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Global convergence of a proximal linearized algorithm
for difference of convex functions

João Carlos O. Souza1,2 ·
Paulo Roberto Oliveira1 · Antoine Soubeyran3

Abstract A proximal linearized algorithm for minimizing difference of two convex 
functions is proposed. If the sequence generated by the algorithm is bounded it is 
proved that every cluster point is a critical point of the function under consideration, 
even if the auxiliary minimizations are performed inexactly at each iteration. Linear 
convergence of the sequence is established under suitable additional assumptions.
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1 Introduction

It is well known that the class of Proximal Point Algorithm (PPA) is one of the most
studied methods for finding zeros of maximal monotone operators and, in particular, it
is used to solve convex optimization problems. The classical PPA was introduced into
optimization literature by Martinet [1]. It is based on the notion of proximal mapping
introduced earlier by Moreau [2]. The PPA was popularized by Rockafellar [3], who
showed that, in the context of maximal monotone operators, the following algorithm

0 ∈ ck T (xk+1) + xk+1 − xk (1)

converges to a point satisfying 0 ∈ T (x∗), under mild assumptions, even if the aux-
iliary minimizations are performed inexactly, which is an important consideration in
practice. In particular, if T (·) = ∂ f (·), where f is a convex function, then (1) becomes

xk+1 = arg min
x∈Rn

{ f (x) + 1

2ck
||x − xk ||2} (2)

and the sequence converges to a point x∗ ∈ arg min f (x). The algorithm is useful, how-
ever, only for convex problems, because the idea underlying the results is based on the 
monotonicity of subdifferential operators of convex functions. Therefore, PPA for non-
monotone operators (or nonconvex functions) has been investigated by many authors 
in different contexts; see, for instance [4–9] and references therein. As remarked in 
Rockafellar [3], for a proximal point method to be practical, it is also important that 
it should work with approximate solutions of the subproblems. Since then, there has 
been a growing interest in inexact versions of proximal methods and many works 
appeared, treating the problem under different perspectives; see [7–13] and references 
therein. Recently, Bento and Soubeyran [14] discussed how ”generalized” proximal 
point algorithms can be a nice tools to modelize the dynamics of human behaviours 
on the context of the “variational rationality approach”, Soubeyran [31].

Sun et al. [15] proposed a proximal point algorithm for minimization of a class 
of nonconvex functions called DC functions, i.e., difference of two convex functions, 
which use convex properties of the two convex functions separately. Moudafi and 
Maingé [16] proposed an alternative proof of the main result of [15]. It is also con-
sidered in [16] an interesting result in the case where the second component of the 
DC function is differentiable. Souza and Oliveira [17] extended this algorithm in the 
context of Hadamard manifolds considering inexact computations of each proximal 
iteration. DC functions defined on Rn , briefly DC(Rn), form an important class of 
functions, both from a theoretical point of view (see [18–21]) and for algorithmic 
purposes (see [15,22,23]). Thus, the interest in the theory of DC functions has much 
increased in the last years. DC optimization algorithms have been proved to be partic-
ularly successful for analyzing and solving a variety of highly structured and practical 
problems; see, for instance [24–26].

The aim of the paper is to study global convergence properties of a proximal lin-
earized algorithm for minimizing a nonsmooth DC function. Our algorithm seems
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to be the first one which considers a convex linear approximation in each proximal
subproblem in the context of DC functions.

The organization of this paper is as follows. In Sect. 2we give some basic definitions
and properties of DC functions and nonsmooth analysis. In Sect. 3 we describe our
method for minimizing DC functions which has the property that every cluster point of
the sequence is a critical point of the DC function. In Sect. 4 we study the convergence
of the whole sequence and its convergence rate for a special case. Finally, in Sect. 5
we establish the convergence results for an inexact algorithm.

2 Preliminaries

In this section we recall some concepts and basic results from convex analysis and
DC programming. For more details about these subjects we refer to [20,21,27,28].
The following notations will be used throughout the paper. Let 〈·, ·〉 be the canonical
inner product and || · || the corresponding Euclidean norm on Rn . The open ball with
center x ∈ R

n and radius ε > 0 is denoted by B(x, ε) = {y ∈ R
n : ||x − y|| < ε}.

Let �0(R
n) denote the convex cone of all the lower semicontinuous proper (i.e. not

identically equal to +∞) convex functions fromR
n toR := R∪{+∞}. The effective

domain of a function f , denoted dom( f ), is defined by dom( f ) = {x ∈ R
n : f (x) <

+∞}.
A general DC program is of the form α = infx∈Rn { f (x) = g(x) − h(x)}, with

g, h ∈ �0(R
n). Such a function f is called a DC function while the convex functions g

and h areDC components of f . In DC programming, the convention (+∞)−(+∞) =
+∞ has been adopted to avoid the ambiguity (+∞)−(+∞) that does not present any
interest. Actually, we are concerned with the following case α = infx∈dom(h){ f (x) =
g(x)−h(x)}, which is equivalent to the last one under the above convention.Moreover,
we suppose that dom(g) ∩ dom(h) 	= ∅.

It is well known that a necessary condition for x ∈ dom( f ) to be a local minimizer
of f is ∂h(x) ⊂ ∂g(x). In general, this condition is hard to be reached. So, we will
focus our attention on finding points such that ∂h(x) ∩ ∂g(x) 	= ∅, namely, critical
points of f , where ∂ f denotes the subdifferential of f . We will denote by S the set of
all critical points of f and throughout the paper S 	= ∅.

It is worth mentioning the richness of the class of DC functions which is a subspace
containing the class of lower-C2 functions ( f is said to be lower-C2 if f is locally a
supremum of a family of C2 functions). In particular,DC(Rn) contains the space C1,1
of functions whose gradient is locally Lipschitz. Properties which help to recognize
a DC function can be found, for instance in [18,29]. DC(Rn) is closed under the
operations usually considered in optimization. For instance, a linear combination, a
finite supremum or the product of two DC functions remain DC. Locally DC functions
on R

n are DC functions on R
n (see [21] and references therein for the details). It is

also known that the set of DC functions defined on a compact convex set of Rn is
dense in the set of continuous functions on this set. Under some caution we can say
that DC(Rn) constitutes a minimal realistic extension of �0(R

n).
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Recall that a function f : Rn → R is said to be a convex (resp. strongly convex
with modulus ρ > 0) function, if for any x, y ∈ R

n and λ ∈ [0, 1]

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)

(resp. f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) − ρ

2
λ(1 − λ)||x − y||2).

We say that f is locally convex at a point x ∈ R
n if there exists a neighborhood U of

x such that the restriction of f to U is a convex function.
Let F : Rn → 2R

n
be a multivalued operator with domain dom(F) = {x ∈ R

n :
F(x) 	= ∅}. The operator F is calledmonotone (resp. strongly monotonewithmodulus
ρ > 0), if for any x, y ∈ R

n , u ∈ F(x) and v ∈ F(y) we have

〈v − u, y − x〉 ≥ 0 (resp. 〈v − u, y − x〉 ≥ ρ||x − y||2).

A function f : Rn → R is said to be Lipschitz continuous, if there exists a constant
L > 0 such that

| f (x) − f (y)| ≤ L||x − y|| ∀x, y ∈ R
n .

A function is called locally Lipschitz continuous at a point z ∈ R
n if the above

inequality is satisfied for all x, y ∈ B(z, ε) for some L > 0 and ε > 0. Since
convex functions are locally Lipschitz continuous onRn , they are differentiable almost
everywhere. The subdifferential of f at a point x ∈ R

n is the set

∂ f (x) = {w ∈ R
n : f (y) ≥ f (x) + 〈w, y − x〉 ∀y ∈ R

n},

if x ∈ dom( f ) and ∂ f (x) = ∅, if x /∈ dom( f ). The subdifferential of a convex
function f at a point x ∈ dom( f ) is a nonempty, convex and compact set. When f
is both convex and differentiable at some point x ∈ dom( f ), then the subgradient
is unique and equals to the gradient, i.e., ∂ f (x) = {∇ f (x)}. Furthermore, a lower
semicontinuous function f is convex (resp. strongly convex) if and only if ∂ f (·) is a
monotone operator (resp. strongly monotone operator).

A sequence {yk} is called Fejér convergent to a nonempty set U ⊂ R
n if

||yk+1 − u|| ≤ ||yk − u||,

for all u ∈ U and k ∈ N.

Proposition 1 If {yk} is Fejér convergent to a nonempty set U ⊂ R
n, then {yk} is

bounded. Furthermore, if every cluster point y of {yk} belongs to U, then limk→∞ yk =
y.

Proof See [30]. ��
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3 Proximal linearized Algorithm

Consider f : Rn → R a DC function bounded from below, i.e., f (x) = g(x) − h(x),
with g, h ∈ �0(R

n). In this section, we present the following proximal linearized
algorithm for finding critical points of a DC function f , which considers in each
proximal subproblem a linear approximation of f .

Algorithm 1

Step 1: Given an initial point x0 ∈ dom( f ) and a bounded sequence of positive
numbers {λk} such that lim infk λk > 0.

Step 2: Calculate
wk ∈ ∂h(xk). (3)

Step 3: Compute

xk+1 ∈ arg min
x∈Rn

{
g(x) − 〈wk, x − xk〉 + 1

2λk
||x − xk ||2

}
. (4)

Step 4: If xk+1 = xk , stop. Otherwise, set k := k + 1 and return to Step 2.

The well definition of {wk} and {xk} is guaranteed if h, g ∈ �0(R
n). Note that if

h(x) ≡ 0, then Algorithm 1 becomes exactly the classical proximal point algorithm
for convex functions (2).

Remark 1 It is worth mentioning that our algorithm and DCA algorithm (see [22])
share the same idea, namely, they linearize some component g(·) or h(·); or both of the
DC objective function f (x) = g(x)−h(x). However, Algorithm 1 is simpler because
linearization is done directly, and not on the dual components, besides the fact that
proximal algorithms are more efficient than subgradient algorithms. Recently, Bento
and Soubeyran [14] discussed how ”generalized” proximal point algorithms can be
a nice tools to modelize the dynamics of human behaviours on the context of the
“variational rationality approach” (see Soubeyran [31]), where the term ”generalized”
refers to a quasi distance such that not necessarily all the axioms of distance are
verified, but preserving the nice properties of convexity, continuity and coercivity
of the Euclidean norm. In this “variational rationality approach”, costs to be able
to change from the current position xk to xk+1 and costs to be able to stay in the
current position xk are not necessarily symmetric and equal to zero, respectively. In
this context, Algorithm 1 seems to be more appropriate than the algorithm proposed in
[15], because in our algorithm there is no auxiliar sequence working in the quadratic
term in (4) while the algorithm in [15] has.

Now we shall establish the convergence of the algorithm. We begin by showing
that Algorithm 1 is a descent algorithm.

Theorem 1 The sequence {xk} generated by Algorithm 1 satisfies:

1. either the algorithm stops at a critical point;
2. or f decreases strictly, i.e., f (xk+1) < f (xk), for all k ∈ N.
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Proof From (3) and (4) we have wk ∈ ∂h(xk) and

wk ∈ ∂g(xk+1) + 1

λk
(xk+1 − xk), (5)

respectively. If xk+1 = xk , then wk ∈ ∂h(xk) ∩ ∂g(xk), which means that xk is a
critical point of f . Now, suppose xk+1 	= xk . It follows from (3) and h ∈ �0(R

n) that

h(xk+1) ≥ h(xk) + 〈wk, xk+1 − xk〉. (6)

On the other hand, from (4), we have

g(xk) ≥ g(xk+1) − 〈wk, xk+1 − xk〉 + 1

2λk
||xk+1 − xk ||2. (7)

Adding inequalities (6) and (7), we obtain

f (xk) ≥ f (xk+1) + 1

2λk
||xk+1 − xk ||2. (8)

Since {λk} is a positive sequence and xk+1 	= xk , then f (xk+1) < f (xk). ��
Next result is a consequence of Theorem 1 and the lower boundedness of f .

Corollary 1 Consider {xk} generated by Algorithm 1. Then the sequence { f (xk)}
is convergent. Furthermore, if f is a continuous function and {xk} is bounded, then
limk→∞ f (xk) = f (x), for some cluster point x of {xk}.

The following proposition will be useful to prove the convergence theorem.

Proposition 2 Let {xk} be generated by Algorithm 1. Then limk→+∞ ||xk+1 − xk || =
0.

Proof From (8), we have that
∑n−1

k=0
1

2λk
||xk+1 − xk ||2 ≤ f (x0) − f (xn). Since f is

bounded from below and lim infk λk > 0, we obtain
∑∞

k=0 ||xk+1 − xk ||2 < ∞, and
it follows that limk→+∞ ||xk+1 − xk || = 0. ��

Note that from (3) and convexity of h, if {xk} is bounded, then {wk} is also bounded.

Theorem 2 Suppose that {xk} is bounded. Then every cluster-point of {xk} is a critical
point of the function f .

Proof Let x∗ andw∗ be cluster points of {xk} and {wk}, respectively. Then, there exist
two subsequences xk j and wk j converging respectively to x∗ and w∗, i.e., xk j → x∗
and wk j → w∗. Since h is convex and lower semicontinuous, it follows from (3) and
the definition of subdifferential, taking j goes to +∞, that w∗ ∈ ∂h(x∗). Now, we
claim that w∗ ∈ ∂g(x∗). From (5), there exists zk j +1 ∈ ∂g(xk j +1) such that

||wk j − zk j +1|| = 1

λk j

||xk j +1 − xk j ||. (9)
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Since {λk} is bounded, combining (9) and Proposition 2, we get that lim j→+∞ wk j =
lim j→+∞ zk j +1 = w∗. Therefore, since g ∈ �0(R

n) and combining the definition of
the subdifferential and the fact that zk j +1 ∈ ∂g(xk j +1), taking j goes to+∞, we have
w∗ ∈ ∂g(x∗). Thus, w∗ ∈ ∂h(x∗) ∩ ∂g(x∗), which means that x∗ is a critical point of
f . ��
Remark 2 If f is continuous and {xk} is bounded it can be easily proved that the whole
sequence {xk} converges to some critical point x∗ ∈ S, as long as S satisfies the sharp
minima condition; see [32]. Recently, finite termination and convergence rate of the
proximal point method has been studied under the concept of weak sharp minima,
Kurdyka-Lojasiewicz property and subregularity property; see [9,33,34]. We hope
that this paper may stimulate further research involving proximal linearized algorithm
for DC functions and these concepts. The results presented in this section are still true
if we consider an approximate version obtained by replacing the exact subdifferential
by the approximate one such as in [16].

4 Global convergence

Let us consider now the special case discussed in [16] where f is a DC function with
f (x) = g(x) − h(x) and the function h is differentiable. In this context (3) and (4)
reduce to

xk+1 ∈ arg min
x∈Rn

{
g(x) − 〈∇h(xk), x − xk〉 + 1

2λk
||x − xk ||2

}
(10)

and x∗ is a critical point of f if ∇h(x∗) ∈ ∂g(x∗).

Theorem 3 Consider Algorithm 1 with (3) and (4) replaced by (10). Suppose that g
is a strongly convex function (with constant ρ > 0) and ∇h(x) a Lipschitz continuous
function (with constant L > 0). If ρ > 2L, then there exists a constant 0 < r < 1
such that

||xk+1 − x∗|| ≤ r ||xk − x∗|| ∀x∗ ∈ S. (11)

Therefore, the whole sequence {xk} converges linearly to a point x∗ ∈ S.

Proof From (10), there exists zk+1 ∈ ∂g(xk+1) such that

∇h(xk) = zk+1 + 1

λk
(xk+1 − xk). (12)

Let x∗ ∈ S be a critical point of f , namely,∇h(x∗) ∈ ∂g(x∗). By strong monotonicity
of ∂g(·) and (12), we have

0 ≤ 〈xk+1 − x∗, zk+1 − ∇h(x∗)〉 − ρ||xk+1 − x∗||2

= 〈xk+1 − x∗, xk − xk+1

λk
+ ∇h(xk) − ∇h(x∗)〉 − ρ||xk+1 − x∗||2.
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Thus, since λk > 0, using the Cauchy-Schwarz inequality and the fact that ∇h(·) is a
Lipschitz function, we have

0 ≤ 2λk〈xk+1 − x∗,∇h(xk) − ∇h(x∗)〉 − 2〈xk+1 − x∗, xk+1 − xk〉
−2λkρ||xk+1 − x∗||2

≤ 2λk L||xk+1 − x∗||||xk − x∗|| − ||xk+1 − x∗||2 − ||xk − xk+1||2
+||xk − x∗||2 − 2λkρ||xk+1 − x∗||2

≤ 2λk L(||xk+1 − x∗||2 + ||xk − x∗||2) − ||xk+1 − x∗||2 − ||xk − xk+1||2
+||xk − x∗||2 − 2λkρ||xk+1 − x∗||2

= (1 + 2λk L)||xk − x∗||2 − [1 + 2λk(ρ − L)]||xk+1 − x∗||2 − ||xk − xk+1||2.

It immediately follows that

[1 + 2λk(ρ − L)]||xk+1 − x∗||2 ≤ (1 + 2λk L)||xk − x∗||2.

The first assertion is proved setting 0 < r :=
√

(1 + 2λk L)

1 + 2λk(ρ − L)
< 1 in the last

inequality. The second one follows from Proposition 1 and Theorem 2. ��
Remark 3 If all the assumptions of Theorem 3 are satisfied and f is lower semicontin-
uous and locally convex at the limit point x∗ of {xk}, then there exist a neighborhood
U of x∗ and k0 ∈ N such that xk ∈ U , for all k ≥ k0 and the restriction of f to U is a
convex function. From (5), we have

1

λk
(xk − xk+1) + ∇h(xk) − ∇h(xk+1) ∈ ∂g(xk+1) − ∇h(xk+1) ⊂ ∂ f (xk+1)

that means, f (x) ≥ f (xk+1) + 〈 1
λk

(xk − xk+1) + ∇h(xk) − ∇h(xk+1), x − xk+1〉,
for all x ∈ U . Having in mind that ∇h(·) is Lipschitz continuous and Proposition 2 it
follows from last inequality, taking the lower limit, that x∗ is a local minimizer of f .
This provided a sufficient condition for a limit point of {xk} to be a local minimizer
of f .

5 Inexact version

For the method to be practical, it is important to handle approximate solutions of
subproblems. This consideration gives rise to inexact versions of the proximal point
algorithm. Now, we present the following inexact algorithm for DC functions.

Algorithm 2

Step 1: Given an initial point x0 ∈ dom( f ), θ > 0, σ ∈ [0, 1) and a bounded sequence
of positive numbers {λk} such that lim infk λk > 0.

Step 2: Calculate
wk ∈ ∂h(xk). (13)
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Step 3: Compute (xk+1, ξ k+1) ∈ R
n × R

n such that:

g(xk) − g(xk+1) − 〈wk, xk − xk+1〉 ≥ (1 − σ)

2λk
||xk+1 − xk ||2, (14)

with
||ξ k+1 − wk || ≤ θ ||xk+1 − xk ||, (15)

where
ξ k+1 ∈ ∂g(xk+1). (16)

Step 4: If xk+1 = xk , stop. Otherwise, set k := k + 1 and return to Step 2.
Note that when h(x) = 0 Algorithm 2 becomes exactly the algorithm proposed in

[9]. It follows from (14) that

g(xk+1) − 〈wk, xk+1 − xk〉 + 1

2λk
||xk+1 − xk ||2 ≤ g(xk) + εk,

where 0 ≤ εk = σ
2λk

||xk+1 − xk ||2. When εk = 0 (it holds by taking σ = 0) (4)
implies the weaker condition (14).

Theorem 4 The sequence {xk} generated by Algorithm 2 satisfies:

1. either the algorithm stops at a critical point;
2. or f decreases strictly, i.e., f (xk+1) < f (xk), for all k ∈ N.

Furthermore, limk→+∞ ||xk+1 − xk || = 0.

Proof The proof uses exactly the same argument as the one used to prove Theorem 1
and Proposition 2 having in mind that σ ∈ [0, 1). ��
Corollary 2 Consider {xk} generated by Algorithm 2. Then the sequence { f (xk)}
is convergent. Additionally, if f is a continuous function and {xk} is bounded, then
lim

k→∞ f (xk) = f (x), for some cluster point x of {xk}.

Proof The proof uses the same argument as the one used to prove Corollary 1. ��
Theorem 5 Let {xk} generated by Algorithm 2. Then every cluster point of {xk}, if
any, is a critical point of f .

Proof Let x∗ be a cluster point of {xk}. So, consider a subsequence {xk j } of {xk}
converging to x∗. As mentioned before, we know that {wk} is also bounded. Consider
a subsequence {wk j } of {wk} converging to w∗. From (15) and Theorem 4, we have

lim
j→+∞ ξ k j +1 = lim

j→+∞ wk j = w∗. (17)

From definition of the algorithm wk j ∈ ∂h(xk j ) and ξ k j +1 ∈ ∂g(xk j +1). Therefore,

h(y) ≥ h(xk j ) + 〈wk j , y − xk j 〉 ∀y ∈ R
n

9



and

g(y) ≥ g(xk j +1) + 〈ξ k j +1, y − xk j +1〉 ∀y ∈ R
n,

respectively. Taking j goes to +∞ in last two inequalities, since h, g ∈ �0(R
n), we

have w∗ ∈ ∂h(x∗) ∩ ∂g(x∗) and the proof is complete. ��

6 Conclusion

Future researches will examine the case where the Euclidean norm in the regulariza-
tion term is replaced by a generalized quasi distance which is more appropriate to
interpret our results in terms of behavioural science. Algorithms for multiobjective
DC problems has not been considered yet. An extension of our algorithm to this con-
text will be studied as well as modified versions of the algorithms where linear or
quadratic approximations of g will be considered. We expect that the results of this
paper become a further step towards solving DC optimization problems. We foresee
further progress in this topics in the near future.

Acknowledgments The authorswish to express their gratitude to the anonymous referees for themhelpful
comments.
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