A H2/O2 enzymatic fuel cell as a sustainable power for a wireless device
Résumé
We report the first example of an H2/O2 enzymatic fuel cell able to power a wireless transmission system. Oxygen-tolerant hydrogenase from Aquifex aeolicus and bilirubin oxidase from Myrothecium verrucaria were incorporated from diluted solutions in carbon felt-based material, allowing mediatorless catalytic currents more than 1 mA to be reached. The enzymatic fuel cell open circuit voltage was 1.12 V, and short circuit current was 767 μA. It delivered a maximum power of 410 μW, sufficient to power the electronic device that measured in real time the anodic/cathodic compartments and room temperatures, the voltage of the capacitor and voltage output of the enzymatic fuel cell itself. Notably, data were sent every 25 s during 7 hours of continuous operation which constitute the highest performances ever reported for a realistic environmental application fully powered with an enzymatic fuel cell.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|