt0)

√
k cos(

√
kt0)

 c1

c2


=

 x0 + µk
k

+ ω2

k2−ω2 cos(ωt0 + ϕ)

ẋ0 − ω3

k2−ω2 sin(ωt0 + ϕ)

 (24)

In this configuration, the friction force is the only dissipation force when

sliding, while the static friction force and the elastic force are driving the
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block and thus are injecting energy into the system. Since the friction dis-

sipation force is finite, the block may experience a long transient before a

steady oscillating state is reached.

Some typical behaviors are shown on figure 4 for two different accelera-

tions, α = 1.2 (a,b,c) and α = 3 (d,e,f), and for the friction model 1. A first

obvious effect of the elastic restoring force is to put the block back to a zero

mean position, even if the block is displaced at the start of the motion. While

in the SS regime the transient is short and a steady-state is reached after a

few cycles, the transient depends on the stiffness k value in the permanent

slip regime. For k < kr, the transient is short (Fig. 4d), while for k > kr

the transient may last more than 10 oscillation cycles (Fig. 4f). Here the

threshold kr value is a resonant stiffness simply expressed by

kr, SL = αµs, (25)

in the SL regime, where the oscillation amplitude increases indefinitely (Fig.

4e).

Despite an analytical solution for this configuration, it would be cum-

bersome to derive an analytical expression for the permanent slip vibration

parameter αSL as a function of k. A numerical solution is thus proposed here.

The figure 5(a,b) summarize the motion regimes, showing the αSL(k) curves

for the two friction models in the (k, α) space. The curve separating the SS

and the SL regimes has a non trivial shape. For 4.1 < k < 5.3 with friction

model 1 or 3.7 < k < 5.4 with friction model 2, an increase of α from 1 causes

the system to have a SS/SL/SS/SL sequence. Moreover, for a low value of

k, with the friction model 1 (Fig. 5a), the permanent slip parameter αSL de-

creases to a minimum then increases with a nearly constant slope. With the

15



friction model 2, the αSL(k) curves also decreases but intercepts the α = 1

permanent stick boundary. This shows that for 0.18 < k/µs < 0.41 the block

can not show a stick-slip motion. The limit ρef = 1 is drawn as a magenta

curve (Fig. 5a) and shows that the elastic force is dominant except for a very

low value of the elastic parameter (k < 0.2) or for a low acceleration. For the

friction model 2, the same trend is observed for the elastic parameter (the

friction force is dominant for k < 0.15), whatever the acceleration parameter.

Without a strong dissipation force, the amplitude diverges at the reso-

nance. The figures 5 (c,d) show the curves A(α) for both friction models and

for two values of the stiffness : k = 0.5 and k = 1. These curves illustrate

the non trivial coupling between the elastic and the friction forces. Without

a friction force, the simple undamped and forced harmonic oscillator shows

a resonance curve made of two monotonic parts separated by a resonance

singularity. For this system, the friction induces sub-harmonic and super-

harmonic resonances, as shown by the amplitude local peaks of the A(α)

curve.

The effect of the k normalized spring stiffness on the amplitude is shown

on Fig. 5(e) for α = 1.2 (solid lines) and α = 3.0 (dashed lines). Results

for both friction models are presented. For α = 1.2 and with µs = µk, the

system is in the SL regime, and the A(k) curve exhibits a finite maximum

for a pseudo-resonance kr value. The other curves exhibit a classical reso-

nance phenomena, with a continuous increase of the block amplitude with

time. Indeed, at the resonance the amplitude Ar increases linearly with time

following

Ar(t) = βt (26)
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Figure 4: Configuration 3. examples of the motion of the block x(t) in the stick-slip regime

(a, b, c: α = 1.2) and in the permanent slip regime (d,e,f: α = 3). Curves are computed

for the friction model 1. The full symbols indicates a stop of the motion whereas empty

symbols indicates a start of the motion.
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Figure 5: Configuration 3. Motion regimes in the (k, α) space for friction model 1 (a)

and friction model 2 (b). (c) Amplitude A(α) for k = 0.5 (d) Amplitude A(α) for k = 1

.The blue curves indicate the resonance condition in the SL regime, and the green curve

indicate the pseudo-resonance condition in the SS regime. (e) The block amplitude as a

function of the stiffness k for α = 1.2 (solid lines) and α = 3 (dashed lines) for friction

model 1 (red) and friction model 2 (black). (f) The amplitude growth factor β at the

resonance.
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with β as a growth coefficient depending mainly on k and weakly on the

friction model (Fig. 5f).

This configuration is relevant for the friction pendulum system, where

the stiffness is KFPS = Mg/R (M is here the mass of the pillar and R is the

curvature radius of the FPS, see Fig. 1b). In our model, the dimensionless

stiffness is then k = A0/R, the ratio of the horizontal ground displacement

on the curvature radius. In an actual FPS, the curvature is of the order

of one meter, and a horizontal ground displacement is typically 1 to 10 cm

during an earthquake. This leads to a 10−2 to 10−1 value for k.

4. Results for the complete model

We now consider the solutions of Eq. (2) without neglecting any force.

For a simple forced and damped oscillator, it is known that three motion

behaviors exist, depending on the respective values of the damping parameter

η and the spring stiffness k. With our symbols, the critical damping is

expressed by

η2 − 4k = 0 (27)

and we provide in the appendix the explicit solutions of Eq. (2) for the

underdamped behavior (η2 − 4k < 0), the critically damped oscillator (η2 −

4k = 0) and the overdamped behavior (η2 − 4k > 0).

A first result is a mapping of the block behavior in the (k, α) plane for

η = 0.5 (Fig. 6). For α > 1, the relative motion is non zero and the

boundary between the stick-slip and the permanent slip regime is drawn

as a red curve. We also present as a light gray area the space where the

block amplitude is larger than unity, i.e. when the block motion is amplified
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compared to the ground motion. This area is roughly centered around the

undamped resonance line (dashed black line). The limit between the under-

damped and the over-damped behavior is drawn as a vertical blue dashed

line. By comparing the dimensionless forces (see Eqs. 5), we plot ρef = 1

(magenta), ρvf = 1 (orange) and ρev = 1 (green). Thus, there exists an

area where the friction force is dominant (light blue area), an area where

the viscous dissipation force is dominant (light red area) and finally an area

where the elastic restoring force is dominant (dashed area). It is interesting

to remark that these three areas connect as a triple point (black circle) where

the three forces are of equal magnitude. This occurs for an acceleration α̂

and a stiffness k̂ = η
√
α̂µs.

As usual, the resonance is reached when then block amplitude reaches

a maximum at a resonance acceleration αr. The blue curve represents the

resonance line (kr, αr) where the block oscillation is maximum. For a large

k value, this line is asymptotic to α = k/µs, drawn as a dashed black line,

the resonance condition without viscous dissipation.

Since this mapping depends on η, we present on Fig. 7 the behavior of

the system for friction model 1 for different values of η. Above a weak value

of η, the αSL(k) curve becomes single-valued (see Fig. 7b for η = 0.05). With

an increase of η, the αSL threshold increases, following the same trend as for

the configuration 2.

An increase of the viscous parameter implies obviously an extension of the

viscous-dominated area (light red area), as shown on Fig. 7(e) for η = 1. In

this configuration, the triple point lies in the stick-slip domain and the A > 1

area as well as the resonance line does not lie in the (0 < k < 6, 0 < α < 6)
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Figure 6: Configuration 4. Map of the block behavior in the (k, α) plane for η = 0.5.

Friction model 1. The light gray area sketches the condition where A > 1. The friction

force is dominant in the light blue area, the viscous dissipation force is dominant in the

light red area, and the the hashed area represents the dominance of the elastic force. Also

plotted is the triple point where the three forces are of equal magnitude.
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frame.

This mapping helps to characterize the block motion for any set of me-

chanical parameters {α, k, η, µs, µk}. In particular, a good estimate of these

parameters for an actual system may help to predict the occurence of a stick-

slip behavior or of a permanent slip behavior. Indeed, the stick-slip motion

presents periodic singularities for the acceleration and thus produces strong

force fluctuations. And this model also helps to predict the range of param-

eters for which the amplitude of the block is A > 1, thus when the system

amplifies the ground motion.

While the results presented in Figures 6 and 7 were computed for the

friction model 1, the block amplitude (Fig. 8a, b) is weakly affected by the

choice of the friction model, and for a weak dissipation (η = 0.01), the A(α)

curve shows the same fluctuations as in configuration 3, above and below the

resonant acceleration αr. The magnitude of these sub-harmonic and super-

harmonic resonances increases with the stiffness value (Fig. 8a for k = 1

and Fig. 8b for k = 2). The influence of the viscous dissipation is clearly

shown on Fig. 8c (k = 1) or Fig. 8d (k = 2), where the η parameter is varied

from 0.01 to 0.75. When the dissipation increases, the A(α) fluctuations are

damped, and for η > 0.1 they even are undistinguishable.

5. Conclusions

We proposed an analytical and numerical study of the motion of a block

linked by a spring, a dashpot and a friction contact to a rigid oscillating

ground. For each configuration, we provided the solution of the motion

equation, then analyzed these solutions by computing the slipping time ratio,
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and comparing the energies and forces for a continuous range of parameters.

From this work, the main conclusions are:

• the slipping limit has a non-trivial expression as soon as k is non zero

• the friction model µ(ẋ) has a weak effect on the behavior and on the

block amplitude

• sub-harmonic and super-harmonic resonances due to the coupling of

the friction and the stiffness

• for a given set of parameters {α, k, η, µs, µk}, this model and its solving

method provide a fast answer on the block behavior regarding the stick-

slip or permanent slipping regime, its amplitude and the dominant force

in play.

With this comprehensive knowledge of the dominant energies and forces,

and of the motion regimes (stick-slip or slipping regimes), this simple model

of a single block may be extended to a vertical pile of identical or different

blocks.

6. Appendix: analytical solutions for configuration 4

6.1. Configuration 4a: underdamping

When η2 − 4k < 0, we introduce

ωk =
1

2

√
4k − η2, D = (k − ω2)2 + η2ω2 (28)
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so that the solution of the motion equation (2) writes

x(t) = e−
η
2
t [c1 cos(ωkt) + c2 sin(ωkt)]−

µk
k

− ω2

D

[
(k − ω2) cos(ωt+ ϕ) + ηω sin(ωt+ ϕ)

]
(29)

where c1 and c2 are the solutions of

e−
η
2
t0

 a11 a22

a21 a22

 c1

c2


=

 x0 + µk
k

+ ω2

D
[(k − ω2) cos(ωt0 + ϕ) + ηω sin(ωt0 + ϕ)]

ẋ0 − ω3

D
[(k − ω2) sin(ωt0 + ϕ)− ηω cos(ωt0 + ϕ)]

 (30)

with

a11 = ωk sin(ωkt0) +
η

2
cos(ωkt0) (31)

a12 = ωk cos(ωkt0)−
η

2
sin(ωkt0) (32)

a21 = cos(ωkt0) (33)

a22 = sin(ωkt0) (34)

6.2. Configuration 4b: critical damping

When η2 − 4k = 0, the solution of Eq. (2) is

x(t) = (c1 + c2t)e
−
√
kt − µk

k

− ω2

(k + ω2)2

[
(k − ω2) cos(ωt+ ϕ) + 2

√
kω sin(ωt+ ϕ)

]
(35)
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when the block slips. The constants c1 and c2 are to be determined with the

initial conditions.

e−
√
kt0

 1 t0

−
√
k 1−

√
kt0

 c1

c2


=

 x0 + µk
k

+ ω2

(k+ω2)2

[
(k − ω2) cos(ωt0 + ϕ) + 2

√
kω sin(ωt0 + ϕ)

]
ẋ0 + ω3

(k+ω2)2

[
−(k − ω2) sin(ωt0 + ϕ) + 2

√
kω cos(ωt0 + ϕ)

]

(36)

6.3. Configuration 4c: overdamping

The solution x(t) for Eq. (2) can be analytically derived during the slip-

ping motion for η2 − 4k > 0:

x(t) = c1e
− s1

2
t + c2e

− s2
2
t − µk

k
− ω2

D

[
(k − ω2) cos(ωt+ ϕ) + ηω sin(ωt+ ϕ)

]
(37)

with

s1 = η +
√
η2 − 4k, s2 = η −

√
η2 − 4k. (38)

The constants c1 and c2 are the solutions of e−
s1
2
t0 e−

s2
2
t0

−1
2
s1e
− s1

2
t0 −1

2
s2e
− s2

2
t0

 c1

c2


=

 x0 + µk
k

+ ω2

D
[(k − ω2) cos(ωt0 + ϕ) + ηω sin(ωt0 + ϕ)]

ẋ0 − ω3

D
[(k − ω2) sin(ωt0 + ϕ)− ηω cos(ωt0 + ϕ)]

 (39)

References

[1] L. Papaloizou , P. Komodromos Planar investigation of the seismic re-

sponse of ancient columns and colonnades with epistyles using a custom-

27



made software. Soil Dynamics and earthquake engineering 29 (2009)

1437–1454.

[2] G. Lancioni, S. Lenci, Q. Piattoni, E. Quagliarini. Dynamics and failure

mechanisms of ancient masonry churches subjected to seismic actions by

using the NSCD method: The case of the medieval church of S. Maria

in Portuno. Engineering Structures 56 (2013) 1527–1546.

[3] K. Nakahara, T. Hisatoku, T. Nagase, Y. Takahashi. Earthquake re-

sponse of ancient five-story pagoda structure of Horyu-Ji temple in

Japan. 12WCEE (2000).

[4] C. Coladant. Seismic isolation of nuclear power plants - EDF’s philoso-

phy. Nuclear Engineering and Design 127 (1991) 243–251.

[5] M.B. Syed, L. Patisson, M. Curtido, B. Slee, S. Diaz. The challenging

requirements of the ITER anti seismic bearings. Nuclear Engineering

and Design 269 (2014) 212–216.

[6] L. Landi, G. Grazi, P.P. Diotallevi. Comparison of different models for

friction pendulum isolators in structures subjected to horizontal and

vertical ground motions. Soil Dynamics and Earthquake Engineering 81

(2016) 75–83.

[7] M.S. Hundal. Response of a base excited system with Coulomb and

viscous friction. J. Sound and Vib. 64(3) 371–378 (1979).
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