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A B S T R A C T

Numerous formulations with the same mathematical properties can be relevant to model a biological

process. Different formulations can predict different model dynamics like equilibrium vs. oscillations

even if they are quantitatively close (structural sensitivity). The question we address in this paper is:

does the choice of a formulation affect predictions on the number of stable states? We focus on a

predator–prey model with predator competition that exhibits multiple stable states. A bifurcation

analysis is realized with respect to prey carrying capacity and species body mass ratio within range of

values found in food web models. Bifurcation diagrams built for two type-II functional responses are

different in two ways. First, the kind of stable state (equilibrium vs. oscillations) is different for 26.0–

49.4% of the parameter values, depending on the parameter space investigated. Using generalized

modelling, we highlight the role of functional response slope in this difference. Secondly, the number of

stable states is higher with Ivlev’s functional response for 0.1–14.3% of the parameter values. These two

changes interact to create different model predictions if a parameter value or a state variable is altered. In

these two examples of disturbance, Holling’s disc equation predicts a higher system resilience. Indeed,

Ivlev’s functional response predicts that disturbance may trap the system into an alternative stable state

that can be escaped from only by a larger alteration (hysteresis phenomena). Two questions arise from

this work: (i) how much complex ecological models can be affected by this sensitivity to model

formulation? and (ii) how to deal with these uncertainties in model predictions?

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The choice of a model formulation in biology is often associated to
uncertainties. Uncertainties arise from intrinsic data variability and
simplified assumptions chosen to represent complex processes.
Numerous mathematical formulations of a process are relevant in
the sense that: (i) they fit empirical data, (ii) their properties and
assumptions are consistent with the knowledge of the studied
system (Mullin et al., 1975; Cordoleani et al., 2011). Even if these
functions are quantitatively close, they can predict very different
model dynamics (Myerscough et al., 1996; Wood and Thomas, 1999;
Gross et al., 2004; Fussmann and Blasius, 2005; Poggiale et al., 2010;
Adamson and Morozov, 2012, 2014). This change in model dynamics
can be both quantitative and qualitative, a phenomenon coined
‘‘structural sensitivity’’ (Cordoleani et al., 2011).
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Structural sensitivity has been mainly explored in models of
predator–prey interactions. Predation emerges from the interplay
between physiological, individual and collective processes.
Depending on which processes are considered, predation can be
modelled using numerous functional responses (amount of prey
eaten per predator and per time unit, see Jeschke et al., 2002;
Gentleman et al., 2003, for a review). Functional responses are
classified by their main mathematical properties that define
different types, such as Holling-types (1959a) or with vs. without
predator interference (Beddington, 1975; DeAngelis et al., 1975).
Two functions of different type create different dynamics (Cantrell
and Cosner, 2001; Oaten and Murdoch, 1975; Scheffer and de Boer,
1995). But different dynamics are also generated by functions that
belong to the same type. A model is thus structurally sensitive to
the functional response formulation. For example, different type-II
functional responses predict either a stable equilibrium or
oscillations in predator–prey and food chain models. These models
are also more sensitive to functional response formulation than to
parameter values (Myerscough et al., 1996; Gross et al., 2004;
Fussmann and Blasius, 2005; Cordoleani et al., 2011; Adamson and
Morozov, 2012, 2014).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2016.05.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2016.05.004&domain=pdf
http://dx.doi.org/10.1016/j.ecocom.2016.05.004
mailto:clement.aldebert@univ-amu.fr
mailto:david.nerini@univ-amu.fr
mailto:mathias.gauduchon@univ-amu.fr
mailto:jean-christophe.poggiale@univ-amu.fr
http://www.sciencedirect.com/science/journal/1476945X
www.elsevier.com/locate/ecocom
http://dx.doi.org/10.1016/j.ecocom.2016.05.004


Fig. 1. Functional responses used in the model: Holling’s disc equation (solid) and

best fitted Ivlev’s functional response (dashed). The former is used as ‘‘data’’ to

parameterize the latter (Section 1 in supplementary material). Parameter values are

given in Table 1. For the sake of visibility, only a part of the fitting range ([0,

Bres] = [0, 500]) is shown.
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To overcome both parameter and structural sensitivity, Gross
and Feudel (2006) proposed a method called generalized
modelling. The local stability of positive equilibria is studied in
a class of models without specifying their exact formulation and
parameter values (see Yeakel et al., 2011, for a review in ecology).
New parameters are defined to describe system dynamics near an
equilibrium. As a drawback, this method is local and cannot
explore global situations as a whole, like multiple stable states.

Multiple stable states can be important to investigate how a
system behaves when facing some disturbances. Thus, the study of
multiple stable states is of growing interest in ecology (Beisner
et al., 2003; Knowlton, 2004; Scheffer et al., 2009, 2012). Despite
this interest, studies on structural sensitivity focused on qualita-
tive change (equilibrium vs. limit cycle) of a single stable state
(except a short note in Fussmann and Blasius, 2005). The number of
stable states can be modified by a quantitatively small change in
model formulation in theory (as discussed by Adamson and
Morozov (2014)), but such possibility has not been investigated so
far. However, multiple stable states can coexist in predator–prey
models like Bazykin’s model (Bazykin et al., 1985, in Metzler and
Wischniewsky, 1985; Kuznetsov, 2004).

Bazykin’s model is equivalent to Rosenzweig and MacArthur’s
model (1963) with density-dependent mortality for the predator.
The predator has no density-dependent mortality in previous
studies on structural sensitivity and generalized predator–prey
models (Kuehn and Gross, 2011; Yeakel et al., 2011). However,
density-dependent mortality represents the effects of diseases and/
or competition and can be relevant for a wide range of predator
species (Loreau, 2010). Furthermore, a density-dependent mortality
is often used for the top-most predator in applied ecological models
as a closure term to implicitly represent higher trophic levels (Fulton
et al., 2003a,b). Predator competition modelled with quadratic
mortality implicitly involves other limiting resource than the prey.
In case of predator interference, the functional response may be
predator-dependent (Ivlev, 1955; Beddington, 1975; DeAngelis
et al., 1975; Arditi and Ginzburg, 1989; DeAngelis, 2013). However,
different predator-dependent functional responses exist and
structural sensitivity can also be studied in models based on this
type of functions.

The question we want to address in this paper is: what is the
impact of structural sensitivity on the number of stable states? We
focus on Bazykin’s model which can exhibit multiple stable states.
This predator–prey model can be a building block of some food web
models (Aldebert et al., submitted for publication; Plitzko et al.,
2012, and references therein) and its study may help to understand
those more complex models. The next section presents Bazykin’s
model and the functional response formulations that we test. Then a
bifurcation analysis is conducted for two functional response
formulations. In the fourth section, we derive a generalized
predator–prey model in order to identify stabilizing factors
independently of a specific formulation. This provides an additional
understanding of the local stability of equilibria found in the
previous section. Finally, results are discussed using examples
where system resilience predicted by the model is tested using
different functional response formulations.

2. Predator–prey model

We modelled predator–prey dynamics with Bazykin’s model.
We wrote the model in a form that can easily be extended to more
complex food webs. Population dynamics are modelled using the
following differential system:

dBprey

dt
¼ ½lqf�aprey�vbpreyBprey�Bprey�GfðBpreyÞBpred

dBpred

dt
¼ ½lGfðBpreyÞ�apred�bpredBpred�Bpred;

8><
>: (1)
where Bprey and Bpred are the respective biomass of unstructured
prey and predator populations. In model (1), the prey grows using
an implicit constant resource with a rate q

f
. The predator feeds on

the prey with a functional response G
f

(Bprey). We assume that both
populations have the same conversion efficiency l. Each popula-
tion has intrinsic losses due to (i) linear mortality with a mortality
rate aprey (resp. apred) and (ii) competition with a per-capita
density-dependent mortality rate bprey (resp. bpred). Prey competi-
tion is proportional to an environmental parameter v, so prey
carrying capacity is proportional to 1/v. Predation is modelled
using a type-II functional response G

f
which does not depend on

predator biomass and fulfills the following properties:

Gf 2C2; Gfð0Þ ¼ 0; GfðBpreyÞ�0; Gf 0ðBpreyÞ>0;

Gf 00ðBpreyÞ<0; lim
Bprey!þ1

GfðBpreyÞ< þ1;
(2)

where C2 is the class of twice continuously differentiable functions.
Other properties means that G

f
is null in absence of prey, increases

with prey biomass, is concave and saturates at high prey biomass.
As examples of functions with properties (2), we consider

Holling’s disc equation (1959b, 1965) GH and Ivlev’s functional
response (1955) GI (3) (Fig. 1):

GHðBpreyÞ ¼
aH

predBprey

1þ hH
predaH

predBprey
;

GIðBpreyÞ ¼
1

hI
pred

ð1�expð�hI
predaI

predBpreyÞÞ:
(3)

For the first formulation, parameters aH
pred and hH

pred are respectively
the attack rate and the handling time of the predator. For the
second formulation, parameter 1=hI

pred is the maximal consump-
tion rate and aI

predhI
pred is the satiation coefficient of the predator.

Parameters are defined in order to have a consistent mathematical
meaning across formulations (4):

Gf 0ð0Þ ¼ af
pred; lim

Bprey!þ1
GfðBpreyÞ ¼

1

hf
pred

: (4)

Thus, af
pred gives the slope of the functional response at the origin,

and 1=hf
pred gives the asymptotic value of the functional response

when it saturates at high prey biomass.
[(Fig._1)TD$FIG]
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Resource consumption q
f

(5) has the same equation as the
functional response G

f
with a constant pool of resource Bres:

qH ¼
aH

preyBres

1þ hH
preyaH

preyBres
; qI ¼ 1

hI
prey

ð1�expð�hI
preyaI

preyBresÞÞ; (5)

so q
f

is a constant. Organism’s metabolic rates are strongly
influence by body mass. We assume that some parameter values
scale allometrically with species body mass Mprey and Mpred (Brown
et al., 2004; Kooijman, 2010):

af
i ¼ afM�0:25

i ; hf
i ¼ hfM0:25

i ; ai ¼ aM�0:25
i ;

bi ¼ bM�0:25
i with i ¼ prey; pred:

(6)

These relationships imply an allometric scaling of resource

consumption qf/M�0:25
prey and predation Gf/M�0:25

pred . So we define

q
¯
f :¼ qfM0:25

prey and G
¯
f :¼ GfM0:25

pred , which do not depend on species

body mass. Hence, model (1) can be written using body masses:

dBprey

dt
¯
¼ lq

¯
f�a�vbBprey

h i
Bprey�G

¯
fðBpreyÞBpredðMpred=MpreyÞ�0:25

dBpred

dt
¯
¼ lG

¯
fðBpreyÞ�a�bBpred

h i
BpredðMpred=MpreyÞ�0:25;

8><
>:

(7)

with a time re-scaling t
¯
¼ tM�0:25

prey in order to have a model that
does not depend on both species body mass but on their ratio
Mpred/Mprey. When Holling’s disc equation is used, model (7) can be
written in the form of Bazykin’s model (Bazykin et al., 1985, in
Metzler and Wischniewsky, 1985; Kuznetsov, 2004) after appro-
priate re-scaling and parameter changes.

Parameter values are listed in Table 1. To parameterize Ivlev’s
functional response, we consider Holling’s disc equation as ‘‘data’’
and optimize Ivlev’s parameters in order to minimize the weighted
Euclidean distance between the two functional responses (see
Section 1 in Supporting Online Material for details). This
optimization is done to simulate a fit of both functional responses
on empirical data (as done by Mullin et al., 1975; Cordoleani et al.,
2011). To do this, the optimization step gives a better fit between
functional responses (correlation coefficient r = 0.93) than using
the same a

f
and h

f
values for both formulations (r = 0.86), as done

for example by Anderson et al. (2010).

3. Bifurcation analysis for different functional responses

Model (7) has two trivial equilibria (8):

O ¼ ð0;0Þ and E0 ¼ K :¼ lq
¯
f�a
vb

;0

� �
; (8)
Table 1
Parameter values used in the predator–prey model.

Biological meaning Parameter Value

Mortality rate a 0.3

Per-capita competition rate b 0.5

Assimilation efficiency l 0.65

Resource biomass Bres 500

Holling’s disc equation:

Attack rate aH 6

Handling time hH 0.35

Ivlev’s functional response:

Maximal consumption rate 1/hI 1/0.36

Satiation coefficient aIhI 3.17�0.36

Parameter values from Heckmann et al. (2012) were estimated from empirical data sets

span 20 orders of magnitude in body mass, Brown et al., 2004; Brose et al., 2006) usin

Kartascheff et al., 2009, 2010).
where K is prey carrying capacity. Equilibrium O always exists and
is a saddle. Equilibrium E0 exists if lq

¯
f>a. It is a stable node if

a>lG
¯
fðKÞ (Fig. 2, phase portrait 0) and a saddle otherwise (other

phase portraits). The threshold a ¼ lG
¯
fðKÞ corresponds to a

transcritical bifurcation where a stable positive equilibrium
appears when 1/v is increasing. The twelve generic phase portraits
found for this system are presented in Fig. 2. Briefly, the system
exhibits up to three positive equilibria (phase portraits 3, 4 and 6–
11) due to the density-dependent mortality of the predator, as well
as two limit cycles (phase portraits 7 and 11). Multiple attractors
co-exist in seven phase portraits (phase portraits 4–8, 10 and 11).

An analysis of model (1) with Holling’s disc equation is
presented in Kuznetsov (2004), based on a two-dimensional
bifurcation diagram with respect to the saturation parameter of
the functional response and the density-dependent mortality of
the predator. Here we focus on two parameters that are expected
to vary across ecosystems and species: (i) prey carrying capacity
(/1/v) and (ii) species body mass ratio (Mpred/Mprey). In our
analysis, body mass ratio ranges from prey that are 104 times
bigger than their predators (e.g. insects feeding on trees) to
predators that are 108 times bigger than their prey (e.g. whales
feeding on krill). This range is likely to include most of known
predator–prey interactions (Kooijman, 2010). For prey carrying
capacity, 1/v can be understood as a number of different trophic
species eaten by the same predator species in a food web (Aldebert
et al., submitted for publication). In our analysis, 1/v ranges from
0 to 10. This range includes almost all values observed in model-
based food webs that are consistent with empirical data (e.g.
Williams and Martinez, 2000). The sensitivity of our results to
parameter ranges will be discussed at the end of the section.

Two-dimensional bifurcation diagrams in the plane (1/v,
log 10(Mpred/Mprey)) were obtained using the Matlab continuations
toolboxes Matcont and CL_Matcont (Dhooge et al., 2006).
Codimension-one (here curves) and codimension-two (here
points) bifurcations were numerically computed using continua-
tion methods (Kuznetsov, 2004). Homoclinic bifurcation curves
were estimated by dichotomy for numerous parameter values.
Fig. 3 presents the bifurcation diagrams obtained for both
functional responses.

When Holling’s disc equation is used (Fig. 3a), more than
99.999% of the explored parameter space area generate phase
portraits 1, 2 or 3. These portraits correspond respectively to a
stable equilibrium, an unstable focus with a stable limit cycle and
three equilibria (one unstable node or focus, a saddle, one stable
node or focus). The area with three equilibria is delimited by the
two branches of a saddle-node bifurcation (red curve). Transition
between phase portraits 1 and 2 occurs through a Hopf bifurcation,
which is either supercritical (dark blue curve) or subcritical (light
blue curve). These two branches meet at a Bautin point on this
Source Unit

(Heckmann et al., 2012) time�1

(Heckmann et al., 2012) biomass�1 time�1

(Heckmann et al., 2012) -

(Heckmann et al., 2012) biomass

(Heckmann et al., 2012) biomass�1 time�1

(Heckmann et al., 2012) time

see supplementary material time�1

see supplementary material biomass�1

(up to >700 organisms from unicellular eukaryotes to plants and mammals, which

g allometric scaling or set to values similar to other studies for comparison (like
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Fig. 2. Qualitative generic phase portraits of the predator–prey model. Transitions between the different situations corresponds to bifurcations drawn in Fig. 3.
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curve. A limit point of cycles bifurcation curve (green curve) starts
from this point and stays mostly close to the subcritical Hopf
branch. When moving from phase portrait 1 to 2 through this
branch and the limit point of cycles, the system exhibits phase
portrait 5 in a tiny strip of the parameter space (stable focus and
limit cycle separated by an unstable limit cycle). The two branches
of the saddle-node bifurcation curves meet at a Cusp bifurcation
point. The subcritical branch of the Hopf bifurcation curves meets
the bottom-branch of the saddle-node curve at a Bogdanov–Takens
point. Close to these points, there are three positive equilibria
surrounded by a stable limit cycle (phase portraits 9–11). From
phase portrait 2 to 3, the limit cycle is destroyed through a
homoclinic bifurcation (dashed black curve), which may be a
homoclinic to saddle-node bifurcation in most of the bifurcation
diagram (see Section 2 in supplementary material for a more
detailed technical discussion).

If Ivlev’s functional response is used (Fig. 3b), the Bogdanov–
Takens point is now on the top-branch of the saddle-node



[(Fig._3)TD$FIG]

Fig. 3. Two-dimensional bifurcation diagram of the specific predator–prey model using the functional response proposed by: (a) Holling or (b) Ivlev. Bifurcation diagrams

depend on 1/v (which is proportional to the prey carrying capacity) and the species body mass ratio Mpred/Mprey. In each diagram, codimension-one bifurcation curves

separate areas of qualitatively different phase portraits. The number in each area indicates the corresponding phase portrait in Fig. 2. The different types of codimension-one

bifurcation curves are indicated in different colors. Codimension-two bifurcation points are written in italic. (For interpretation of reference to color in this figure legend, the

reader is referred to the web version of this article.)
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bifurcation.The homoclinic curve starting from this point is close to
the bottom branch of the saddle-node curve in most of the
bifurcation diagram (see Section 2 in supplementary material).
Starting from the Bogdanov–Takens point, the Hopf bifurcation is
supercritical. In comparison with Holling’s disc equation, the Hopf
bifurcation curve wraps, which strongly decreases the part of the
parameter space in which a stable limit cycle exists. This curve
becomes a subcritical Hopf bifurcation after the Bautin point. A limit
point of cycles curve starts from this Bautin point. As a consequence,
various dynamics arise with Ivlev’s functional response (see Fig. 3b,
bottom zoom). For example, in phase portrait 7 (Fig. 2) the system
has three different attractors: a stable focus, a stable limit cycle and a
stable node. Their respective attraction basins are delimited by an
unstable limit cycle and a saddle. Phase portraits 7 and 8 are not
observed with Holling’s disc equation in this study or in the
bifurcation diagram presented by Kuznetsov (2004). More complex
dynamics than phase portraits 1 to 3 occur for roughly log 10(Mpred/
Mprey) 2 [�0.5, 0.5] and 1/v > 5 with Ivlev’s functional response.
This range of body mass ratios corresponds to prey and predator
species with similar body mass and metabolic rates, as we assume
allometric scaling relationships. This range widens as prey carrying
capacity increases.

In terms of structural sensitivity, there are two main differences
between the bifurcation diagrams obtained for Holling’s and Ivlev’s
functional response. The following results are only quantitatively
modified by changes in the size of the parameter space
investigated (Table 2). First, there are multiple attractors in 0.1%
to 14.3% of the bifurcation diagram with Ivlev’s functional response
(see Section 3 in supplementary material for technical details). This
Table 2
Impact of the size of the parameter space explored on results of the bifurcation analys

Reference value Obtai

Limit cycle vs. equilibrium 0.359 [0.26

Multiple attractors 0.019 [0.00

These results are the fractions of the parameter space where: (i) there is a stable limit

response, (ii) there are multiple attractors with Ivlev’s functional response. Constant para

of 1/v ([0, 5], [0, 10] and [0, 20]) and 3 ranges of log10 Mpred=Mprey

� �
([�2, 4], [�4, 8] and

column shows the range of results obtained for the 9 parameter subspaces tested. Last tw

both parameters. NS means non-significant (p-value�0.05). Coefficients for 1/v are si
proportion increases if higher 1/v values (i.e. richer environment)
are considered. Second, there is a stable limit cycle (phase portrait
2) with Holling’s disc equation and a stable equilibrium (phase
portrait 1) with Ivlev’s functional response in 26.0–49.4% of the
parameter space explored. This proportion decreases if higher 1/v
values are considered. The opposite situation between functional
responses occurs only in a neglectible proportion of the parameter
space here (near the Cusp and Bogdanov–Takens points). The order
of magnitude of these two main results remains similar if any other
parameter value is changed by�20% (see Table 3). Depending on the
parameter, quantitative changes in our results can be of different
amount. However, this impact of each parameter will not be
discussed here as the analysis presented in Table 3 is exploratory.

4. Generalized predator–prey model: beyond a specific
formulation

In the previous section, we have studied the effect of functional
response formulation change on a predator–prey model. Now we
use the generalized modelling approach (Gross and Feudel, 2006)
to provide another way to interpret the stability of positive
equilibria independently of a specific functional response formu-
lation. This helps to understand differences between bifurcation
diagrams obtained from different formulations. Model (7) also
exhibits limit cycles. Like for equilibria, their stability can be
studied through generalized modelling. However, the amount of
technical work required (even for a predator–prey model without
predator competition, Kuehn and Gross, 2011) is beyond the scope
of this paper.
is.

ned range Sensitivity to explored parameter values

1/v log 10(Mpred/Mprey)

0, 0.494] �0.0084 NS

1, 0.143] 0.0055 �0.0024 (p-value = 0.07)

cycle with Holling’s disc equation and a stable equilibrium with Ivlev’s functional

meter values are those from Table 1. We test 9 combinations obtained with 3 ranges

[�8, 16]). First column shows results obtained with ranges used in Fig. 3. Second

o columns are coefficients of the linear regression between results and the range of

gnificant (p-value<0.05).



Table 3
Impact of other parameter values on results of the bifurcation analysis.

Biological meaning Parameter Limit cycle vs. equilibrium Multiple attractors

�20% +20% �20% +20%

Mortality rate a �0.7% �0.3% +50.3% +45.9%

per-capita competition rate b �5.4% �4.0% +0.5% +49.9%

Attack rate aH �5.3% �2.7% +52.0% �18.9%

Handling time hH �1.0% 0% +37.4% �46.3%

Assimilation efficiency l +3.5% �4.9% �77.3% +107.4%

Resource biomass Bres 0% 0% +0.1% +0.1%

These results are relative changes from reference values in Table 2 in the fractions of the parameter space 1=v2 ½0;10�; log10 Mpred=Mprey

� �
2 ½�4;8�

� �
where: (i) there is a stable

limit cycle with Holling’s disc equation and a stable equilibrium with Ivlev’s functional response, (ii) there are multiple attractors with Ivlev’s functional response. Constant

parameter values are those from Table 1, except for one parameter value that is increased/decreased by 20%. If this parameter is one of Holling’s disc equation (aH or hH), both

parameters for Ivlev’s functional response (aI and hI) are re-estimated. For each parameter change, results sensitivity to the size of the parameter space is of similar magnitude

as in Table 2.
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We first consider the differential system (7) without specifying
the functional response and the parameter values. We only claim
that the functional response fulfills properties (2). So we consider
in fact a family of models. Generalized modelling supposes that
some models in this family have positive equilibria. The stability of
a positive equilibrium is then studied using the Jacobian matrix:
J ¼
lq

¯
f�B�pred

M�0:25
pred

M�0:25
prey

G
¯
f 0ðB�preyÞ� aþ 2vbB�prey

� 	
�G

¯
f�

lB�pred

M�0:25
pred

M�0:25
prey

G
¯
f 0ðB�preyÞ lG

¯
f��ðaþ 2bB�predÞ

� 	M�0:25
pred

M�0:25
prey

0
BBBB@

1
CCCCA (9)
evaluated at a positive equilibrium ðB�prey;B
�
predÞ, with

G
¯
f� :¼G

¯
fðB�preyÞ. The matrix is expressed using generalized param-

eters that describe the system close to this equilibrium (Table 4):

J ¼ tpreyð1�ð1�dpreyÞmprey�dpreygpredÞ �tpreynprey;preddprey

tprednpred;preygpred tpredð1�mpredÞ

� �
:

(10)
Table 4
Formulation and ecological meaning of the generalized parameters used to build

the generalized predator–prey model.

Generalized parameter formulation Ecological meaning

Scale parameters

tprey ¼ lq
¯
f ¼ G

¯
f� B�pred

B�prey

M�0:25
pred

M�0:25
prey

þ aþvbB�prey

� 	

tpred ¼ lG
¯
f� M�0:25

pred

M�0:25
prey

¼ aþ bB�pred

� 	M�0:25
pred

M�0:25
prey

Time scales of species

dynamics

dprey ¼
1

tprey
G

¯
f� B�pred

B�prey

M�0:25
pred

M�0:25
prey

Fraction of prey losses

due to predation

1�dprey ¼
1

tprey
aþvbB�prey

� 	 Fraction of prey losses

due to intrinsic dynamics
nprey;pred ¼ B�prey=B�pred
npred;prey ¼ B�pred=B�prey

Biomass ratios between

species

Elasticities (also called exponent parameters)

mprey ¼ 1þ
vbB�prey

aþvbB�prey

2 1;2½ �

mpred ¼ 1þ
bB�pred

aþ bB�pred

2 1;2½ �

Non-linearity of species

intrinsic mortality

gpred ¼ gf 0ð1Þ 2 0;1½ �with bprey ¼
Bprey

B�prey

and gfðbpreyÞ :¼
G

¯
fðbpreyB�preyÞ
G

¯
fðB�preyÞ

Slope of predator normalized

functional response

The scale parameters describe the time scale of species dynamics (for ti) and the

relative contribution of the different processes to this dynamics. Elasticities

measure the non-linearity of processes.
Details on the derivation procedure to define generalized
parameters are presented in Gross and Feudel (2006) and Yeakel
et al. (2011). Equilibrium stability is studied as a function of the
generalized parameter values without specific assumptions on the
functions and original parameter (such as a

f
or h

f
) values behind

them.
To study equilibrium stability, let us recall the following
statements (that hold under nondegeneracy conditions) from
bifurcation theory (see for example Guckenheimer and Holmes,
1983; Perko, 1996; Kuznetsov, 2004). A saddle-node bifurcation
occurs when there is a real zero eigenvalue. A common way to
track this bifurcation is to solve CSN = 0, with

CSN :¼ detðJÞ ¼ tpreytpred½ð1�mpredÞð1�ð1�dpreyÞmpreyÞ

þmpreddpreygpred� (11)

vanishing only when at least one eigenvalue is equal to zero. A
Hopf bifurcation occurs when there is a pair of (conjugate) pure
imaginary eigenvalues. A common way to track this bifurcation in
planar systems is to solve CH = 0 with

CH :¼TrðJÞ ¼ tprey 1�ð1�dpreyÞmprey�dpreygpred þ
tpred

tprey
ð1�mpredÞ

� �
:

(12)

Note that CH vanishes at a Hopf bifurcation, but as well as if there
are two real eigenvalues of opposite sign and same absolute
magnitude. In this case the equilibrium is called a neutral saddle.
The two situations can be discriminated by looking at the sign of
CSN which is positive at a Hopf bifurcation and negative at a
neutral saddle. The limit case between these two situations
corresponds to the intersection between a Hopf and a saddle-node
bifurcation. It is a codimension-two Bogdanov–Takens bifurcation
where two eigenvalues are equal to zero.

A five-dimensional bifurcation diagram is required to explore
the whole parameter space. Fig. 4 displays three-dimensional
diagrams that are sufficient to understand the role of all
parameters, except for time scales tprey and tpred. The ratio tpred/
tprey has only a scaling impact proportional to mpred values on the
Hopf bifurcation location, as it can be understood by looking at CH

equation (12). An equilibrium is stable when prey losses are
dominated by density-dependent mortality (low dprey and high
mprey) and when prey density is sufficiently low to give a high slope
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Fig. 4. Bifurcations of positive equilibria in the generalized predator–prey model. Hopf (dark gray), saddle-node (light gray) and Bogdanov–Takens (surfaces intersection)

bifurcations are drawn in the generalized parameters space (mprey, dprey, gpred) for varying mpred values. The equilibrium is a saddle below the saddle-node surface and a node or

a focus above. This node or focus is unstable below the Hopf surface and stable otherwise. Increasing (decreasing) the time scale ratio tpred/tprey decreases (increases) the gpred

values where the Hopf bifurcation takes place proportionally to mpred value. When mpred = 1 there is another saddle-node bifurcation at dprey = 0 (not shown for the sake of

visibility). It is in fact a transcritical bifurcation (a degenerated case of saddle-node bifurcation) where the positive equilibrium collides with a trivial equilibrium with no

predator and disappears.
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to the predator functional response (high gpred). For mpred = 1, an
unstable equilibrium is always a node or a focus. As the density-
dependence of predator mortality increases (mpred increases), it can
be a saddle for an increasing range of gpred values. For sufficiently
high mpred, an equilibrium is either a stable node (or focus) or a
saddle. These results hold for any positive equilibrium of any
predator–prey model of the form (7).

Axes in Fig. 4 correspond to generalized parameters describing
a positive equilibrium. Numerical values of the generalized
parameters can be computed for all positive equilibria in the
bifurcation diagrams of Fig. 3. By construction, the stability of these
equilibria can be interpreted in terms of generalized parameters by
mapping their numerical values in the bifurcation diagram of the
generalized model (Fig. 4). So, when there are two or more positive
equilibria in a specific model such as system (7), each equilibrium
has a different generalized parameter set. For example, consider
parameter values in Fig. 3 close to a saddle-node bifurcation, and
where a node (or focus) and a saddle coexist. If generalized
parameter values are computed and mapped in Fig. 4, the node is
above the saddle-node bifurcation surface and the saddle is below.
If a parameter of model (7) is moved towards the bifurcation in
Fig. 3, generalized parameter values of both equilibria become
closer. These values become equal to the saddle-node bifurcation
value in Fig. 4 where equilibria collide and disappear, as the
parameter of model (7) reaches the saddle-node bifurcation in
Fig. 3.

Now we use generalized parameters to interpret the impact of
the functional response formulation in Fig. 3. Equilibria are
computed on a grid by steps of 0.02 for log 10(Mpred/Mprey) and
0.01 for 1/v. Consider values of these two parameters where there
is a stable positive equilibrium (phase portrait 1) with Ivlev’s
functional response and a stable limit cycle (phase portrait 2) with
Holling’s disc equation. Generalized parameters are computed for
the stable equilibrium with Ivlev’s functional response and for the
unstable focus surrounded by the limit cycle with Holling’s disc
equation. On average within the considered area, higher mprey,
mpred and gpred (	+0.1) as well as lower dprey (	�0.2) are obtained
with Ivlev’s functional response. The direction of these changes
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Fig. 5. Slope of the normalized functional responses (gpred) used in the model:

Holling’s disc equation (solid) or Ivlev’s functional response (dashed).
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makes the equilibrium moving from the unstable part of the
generalized parameter space (Fig. 4) with Holling’s disc equation to
the stable part with Ivlev’s functional response by crossing the
Hopf bifurcation. The increase of mprey and mpred can be explained
by higher prey and predator biomasses at equilibrium (	+0.1) with
Ivlev’s functional response, and thus a higher intra-specific
competition. As a consequence, a lower fraction of prey losses
are due to predation (lower dprey). The predator has a stronger
response (higher increase of the predation flux) to an increase in
prey biomass, as the slope of the functional response near
equilibrium is higher with Ivlev’s functional response (higher
gpred). Indeed, with this function, the functional response slope is
higher within the range of prey biomass at the equilibrium (	[0,2],
Fig. 5).

5. Discussion

5.1. Structural sensitivity and model predictions

This paper shows that the number of attractors (or stable states)
is modified if a slight change of functional response formulation
occurs. Independently of the functional response formulation, the
use of predator quadratic mortality leads to complex system
dynamics. Indeed, seven of the twelve generic phase portraits of
the predator–prey system display two or three attractors (Fig. 2).
Multiple attractors are found in less than 0.001% of the parameter
space studied with Holling’s disc equation and in 1.9% with Ivlev’s
functional response (Fig. 3). Fussmann and Blasius (2005) briefly
reported a similar situation for Rosenzweig & MacArthur’s model.
This model has one attractor with Holling’s and Ivlev’s functional
responses, but can have two attractors (an equilibrium and a limit
cycle) when the functional response is a hyperbolic tangent
function.

Changes in the number of attractors come in addition to
changes in attractor type (equilibrium vs. limit cycle). These
changes are partly due to differences in local slope of the functional
response, as it has been previously reported (Oaten and Murdoch,
1975; Myerscough et al., 1996; Fussmann and Blasius, 2005;
Cordoleani et al., 2011; Yeakel et al., 2011; Adamson and Morozov,
2012). We highlighted this effect by studying a generalized
predator–prey model. A continuous change in model formulation
makes the model exhibits a Hopf bifurcation which destabilizes the
equilibrium and gives birth to a stable limit cycle. This bifurcation
explains why in 35.9% of the parameter space explored, the
(unique) attractor is a limit cycle with Holling’s disc equation and
an equilibrium with Ivlev’s functional response (Fig. 3).

Both effects of functional response formulation (number and
kind of attractor(s)) interact to create different system dynamics
(Fig. 3). So depending on the formulation, the model can predict
very different system responses to disturbances. Disturbances can
affect either a parameter or a state variable (Beisner et al., 2003).
Fig. 6 shows an example of model predictions with changing prey
carrying capacity due to prey resource(s) and/or habitat alteration.
Similarly, Fig. 7 shows another example with changes in prey
biomass like a spike of harvesting or introduction of individuals. In
both examples, Holling’s disc equation predicts a higher system
resilience. Indeed, Ivlev’s functional response predicts that
disturbance puts the system in an alternative stable state. Escaping
this alternative state requires a larger modification than going
backward (hysteresis phenomena). Such hysteresis phenomena
are not predicted by Holling’s disc equation because the model has
only one attractor with this formulation. In these two examples,
state variable and parameter alterations, the system is still
deterministic. If a stochastic effect like individual variability was
included, a perturbation driving one population close to zero (once
or frequently) could lead to species extinction(s).

We studied structural sensitivity by considering two classical
type-II functional responses: Holling (1959b, 1965) and Ivlev
(1955). A mixed functional response Gx :¼ xGH + (1 � x)GI can be
built to continuously switch between formulations (Cordoleani
et al., 2011). Bifurcations that occur during this continuous switch
(through the mixing parameter x) explain differences between
bifurcation diagrams obtained for different formulations. Never-
theless, the bifurcation analysis of the predator–prey model
becomes 3-dimensional with respect to parameters (Aldebert
et al., in prep), which is beyond the scope of this paper.

In order to quantify structural sensitivity, Cordoleani et al.
(2011) compared a distance between model formulations and a
distance between model outputs. The strength of this approach is
to quantify both quantitative and qualitative changes of the stable
state. In the light of our findings, this approach can be extended to
quantify different aspects of structural sensitivity, such as changes
in the number of stable states and system resilience in situations
with hysteresis phenomena (Aldebert et al., in prep).

5.2. Combining generalized and specific models

Using a generalized predator–prey model, we found that
equilibria in the considered class of model are stabilized by (i) a
high slope of the functional response, and (ii) losses mainly driven
by density-dependent per-capita intrinsic mortality for both
species. In the limit case where predator mortality is linear, these
results are consistent with those obtained by Yeakel et al. (2011) in
a similar model. As stated in the section on generalized modelling,
up to two limit cycles can exist in Bazykin’s model, which exhibits
global bifurcations (limit point of cycles, homoclinic loops).
However, the study of periodic orbits using generalized models
is more difficult, even for predator–prey models (Kuehn and Gross,
2011).

We want to highlight the usefulness of studying both a
generalized model and specific models belonging to the family
represented by the generalized model. The generalized model
provides local but generic results on equilibria stability. On the
other hand, a specific model provides a specific but global
understanding of system dynamics, including periodic orbits
and the co-existence of multiple attractors. The generalized model
helps to understand the specific model. We used this framework to
understand the effects of changing the functional response
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Fig. 6. Model predictions with disturbances as changes in environmental conditions for both functional responses. Predator (a) and prey (b) dynamics are shown for Holling’s

disc equation (dashed) and Ivlev’s functional response (plain). Prey carrying capacity (c) is modified every 250 time units by changing the environmental parameter 1/v. First,

with 1/v = 6, both formulations predict close dynamics. Then 1/v is decreased by an external disturbance like prey’s resource harvesting or habitat loss. Ivlev’s functional

response predicts that the system reaches an alternative stable state but not Hollingi’s disc equation (the change is only quantitative). Now, 1/v is increased to its original

value to end disturbance. While Holling’s disc equation predicts a full system recovery, Ivlev’s functional response predicts that the system stays trapped in its alternative

stable state (hysteresis phenomena). To escape this alternative state, a larger increase of 1/v is required to destroy this alternative state (1/v crosses a bifurcation threshold).

Then, after 1/v is decreased to its original value, Ivlev’s functional response predicts that the system goes back to its original state. Parameter value: log 10(Mpred/

Mprey) = 0.45. Initial conditions: Bprey(0) = 10, Bpred(0) = 2.
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formulation on equilibria stability. At the opposite, the specific
model also helps the interpretation of the generalized model (as
also argued by Yeakel et al., 2011). For example, a saddle-node
bifurcation in the generalized model is in fact a transcritical
bifurcation (a degenerated case of saddle-node bifurcation) after
which the positive equilibrium disappears (see Fig. 4). Indeed, with
the generalized model we supposed that a positive equilibrium
exists and thus cannot focus on its existence conditions. For
example, a high slope of the functional response means a higher
stability of positive equilibria, but also low prey biomass and
potentially predator extinction. This last point cannot be captured
by generalized modelling. Positive equilibria with such low prey
biomass can exist for some specific models represented by the
generalized model. Nevertheless, the distribution of generalized
parameter values among all specific models may not be uniform.

From a biological point of view, a specific model allows more
insights as processes are explicitly modelled, but a generalized
model requires less knowledge of the system to model. Indeed,
generalized modelling describes processes near equilibrium,
without specific assumptions on these processes far from this
focal equilibrium. In the example of functional response, the
generalized model needs only a knowledge of its slope near
equilibrium, which can be estimated from empirical data.
However, this knowledge allows to predict only system dynamics
near equilibrium. Knowing system dynamics far from this
equilibrium can be of interest to predict system response to
external disturbances (like in Figs. 6 and 7). Such dynamics can be
figured out under the assumption that they might be quite simple,
for example that there is only one equilibrium. However, more
complex dynamics cannot be figured out from the local knowledge
of the system near equilibrium. A deeper knowledge of the system
is required, like an accurate functional response formulation. In
this situation, we leave the generic approach of generalized
modelling to study a specific system based on more restrictive
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Fig. 7. Model predictions with disturbances as prey biomass alterations for both functional responses. Predator (a) and prey (b) dynamics are shown for Holling’s disc equation

(dashed) and Ivlev’s functional response (plain). Prey biomass is instantaneously changed every 250 time units. First, both formulations predict close dynamics. Then prey

biomass is decreased (�3 biomass units) by an external disturbance like harvesting or a contamination spike. Holling’s disc equation predicts (for this alteration and the next

ones) that the system goes back to its original state. At the opposite, Ivlev’s functional response predicts that the system moves towards an alternative stable state. To escape

this alternative state, the increase in prey biomass (e.g. by individuals introduction) has to be larger than the absolute value of the original decrease (hysteresis phenomena).

Parameter values: 1/v = 6.7, log 10(Mpred/Mprey) = 0.2. Initial conditions: Bprey(0) = 10, Bpred(0) = 2.
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assumptions. How far these restrictive assumptions are accurate in
the context of the system to model, and how uncertainties in these
assumptions influence model predictions, are questions that lead
to the study of structural sensitivity.

6. Conclusion

We investigated structural sensitivity in a predator–prey model
with density-dependent mortality using a bifurcation analysis. The
bifurcation diagram, drawn with respect to prey carrying capacity
and species body mass ratio, is modified by the choice functional
response formulation between close ones in two ways. First, there
is a unique stable limit cycle in a smaller part of the parameter
space with Ivlev’s formulation than with Hollin’s disc equation.
Using generalized modelling, we highlighted the importance of the
slope of the functional response in this difference, as it has been
previously reported for simpler predator–prey and food chain
models. Secondly, with Ivlev’s functional response, dynamics with
multiple attractors occur in a significant part of the parameter
space where only one attractor exists with Holling’s disc equation.
With Ivlev’s functional response there can be multiple stable states
and hysteresis when disturbance appears, whereas there is no such
situation with Holling’s disc equation.

Because of intrinsic data variability and because model
formulation is always a simplified representation of complex
biological processes, the choice of the functional response remains
uncertain. Here we showed that this uncertainty in the formulation
can lead to uncertainties in model predictions through (i) the kind
of stable state (equilibrium vs. fluctuations) the system will reach,
(ii) the number of alternative stable states, and as a consequence,
(iii) the system resilience in case of external disturbances. This
work rises questions about the choice of functional response
formulation in a given situation. For example, how to select a
function with enough mechanistic basis to be more relevant than
other ones, while being sufficiently simple and generic? Other
questions are: (i) how much complex ecological models can be
affected by this sensitivity to model formulation? and (ii) how to
deal with these uncertainties in model predictions? This last point
can be a challenging way of research for a better assessment of
model uncertainties and thus more accurate predictions.
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