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The stability of a fluidized bed is investigated with respect to spatially growing disturbances. A
general linearized model is derived from the theories of Anderson and Jackson and of Batchelor. The
absolute and convective nature of the instability is analyzed using the mathematical framework of
the open flow linear stability theory. The results of the analysis provide the domains of absolute and
convective instabilities. © 1994 American Institute of Physics.

I. INTRODUCTION

A fluidized bed consists of a suspension of solid particles
supported against gravity by an upward flowing fluid.! A
fluidized bed can be considered as an ensemble of sediment-
ing particles referred to different reference frames and hence
as a stationary sedimenting suspension. Under some condi-
tions, stable expansions have been found experimentally
over a finite interval of flow rates beyond the minimum flow
rate for fluidization.>® However, the ideal, uniform, and ho-
mogeneous state of fluidization is rarely realized in practice.
Instead, fluidized beds exhibit different regimes of complex
motion depending upon the flow rate of the injected fluid.
Gas-fluidized beds are usually very unstable and rapidly at-
tain a turbulent regime traversed by rising bubbles, i.e., re-
gions essentially devoid of particles which rise through the
bed when the flow rate is increased (see, for instance, the
reviews of Clift and Grace* and Davidson et al.”). Liquid-
fluidized beds present voidage instability waves.®® This first
wavy instability destabilizes and leads to secondary instabili-
ties such as transversal structures when the flow rate is
increased.”'? Further increase of the flow rate leads to turbu-
lent and bubbly regimes.®

Although fluidized beds have been studied and practi-
cally used for a long time, the underlying physical mecha-
nisms are still poorly understood. One of the main difficul-
ties lies in the complete understanding of particle—particle
and particle—fluid interactions. There is still no general con-
sensus regarding the governing dynamical equations of flu-
idized beds. Schematically, two different approaches have
been developed. Over the past two decades, two-phase con-
tinuum modeling has been applied to this problem (see, for
instance, the reviews of Jackson'' and Homsylz). Most of
these models considered the linearized hydrodynamic stabil-
ity of an uniform and infinite fluidized bed and the hydrody-
namics of an isolated idealized bubble. More recently, a new
theory of the instability of a uniform, infinite, and one-
dimensional fluidized bed was proposed by Batchelor.'* The
governing equations have been established from a physical
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picture of the system as a suspension of particles interacting
with a flowing fluid.

Since the occurrence of bubbles is an important and
practical feature of fluidized beds, numerous studies have
been devoted to their investigation. However, the origin of
the bubbly regime is still unknown. Experimental observa-
tions suggest that bubble formation is linked to the secondary
instabilities of the voidage instability waves.” A recent con-
jecture is that bubbles originate from a gravitational over-
turning instability caused by the first wavy disturb-
ance. %13 [t ig, therefore, relevant to investigate the differ-
ent instabilities of a fluidized bed and the transition toward
the turbulent and bubbly regimes. The investigation of the
first wavy instability, which is an interesting problem in it-
self, is the first step toward the understanding of bubble for-
mation.

Experimental studies of the first wavy instability have
been conducted in liquid-fluidized beds. The measured dis-
turbances have been shown to grow exponentially upwards
along the bed and eventually to lead to a saturated finite
amplitude.>” Although a dominant instability mode was
clearly evidenced, the power spectrum of the voidage fluc-
tuations was found to be very broad. These experimental
findings suggest that the first wavy instability is convective
in nature and that the fluidized bed behaves as a spatial noise
amplifier where any small perturbation created at the en-
trance of the bed is amplified along it. Fluidized beds belong,
indeed, to the open flow class where fluid elements continu-
ously enter and leave the experimental system. Therefore, the
theory of instability waves in fluidized beds should take into
account the open flow features, i.e., the spatial origin of the
flow and the mean advection.

Temporally growing disturbances have only been con-
sidered in theoretical work.""~'*'3-2? This temporal descrip-
tion has provided valuable quantitative information such as
the stability condition, the dominant wavelength, and the
temporal growth rate. However, when theoretical predictions
were compared with experimental results, the spatial growth
rate was approximated as the temporal growth rate multi-
plied by the mean velocity.®” Advances in open flow stability

© 1994 American Institute of Physics



theory should provide an accurate description of the spatial
growth of the wave instability (see, for instance, the reviews
of Briggs,” Bers,” and Huerre and Monkewitz>). It should
also yield information on the convective or absolute nature
of the instability.

The specific purpose of this paper .is to investigate the
stability of a fluidized bed with respect to spatially growing
disturbances and to look for conditions under which a tran-
sition between convective and absolute instabilities can be
identified. To accomplish this goal, we consider in Sec. IT a
general linearized model derived from the theories of Ander-
son and Jackson,'™?® and of Batchelor."® Linear stability is
investigated in Sec. III using the mathematical framework of
the open flow theory. The marginal stability condition as well
as the convective/absolute instability transition condition are
determined. The conditions for convective and absolute in-
stabilities are put into the physical parameter framework in
Sec. IV and conclusions are drawn in Sec. V.

Il. THEORETICAL MODEL

In this section, we consider the general form of the lin-
earized equation for small perturbations of the particle vol-
ume fraction. The fluidized bed is assumed to be one-
dimensional and unbounded. The fluidizing fluid may be
either a liquid or a gas, with a density p; and with a viscosity
Mg. The solid particles are supposed to be non-Brownian
monodisperse spheres, with diameter d, and density p, .

Two-phase flow modeling uses equations of motion
based on a continuum picture of the suspension. The usual
procedure is to write the continuity and momentum equa-
tions for each of the two phases of the system, the particles,
and the fluid. At this stage, these equations formally contain
a force representing the interaction between the two phases
and the stress tensors associated with the fluid and particle
phases. In order to close the equations, it is necessary to
postulate expressions for these terms. Since this can only be
done on a heuristic basis, it is here that the greatest differ-
ences arise among equations proposed in the literature. For
the purpose of the present work, the model of Anderson and
Jackson'"'®?¢ has been chosen. In this model, the force ex-
erted by the fluid on the particles contains two terms. The
first term is a drag force depending on the particle volume
fraction ¢ and the relative velocity of the two phases. The
second term represents virtual mass effects and is propor-
tional to the relative acceleration of the phases. The virtual
mass coefficient, whose value would be 1/2 for an isolated
sphere, is a function of the particle volume fraction C(¢).
The stress tensors associated with the fluid and the particle
phases are independent and both have the Newtonian fluid
form. Although the pressure, the bulk, and shear viscosities
have a clear meaning for the fluid phase, the pressure p* and
the bulk and shear viscosities A\* and g, respectively, for the
particle phase cannot be easily estimated or measured. Nev-
ertheless, these governing equations have been used to write
a linearized equation for the small perturbation of the particle
volume fraction ¢; [Eq. (19) in Anderson and Jackson'®].

Batchelor’s approach is rather different.”® He considers
the general form of the equations that govern the mean mo-
tion of the particles in the vertical direction. He assumes that
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the particles and fluid are incompressible and that there is no
acceleration of the mixture as a whole. The velocity of the
mixture is therefore space and time independent. The gov-
erning equations express the conservation of the particle and
momentum. In the approximate form for small departures
from uniformity, the rate of change of particle momentum is
equal to four terms [Eq. (3.10) of Batchelor'?]. The first term
describes the acceleration reaction of the particles. It is again
necessary at this stage to introduce the virtual mass coeffi-
cient C(¢). The second term is the fluid drag-weight term.
The third term can be identified as a viscous term. This term
contains a coefficient 7 which has the dimension of a diffu-
sivity (or a kinematic viscosity) and is termed as the particle
viscosity. The last term is proportional to the spatial gradient
of the particle volume fraction. The coefficient Q of the gra-
dient can be interpreted as an effective bulk modulus of elas-
ticity of the particle configuration divided by the particle
mass by unit volume of the mixture. It represents the sum of
two different effects, one arising from the transfer of particle
momentum by velocity fluctuations analogous to the Rey-
nolds stress in turbulence and the other being the hydrody-
namic particle diffusion down a concentration gradient. This
gradient diffusion which arises from random fluctuations in
the particle velocity is estimated to provide the largest con-
tribution to Q and to be responsible for the stability of the
bed. The two governing equations are then written for small
perturbations as Egs. (3.13) and (3.14) in Ref. 13. It is im-
portant to mention that the reference frame used by Batch-
elor is the usual reference frame of sedimentation where the
mean velocity of the mixture is zero. For the completion of
the present spatial stability analysis, the appropriate refer-
ence frame is that of the fluidized bed where the mean ve-
locity of the particles is zero. The linearized equations of
Batchelor for small perturbations have thus been written in
this latter reference frame.

To complete the presentation of the two models, it is
important to discuss the origins of the stabilizing and desta-
bilizing mechanisms in fluidized beds. Particle inertia was
recognized early as the destabilizing mechanism.?” The effect
of inertia produces some delay in the adjustment of particle
velocity to a change in the local concentration and hence can
promote the growth of the wave. Conversely, the physical
origin of the stabilizing mechanism is still controversial.
Schematically, two physical origins for stability have been
invoked, one being the solid contact forces between particles
and the other being the hydrodynamic gradient diffusion of
the particles due to particle velocity fluctuations. In the work
of Anderson and Jackson,'® the bed was always found un-
stable. Later, it was recognized that the bed could be stabi-
lized for a sufficiently large value of dp°/d $."° Since
dp’/d ¢ measures the rate of change of particle pressure with
concentration, it represents a bulk modulus of elasticity of
the particle phase. In Batchelor’s model,'? the elastic behav-
ior of the particle configuration is represented by the param-
eter Q. The elasticity of the particles hinders the growth of
the waves by homogenizing the concentration gradients and
can cause the bed stability.

Both models give the same form for the linearized equa-
tion for small perturbations of the particle volume fraction
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¢, . It is convenient to recast this equation into the form of a
wave hierarchy equation,z‘zg’zg in the fluidized bed reference
frame, and with the vertical axis Ox, oriented upward and
with the time ¢:

aby i by 8 aVi.a J
——tcg—F T —+c; — || —4c, —
ot 7605y T T 5y g T 5 ) ¢

=yT % 52" (1)

The coefficients 7, ¢y, c,, and v differ for the two theories
and are given in the Appendix. The waves of different orders
are displayed by the factored operators on the left-hand side
of Eq. (1). The lowest order wave is the linearized form of
the kinematic concentration wave found by Kynch to de-
scribe the propagation of the front separating the clear fluid
and the suspension in sedimentation.”® The kinematic wave
speed is identical in both theorics and is equal to
cy=—[¢(dU/d p)], where U(¢) is the mean velocity of the
mixture, which is usually called the superficial velocity, in
the homogeneous state labeled 0. A widely used correlation,
called Richardson and Zaki correlation, gives the relation-
ship between U and ¢ as U(¢)=Uy(1— ¢)", where the
index n varies monotonically with the particle Reynolds
number (Re=d,Uyps/pus) and Uy is the Stokes velocity of a
single sphere for small Reynolds number.*! The higher order
waves are usually termed dynamic waves. In the absence of
virtual mass effects as in gas-fluidized beds, the dynamic
waves speeds ¢ and ¢, reduce to Q"2 in Batchelor’s
model and the physical origin of the waves lies in the physi-
cal processes represented by Q. Otherwise, the physical pro-
cesses involved are less clear. The term on the right-hand
side of Eq. (1) can be interpreted as a higher order viscous
term. Although the wave-hierarchy interpretation of fluidized
bed instabilities may not be completely relevant, Eq. (1) has
been used to perform the stability analysis because of its
compactness.

lll. INSTABILITY PROPERTIES OF THE LINEARIZED
MODEL

Equation (1) contains five coefficients. This number can
be reduced to three by making the variables dimensionless.
We therefore put T'=¢/7 and X=x/(7/c;). We also consider
a small perturbation of the particle volume fraction that var-
ies as exp[i(KX—QT)]. In the (X,T) variables, the disper-
sion relation can be written as

(Q—=Ke)(Q+Kef )+i(Q—K)+iaQK?=0, (2)

where c=¢,/cy, f=—¢,/c; which can be termed a dissym-
metry parameter, and a=v/( 'rc%) which represents the in-
verse of a Reynolds number based on a velocity scale ¢ and
a length scale 7c.

A. Temporal stability analysis

Temporal stability analysis relates to the time evolution
of a spatially homogeneous wave defined by a real wave
number, K, but a complex frequency, =4, +i(};. Hence
;>0 gives the temporal growth rate of unstable distur-
bances. Since temporally growing disturbances have been
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considered in numerous theoretical studies,"" *1572? the ma-

jor findings of the analysis are briefly presented in this sec-
tion.

The disturbances of greatest relevance to stability ques-
tions are those of long wavelength and therefore the stability
condition does not depend on the coefficient a. At marginal
stability, the most unstable wave number is K,=0 and the
stability criterion can be written as>**?’

—fc<l<ec. (3)

This stability criterion simply states that the kinematic wave
speed lies between the two dynamic wave speeds and is
similar to that derived by Wallis.** This stability criterion is
also equivalent to that of Batchelor'® [his Eq. (4.12)] which
in the present formulation is N,,=[fc?+c(1—f )] '<1.
The dependence of the temporal growth rate {); on K,
can also be investigated. The temporal branch relevant for
stability question is shown in Fig. 1 for c=1.2 (al), 0.48

" (a2), and 0.44 (a3) and for a=1 and f=1. For ¢>1, the

fluidized bed is stable and the temporal branch lies under the
real K axis. For ¢<{1, the range of wave numbers for which
0,;>0 is 0<K,<K!, where K=0 and K! are the neutrally
unstable wave numbers. This later neutrally unstable wave
number is given by K7 =[(1—c)/ac]"? which corresponds
to a frequency (3} =cK}. The most temporally unstable wave
number K;" corresponds to the maximum temporal growth
" and the most temporally unstable frequency Q.

B. Spatial stability analysis

Spatial stability analysis considers the response of the
flow to a localized harmonic forcing with steady amplitude.
This type of analysis is particularly well suited for the noise
forcing problem at the spatial origin of fluidized beds. In
contrast to temporal stability analysis, the wave frequency is
kept real, (),, while the wave number is complex,
K=K,+iK;. Hence —K;>0 only gives unstable distur-
bances propagating upwards.33

The two spatial branches are plotted in the (K,,—K,)
plane in Fig. 1 for the same values of the coefficients a, f,
and ¢ as those used for the temporal branch. For ¢>1, the
spatial branches do not cross the real axis but lie on either
side of it [Fig. 1(b1)]. Since the flow is stable, the response
to forcing is damped. The branch in the upper K domain
(K") corresponds to energy propagation to the right-hand
side of the harmonic source (located at X=0) toward +o
while the branch in the lower K domain (K ~) corresponds to
propagation toward —oo [Fig. 1(c1)]. The instability is asso-
ciated with the crossing of the real K axis by one spatial
branch when ¢<1 [Fig. 1(b2)]. Since no topological change
occurs for the spatial branches at the instability transition, by
using a continuity argument it can be shown that each spatial
branch is associated with the same propagation direction as
in the stable case [Fig. 1(c2)]. The wave propagating toward
+0 is then amplified for 0<K,<K], while the wave propa-
gating to —oe is still damped. The unstable spatial branch
presents a maximum at —K;" which corresponds to a wave
number K;™ and a frequency (2;". This continuity argument
becomes unvalid when the two spatial branches issuing from
the upper and lower real K half-plane (K" and K~) collide
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FIG. 1. Temporal branches (a), spatial branches (b), and responses to a forcing localized in space and harmonic in time (c): Stable case, c=1.2 (1),
convectively unstable case, c=0.48 (2), and absolutely unstable case, ¢=0.44. For all cases, a=1 and f=1.

[Fig. 1(b3)]. Since no propagation direction can be associ-
ated with the spatial branches, the response to the source
cannot be defined [Fig. 1(c3)]. It should be noticed that no
topological change is observed for the temporal branches
[Fig. 1(a3)]. This transition occurs when the saddle point
(Q°K% of the dispersion relation [Q°=Q(KY),
dQ/dK(K")=0] crosses the () real plane ((V=0).

As a summary of the spatial analysis, while the maxi-
mum  imaginary part of the temporal mode (1" defines
through its sign the stability of the flow, another quantity,
termed the absolute growth rate )Y, determines the ability to
define the response to a localized source. When QY <0, this
response is defined and the flow is said to be convectively
unstable. When QP>0, the instability is absolute and the
response to forcing cannot be defined. The disturbances will
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grow both temporally and spatially at the onset of absolute
instability. .

C. Convective/absolute transition

In the above section, two classes of spatially evolving
flow have been defined. Convectively unstable flows behave
as spatial amplifiers of the incoming perturbations whereas
absolutely unstable flows have an intrinsic behavior since
they are insensitive to localized forcing. The change in the
behavior of open flows when the flow becomes absolutely
unstable has been demonstrated in numerous experiments
and numerical simulations (see, for instance, the review of
Huerre and Monkewitz>).

In the case of the present linearized model of fluidized
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FIG. 2. (a) Domains of absolute and convective instabilities in the (a,c)
plane. (b) Isolines of the threshold value of ¢ as a function of @ and f.

beds, the convective/absolute transition condition dQ/dK=0
with Q=0 is written as

—2a+[2 f*+c(1—f)]-[4a+4fc*+c*(1—f)?]=0

(4)
and the absolute frequency which is real at threshold is
2. o bell=f}"?
QE:[ f—l_f)] ) (5)
2a

The domains of absolute and convective instabilities are
shown in the (a,c) plane in Fig. 2(a) for f=1. The isolines
of the threshold value of ¢ are also plotted as a function of a
and f in Fig. 2(b). The variation of the threshold value of ¢,
which characterizes the onset of the absolute instability, de-
pends weakly upon the dissymmetry parameter f.

D. Properties of the dominant waves

Since the onset of the absolute instability depends
weakly upon f, the parameter f has been set to unity in the
following discussion. In this case, the convective/absolute
transition  corresponds  to  the  threshold  value
ca={[(a’+a)""?—a]/2}"". The absolute growth rate Y is
positive for c<<c, . This condition defines the absolutely un-
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FIG. 3. (a) Effect of the coefficient ¢ on the most temporally unstable
frequency 2" (1), the most spatially unstable frequency (" (2), and the
absolute frequency Y (3) with a=f=1. (b) Effect of the coefficient ¢ on
the temporal maximum growth rate £} (1), the spatial maximum growth
rate —K§™ (2), the spatial absolute growth rate —K? (3), and the temporal
absolute growth rate O (4) with a=f=1.

stable domain. In order to compare the results of the tempo-
ral and spatial analyses, the viscous parameter a is set equal
to unity for convenience, and ¢ remains the only free param-
eter. Other values give the same qualitative behavior. Figures
3(a) and 3(b) show the dependencies on ¢ of the frequencies
and the wave numbers of the most unstable temporal wave
(K", Q" +iQ{™), the most unstable spatial wave
(K" +iK™,Q2™), and the absolute wave (K°+iK?,
QP+iQ?). It should be mentioned that the maximum spatial
growth rate —K;™ and the corresponding frequency ;" are
only defined in the convective domain (¢>c,).

These frequencies and wave numbers have been investi-
gated in the neighborhood of the critical condition (c=1).
Asymptotic analysis for K,~0 gives the following scalings:

1—¢

i

Qs ~ Q" ~0.7

(©6)
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(1-¢)?

=K Q0.5

; (7

Km~Km~0.7 e (8)
r r A = X

Va

Near critical condition, the same value for the frequency (or
the wave number) of the most unstable mode is obtained by
the temporal and spatial analyses. Moreover, the value of the
spatial growth rate —Kj" is close to the value of the tempo-
ral growth rate (], It is of interest to notice that since the
growth rates vary as (1—c)?, the wave grows rather slowly
near the threshold. The values of the spatial and temporal
growth rates differ when approaching the convective/
absolute threshold. Near the onset of the absolute instability
(c=c,), the spatial growth rate —K;™ tends toward the ab-
solute growth rate —K? in the convective domain.

IV. INSTABILITY PROPERTIES IN THE PHYSICAL
PARAMETER FRAMEWORK

The above linear stability analysis has determined the
conditions under which the instability occurs and then be-
comes absolute, as well as the instability properties for the
convective and absolute regimes. This section deals with the
question of whether the convective and absolute instability
conditions are realized in practice. This requires expression
of the instability properties in terms of the various physical
parameters of a fluidized bed, e.g., the particle volume frac-
tion, the particle diameter, the particle and fluid densities,
etc. Since the instability properties have been expressed in
terms of the dimensionless coefficients, a, ¢, and f, it is thus
necessary to formulate these coefficients in terms of the
physical parameters through the use of the theories of
Batchelor'® and Anderson and Jackson.'®® Since some of
the quantities in both models are difficult to measure experi-
mentally or to compute theoretically, only rough estimates
are given by these authors. Therefore, the results given in
this section depend upon the specific relations for these
quantities, i.e., the elastic term, the added mass term, the
particle viscosity and drag, etc., that are given by the theo-
ries. Improved estimates of these quantities will yield more
precise computations of the instability properties.

A. Batchelor’s theory

The case of a gas-fluidized bed in which the fluid is air at
normal temperature and pressure is considered first. Figure
4(a) shows the domains of absolute and convective instabili-
ties in the plane (d,,¢) with the rest of the parameters kept
constant (¢, is the mean particle volume fraction). The val-
ues of the parameters are given in Table I and correspond to
those given by Batchelor!® in his Sec. V. It should be men-
tioned that, as indicated by Batchelor,' the particle viscosity
7, the elastic coefficient Q, and the Richardson—Zaki index
n are regarded as invariant with ¢, and the virtual mass
effects are negligibly small in this case. The marginal stabil-
ity curve displayed in Fig. 4(a) corresponds exactly to the
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FIG. 4. (a) Instability domains for a gas-fluidized bed from Batchelor’s
theory. (b) Instability domains for a liquid-fluidized bed from Batchelor’s
theory.

absolutely
unstable

stability conditions shown in Fig. 3 of Batchelor."® It should
be noted that the stable region decreases with increasing par-
ticle diameter.

Consider the behavior of the flow for a fixed particle
diameter, for instance d,=100 um [trajectory 1 displayed in
Fig. 4(a)]. When the flow rate is large enough to fluidize the
bed, ¢, is close to its maximum value and the flow is stable.
As the flow rate is increased, ¢, decreases and the flow can
become convectively unstable and then absolutely unstable.
The flow becomes convectively unstable and then stable
again at even higher flow rates and smaller values of ¢;.

The evolution of the spatial branches along the trajectory
1 of Fig. 4(a) is displayed in Fig. 5. At the convective/
absolute transition, a saddle point appears. The branch
switching corresponds to the disappearance of the spatially
amplified wave and to the outbreak of the absolute instabil-
ity. It should be noted that the absolute frequency is surpris-
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TABLE L. Values of the parameters given by Batchelor (Ref. 13) for gas-fluidized and liquid-fluidized beds.

P pr 7 U, D - 7
Parameter (g em™) (gem™) (gem 'sh) {ems™Y v (cm”577) (cm®s™1) Cld)
(i sy d,  p,—py
Sca;'ﬂ“'d'z"d 1 129x1077  1.85%10"4 g_(pig 2 1 a2% e Be2le, 0
K with a=1 with B=1
. e = d, - 142
Liquid-fluidized 25 1 10-2 g(ﬁ;‘ﬂr)df 0.63VR, @ E ¥g i pf, BldJ2)U( ), -j—l—_i
bed 187 — _ (2=
4.9+0.63VR, with a=1 with B=1

ingly large (=80 Hz) for the set of parameters chosen by
Batchelor.!?

The same qualitative behavior is obtained for a liquid-
fluidized bed where the fluid is water, as displayed in Fig.
4(b). The values of the parameters given by Batchelor™® in
his Sec. V are indicated in Table I. Again, the particle vis-
cosity 7, the elastic coefficient O, and the Richardson—-Zaki
index n are supposed constant with ¢,. The expression for
the virtual mass function C(¢) is that suggested by Zuber.**
The drag-slope parameter vy is defined by Eq. (3.3) of Batch-
elor with the empirical expression for the drag coefficient
Cp=(0.63+4.90 Re”?)? [Eq. (5.27) of Batchelor]. It should
be noticed that the convectively unstable region is larger for
a liquid-fluidized bed than that for a gas-fluidized bed.

B. Anderson and Jackson'’s theory

The same type of analysis has been conducted with the
use of Anderson and Jackson’s theory.' The case of a bed of
beads fluidized by water is only considered in this case since
estimates of the parameters inferred from the comparison
with experimental observations are available in this case.
Figure 6 shows the domains of absolute and convective in-
stabilities in the plane (dp®/d ¢,¢,) with the rest of the pa-
rameters kept constant. The values of the parameters given

800

0 50 100 150 200
Frequency ©/27 (Hz)

FIG. 5. Effect of the decrease of the particle volume fraction on the spatial
growth rate of the wave from Batchelor’s theory: ¢,=0.60 (a), ¢,=0.42 (b),
¢y=0.40 (c). The particle diameter is d,=100 um and the fluidizing fluid is
air.
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by Anderson and Jackson'® in their Table I are indicated here
in Table II. The particle bulk and shear viscosities A* and p*
and the Richardson—Zaki index n are supposed independent
of ¢, because of lack of information. The value of the vir-
tual mass C(¢) coefficient is 1/2 which corresponds to that
of an isolated sphere. The ““dead zone” indicated in Fig. 6
corresponds to a set of parameters for which no solutions can
be found for the dispersion relation and thus to an unphysical
set of parameters.

Since dp®/d ¢ represents an elastic behavior of the par-
ticle phase, it measures the stabilizing parameter. For a small
value of dp®/d ¢ (trajectory 1 displayed in Fig. 6), when the
flow rate is increased enough to fluidize the bed, ¢, is large
but the flow is always convectively unstable. As the flow rate
is increased, ¢, decreases and the flow can become abso-
lutely unstable. The flow becomes convectively unstable and
then stable at larger flows rate and smaller values of ¢.
Conversely, for a larger value of dp’/d¢ (trajectory 2 dis-
played in Fig. 2), the flow is first stable at large values of ¢.
When the flow rate is increased, the flow becomes convec-
tively unstable and then stable again. In this case, no abso-
lutely unstable region is accessible. For even larger values of

0 20 40 60 80 100 120 140
dp7/do (g.cmls?)

7] absolutely
nstable

D stable
convectively deaidsing
unstable

FIG. 6. Instability domains for a liquid-fluidized bed from Anderson and
Jackson’s theory.
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FIG. 2. (a) Domains of absolute and convective instabilities in the (a,c)
plane. (b) Isolines of the threshold value of ¢ as a function of a and f.

beds, the convective/absolute transition condition dQ/dK=0
with Q0=0 is written as

—2a+[2 fct+e(1—f)]-[4a+4fc*+cX(1—f)?*]=0

(4)
and the absolute frequency which is real at threshold is
2 fcl4e(1— 12
QE’ = [ _u} ) (5)
2a

The domains of absolute and convective instabilities are
shown in the (a,c) plane in Fig. 2(a) for f=1. The isolines
of the threshold value of ¢ are also plotted as a function of a
and f in Fig. 2(b). The variation of the threshold value of ¢,
which characterizes the onset of the absolute instability, de-
pends weakly upon the dissymmetry parameter f.

D. Properties of the dominant waves

Since the onset of the absolute instability depends
weakly upon f, the parameter f has been set to unity in the
following discussion. In this case, the convective/absolute
transition  corresponds to  the  threshold  wvalue
ca={[(a*+a)""*—a]/2}"%. The absolute growth rate ) is
positive for ¢<<c, . This condition defines the absolutely un-
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0 02 04 06 08 i
c

absolutely

(b) convectively

FIG. 3. (a) Effect of the coefficient ¢ on the most temporally unstable
frequency €)™ (1), the most spatially unstable frequency 2" (2), and the
absolute frequency Y (3) with a=f=1. (b) Effect of the cocfficient ¢ on
the temporal maximum growth rate (™ (1), the spatial maximum growth
rate —K3™ (2), the spatial absolute growth rate —K" (3), and the temporal
absolute growth rate (2 (4) with a=f=1.

stable domain. In order to compare the results of the tempo-
ral and spatial analyses, the viscous parameter a is set equal
to unity for convenience, and ¢ remains the only free param-
eter. Other values give the same qualitative behavior. Figures
3(a) and 3(b) show the dependencics on ¢ of the frequencies
and the wave numbers of the most unstable temporal wave
(K™ QM"+iQ™), the most unstable spatial wave
(KS"+iK™ . Q™), and the absolute wave (K'+iK?,
Q%+i0Y%. It should be mentioned that the maximum spatial
growth rate —K?™ and the corresponding frequency ()" are
only defined in the convective domain (¢>c,).

These frequencies and wave numbers have been investi-
gated in the neighborhood of the critical condition (¢=1).
Asymptotic analysis for K,~0 gives the following scalings:

l—¢

=

QP QM7 ©6)
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Q

L™= m,

(A3)
7

2. Anderson and Jackson'’s theory

with - &)=(ps/ps)C(¢), LD)=(psp,)p(dC/dd), and
where v is the drag-slope parameter defined by Eq. (3.3) of
Batchelor.”

[, psl=¢  C(9) pp U ¢

1Mo T Tei-0)|p-pr g 1-9’ o)
e 2[1+C(p)/(1—-H)IU/(1-¢)] )
VT 1+ [(ps/pp) (L= @)/ 1 H{C() /[ d(1— P)]}

oo LLHC(R)(A = $)ILU/(1— $) )~ [(1p))(dp*/d$) (1~ ¢)/¢] A7)
e 1+[(ps/pp)(1— )/ p1+{C()/[p(1 - $)]} ;

- [(\o+4/3 )/ pr)[ (1= ¢)/ 7] ok
VS T+ (o /P (1= BV I HC( I S(1= DT} (A8)
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