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Abstract

When redox enzymes are attached to electrodes and undergo direct electron
transfer, their voltammetric responses exhibit diverse shapes that, if analyzed
correctly, may inform about various aspects of the catalytic mechanism. Here
we review the models that have been proposed to interpret these signals in
relation to the thermodynamics and kinetics of interfacial and intramolec-
ular electron transfer and active site chemistry. We list the corresponding
equations in forms that are ready to use for fitting, and the commands that
run these fits in the open source software QSoas. We relate these models to
those that have been used for characterizing small synthetic redox catalysts
diffusing in solution.
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• Models explain the voltammetric response of catalysts attached to ro-
tating electrodes

• The steady-state responses report on the properties of the catalytic
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• Redox-driven and slow conversion between active/inactive states results
in hysteresis

• The open source software QSoas makes it easy to adjust the model to
the data

• The models developed for enzymes could be used in studies of molecular
catalysts

1. Introduction

Living organisms use enzymes for the catalysis of many important re-
actions. Electrochemists have actively engaged in developing methods for
using these enzymes; in contrast we focus here on how electrochemical meth-
ods can be helpful for understanding how enzymes work. This fundamental
challenge has broad implications in the context of electrocatalysis, consid-
ering that certain redox enzymes catalyse reactions that are very important
for the activation of small molecules and the production of solar fuels.

The business end of these redox enzymes, which are incredibly large and
complex proteins, is a small active site that most often consists of an organic
or inorganic cofactor. This active site is deeply buried in the protein matrix
and connected to the exterior by amino acid and water molecules that transfer
protons, cavities that guide the diffusion of the substrate and product, and
chains of cofactors that mediate electron transfer (ET). The chain of redox
relays that mediate ET between the active site and the protein surface can
also be used for achieving direct ET to or from an electrode: having the
surface exposed redox relay close to the electrode surface wires up the active
site [1, 2].

This paper is the first comprehensive review of the models that have been
developed to quantitatively interpret the voltammetry of redox enzymes since
2008 [3]. Progress has since been made in several directions including the
interpretation of voltammograms that show catalytic currents in both direc-
tions and/or strong hysteresis, and how the voltammetric features depend on
the kinetics and thermodynamics of intramolecular ET along the redox chain
that connects the active site to the electrode. Here we summarize all available
models and underlying assumptions, and explain how they can easily be im-
plemented in a particular open source software [4, •]. Following up on recent
papers about the differences between enzymes and molecular or solid-state
electrocatalysts [5, 6], we explain here how the models originally developed
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for enzymes compare with those that are used to explain the voltammetry of
molecular catalysts, and we argue that the knowledge acquired by studying
the former should benefit the characterization of the latter.

2. General considerations

The current observed with adsorbed enzyme molecules is proportional to
the average turnover frequency of the adsorbed enzymes, and to the value
of the electroactive coverage Γ. In most cases Γ is unknown, which prevents
the absolute value of the turnover frequency to be determined, but important
information can be obtained from the relative change in current that results
from a change in experimental conditions: addition of substrate or inhibitor
[7–13], illumination [14–17], or change in electrode potential (E) as illustrated
below.

The voltammetry of enzymes has been analyzed in terms of a "resistance
model," where the current is expressed as a sum of reciprocal current contri-
butions for interfacial ET, enzyme kinetics and mass transport towards the
rotating disc electrode (RDE): 1/i = 1/iE + 1/icat + 1/iLevitch. The merit of
this model is that it lists the processes that may limit the catalytic current.
However, it cannot be used to quantitatively analyze the response since the
three terms are actually not independent. It is more useful to obtain a cur-
rent equation from a realistic kinetic scheme, as proposed early on in refs
[18, 19].

Taking into account mass-transport towards the RDE results in current
equations of considerable complexity [3, 19, 20]. Instead, we shall assume here
that fast electrode rotation rate prevents substrate depletion, a situation that
is favorable for mechanistic studies.

3. Steady-state, two-electron, one-way catalysis, sigmoidal shapes

We first discuss the case of an enzyme that irreversibly catalyses a two-
electron reaction, ignoring the ET chain. We call this the EECi model,
where E is a redox transformation of the active site and Ci the irreversible
transformation of substrate into product. We denote "O", "I" and "R" as
the oxidized, intermediate (half-reduced) and reduced forms of the active
site, respectively.

Changing the electrode potential changes the redox state of the active
site and the resulting catalytic current, which is proportional to the steady-
state fraction of active site that is in the right oxidation state for turning
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over the substrate. The position of the waveshape along the E axis therefore
informs on the two formal reduction potentials of the active site. However,
just like Michaelis constants are not necessarily true dissociation constants
(see box 1), it is now clear that these potentials are not necessarily true
thermodynamic parameters.

In the model, there is no need to assume a priori that substrate binds to
a particular redox state of the active site. This information about substrate
binding can be obtained a posteriori by examining the dependence of the
formal reduction potential of the active site on substrate concentration [23,
24]. Substrate binding is one of the reasons why the catalytic potential may
deviate from the reduction potential of the active site measured under non-
turnover conditions (note that such deviation occurs anyway according to all
models that are more complex than EEC, see Box 1).

The current goes from zero at low driving force to a plateau value (ioxlim)
that only depends on the pseudo-first-order rate kox of the Ci step (kox de-
pends on substrate concentration). The steepness of the sigmoidal wave is
characterized by an apparent number of electrons n, determined either by
fitting a sigmoidal function (i = ioxlim/(1+expnF/RT (Ecat−E))) or from the
slope of a plot of log(i/ioxlim − 1) against E (as shown herein in the insets in
fig 1, and in ref [23]).

Considering e.g. oxidative catalysis, if the intermediate form of the active
site is stable over a large range of potential ( EO/I > EI/R ), the signal is a
one-electron wave centered on the potential of the O/I couple of the active
site (fig 1e). If EO/I is close to EI/R, the steepness of the wave changes from
n = 2 at the onset of catalysis to n = 1 near the plateau [23] (fig 1e). If
the intermediate redox state is unstable (EO/I < EI/R ), the signal is a two-
electron wave centered on the 2-electron reduction potential EO/R. Note that
the ECi model is a limiting case of the EECi model: when EO/I > EI/R the
position of the oxidative wave depends only on EO/I.

Interfacial ET limitations can be taken into account by using the simple
Butler-Volmer equation with α = 1/2. (We denote k0 as the interfacial ET
rate constant at zero driving force.) Additional terms in the rate equation
contribute in proportion to the ratio of kox/k0 and broaden the wave all the
more that the current is large (that is, near the plateau), leaving the plateau
value unchanged (fig 1f).

The above model is made more general by considering that a distribution
of enzyme molecule orientations on the electrode results in a distribution of
k0 values (fig 51 in ref [3] and refs [20, 21, 25][26, •]). The model assumes
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that (i) the rate of interfacial ET is k0 exp(−βd), where d is the distance
over which interfacial ET occurs (the distance between the electrode and
the surface exposed redox center) and β is a decay coefficient, and (ii) d is
uniformly distributed between dmin and dmin+d0, hence d0 is the width of the
distance distribution. If d0 is large, the current ends on an inclined (instead
of truly horizontal) plateau, the slope of which is proportional to the limiting
current that is not reached in the experimental potential window (eq 10 in
ref [21] and fig 1h).

In many enzymes, ET between the electrode and the active site is medi-
ated by a linear chain of one-electron redox relays. Following the observation
that the wave of sulfite oxidase deviates from the potential of the active site
molybdenum [27], a model was proposed to explain that the wave poten-
tial may vary between the potential of the relay and that of the active site,
depending on the competition between intramolecular electron transfer and
active site chemistry (see the discussion of fig 18 in ref [3] and ref [28]). The
corresponding maths is necessarily heavy because the effect of intramolecular
ET on the voltammogram of an enzyme that has a two-electron active site
and N one-electron relays requires that the kinetic model include the transi-
tions between 3×2N microstates. General conclusions can be drawn from the
analytical predictions for N = 1 [28][22, ••]. If the kinetics of intramolecular
ET is fast, the redox chain is "transparent": the catalytic wave only depends
on the properties of the active site and on the kinetics of interfacial ET. If
intramolecular ET limits the turnover rate, then the position and magnitude
of the wave depend on the potentials of both the active site and the relay,
and on the kinetics of both intramolecular ET and active site chemistry.

4. Steady-state, one- and two-electron, bidirectional catalysis, sig-
moidal shapes

When the enzyme is a "good" catalyst in the two directions of the redox
reaction and if both the substrate and the product are present in solution,
the voltammetric current goes from negative to positive as the electrode
potential is varied, crossing i = 0 at the equilibrium potential (or "open
circuit potential", OCP) (figs 1i–p). The OCP equates the Nernst potential
of the substrate/product couple [23, 29–31]. This thermodynamic parameter
does not characterize the enzyme, although its determination using protein
film voltammetry may be nevertheless very valuable [32, •][33, •].
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Kinetic models for bidirectional electrocatalysts have been proposed only
very recently [26, •][22, ••]. The ECr, EECr, EECrCr, ECrECr models have
all been considered (where Cr is a reversible chemical reaction, one of which
is the transformation between substrate and product). Even in the absence
of interfacial ET limitations, various shapes can be predicted depending on
the parameters, from a one- (fig 1i) or two-electron sigmoid that is offset
along the Y axis (fig 1i), to a sum of two one-electron sigmoids shifted along
the E axis on either side of the OCP (fig 1m).

Of particular interest is the discussion of the factors that determine these
"catalytic overpotentials" in the two directions of the reaction. (The overpo-
tential is defined here as the difference between the position of the catalytic
signal and the OCP [22, 34, 35].) Thermodynamic stability of the half re-
duced form of the active site (EO/I > EI/R) is one of several possible reasons
for the existence of a catalytic overpotential (fig 1m). Box 1 comments on
the interpretation of the parameters obtained from the fit.

Note that the ECr model would be a limiting case of the EECr model
only if EO/I − EI/R = RT/F log(4), which is not expected to be true over a
wide range of experimental conditions [22, ••].

Slow interfacial ET and a distribution of k0 values broadens the bidirec-
tional catalytic wave in a manner that is similar to that discussed above for
unidirectional catalysis [26, •][22, ••] (figs 1n–p).

A kinetic model for bidirectional 2-electron catalysis that explicitely takes
into account intramolecular ET through a single one-electron relay has been
discussed in ref [22, ••]. The kinetics of intramolecular ET affects the voltam-
metric features (the two catalytic potentials) in a non trivial manner. An
alternative approach postulates that intramolecular ET is so slow that one
can consider only the relay and not the active site [26, •][36]; in that case
of course, the predicted signal is a one-electron wave (fig 1i) centered on
the potential of the relay. According to this model, a separation between
the cathodic and anodic waves (catalytic overpotential) can only be the con-
sequence of slow interfacial ET, which broadens the signal and shifts each
reaction towards greater driving force (fig 1j; the value of k2/k0 is very large
for the signal in this plot, in order to accentuate the effect). This is unlike
the models that take into account the three redox states of the active site
(see above and fig 1m).
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5. Seady-state, two-electron, complex waveshapes

The steady-state response sometimes exhibits a sigmoidal current boost
or decrease that is superimposed onto the "main" catalytic response [37], as
recently illustrated in studies of flavo- [38], molybdo- [39] or heme-enzymes
[40–42]. This may result from allosteric effects: active site chemistry and/or
intramolecular ET kinetics may be affected by the redox state of a center
that is remote from the active site. However, kinetic models that merely
take into account slow substrate binding to different redox states of the ac-
tive site also give current equations that are useful in this context [3, 43, 44].
These models depend on many parameters that may be difficult to deter-
mine independently, and data analysis most often consists in fitting ad hoc
combinations of sigmoidal functions [45], and interpreting their dependence
on experimental parameters, including substrate concentration and/or pH.

6. Departure from steady-state

The voltammetric response of many metalloenzymes is altered by a redox-
driven transformation between active and inactive states that is slow on the
time scale of turnover and slow on the time scale of the voltammetry.

Active
ki(E)



ka(E)
Inactive (1)

(In)activation clearly shows up in the voltammetry as a hysteresis that cannot
be explained by film loss (fig 2), as initialy exemplified by NiFe hydrogenases
[49, 50], and more recently by FeFe hydrogenases [47, 51, 52][53, •] and
molybdo-enzymes [46, 54].

In initial studies of the mechanism of (in)activation, the dependence of
the rate constants ki and ka on potential must be determined in chronoam-
perometry experiments. Indeed, after a potential step, the catalytic current
relaxes towards a new steady-state with a time constant τ = 1/ki + 1/ka.
Both the magnitude and time constant of the transient signal must be in-
terpreted to independently determine ki and ka at a given potential, and
the experiment must repeated at different potentials to determine ki(E) and
ka(E) [55]. This strategy is also useful when two inactive species are formed
and the (in)activation kinetics is not first-order [51, 54].
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Once the dependence of ki and ka on E is known, the time-dependent
fraction of active enzyme (A(t)) in a voltammetric experiment is obtained by
solving dA(t)/dt = −kiA(t) +ka(1−A(t)) and the voltammogram at a given
scan rate can be calculated by multiplying the steady-state response of the
fully active enzyme by the time-dependent A(t) (fig 2) [25, 46–48, 51, 55].

An equation has also been obtained by combining the ECr steady-state
response with a time-independent function that gives the fraction of enzyme
in a particular state (eq 20 in ref [45]). However, this approach cannot
account for the hysteresis observed at a given scan rate or for the dependence
of the signal on scan rate (fig 2).

The voltammetry resulting from the high-potential reversible inactivation
of NiFe hydrogenases has been particularly studied. The rate constant of
inactivation (ki) is slow and independent of E whereas the rate constant of
activation (ka) increases exponentially as the electrode potential decreases
[49]. Simple analytical expressions can be deduced and fitted to portions
of the voltammograms [48] (fig 2C). The meaning of the so-called "switch
potential" (Esw, the potential where reactivation occurs on the scan towards
low potential, fig 2C) is now clear: reactivation occurs when ka(E) reaches
the same order of magnitude as the time scale of the experiment, which
depends on the scan rate ν (see the discussion of eq. 8 in ref [48]):

ka(Esw) = Fν/RT (2)

Equation 2 explains why in the case of NiFe hydrogenases, the value of Esw

changes in proportion to log(ν) [48], and it can also be used when two inactive
species successively reactivate on the downward potential sweep [52, 56].

7. The case of small synthetic catalysts

Molecular catalysts are nearly always studied in the situation where the
catalysts are allowed to diffuse to and from the stationary electrode [57].
If "secondary phenomena" such as substrate depletion and interfacial ET
limitations are negligible, the voltammetric signal is a one-electron sigmoid.
The popular "foot of the wave analysis" [58] consists of deducing the plateau
current (hence the turnover frequency of the catalyst) from the exponential
increase in current at the onset of the signal and the mid-point potential of
the one-electron sigmoid, which is assumed to equate the potential of the
redox couple that triggers catalysis, determined in the absence of substrate.
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This hypothesis, however, is only valid in the framework of an EC model,
provided that the chemical step does not shift the equilibrium between the
redox catalyst and the electrode. In more realistic models (EECiCi, ECiECi),
the use of this method encounters further challenges; the wave may not be
centered on the redox potential of the catalyst measured under non turnover
conditions [59, ••] and there is therefore no information in the foot of the
wave. In this case, the turnover frequency of the catalyst must be determined
either from the plateau current or from detailed kinetic studies [60, ••].

Very complex and informative current responses have been observed with
adsorbed enzymes, and it is surprising that the response of molecular cat-
alysts could be characterized by just a mid wave potential and a plateau
current. Catalyst diffusion probably blurs meaningful features of the current
response (in addition to making realistic kinetic models difficult to solve),
and we expect that re-examining this voltammetry after the catalysts are
attached to flat RDEs should produce different results. Recently, various
methods have been proposed to attach molecular catalysts onto electrodes
[61–65][66, •][67, ••], often with the aim of enhancing stability and usability.
The voltammetry of Ni-diphosphine hydrogenase mimicks attached to a pla-
nar rotating graphite electrode demonstrates complex and information rich
signals, showing hysteresis and unexpected trace crossings [67, ••]; there is no
doubt that a wealth of mechanistic information could be obtained from its de-
tailed examination. In contrast, the response of similar complexes attached
to nanostructured materials is featureless [62], probably because substrate
and/or electron transport within the electrode material is a limiting factor.

The question of whether or not the presence of the electrode may affect
the properties of the electrocatalyst is even more acute in the case of small
molecules than in the case of enzymes (whose active site is buried in the
protein matrix and insulated from the electrode). With enzymes, it has often
been possible to design experiments in homogeneous solution that support
the conclusions from electrochemical experiments to confirm that a particular
feature observed for the adsorpbed enzyme is not the result of the interaction
between the protein and the electrode [68]. Comparing the properties of the
adsorbed catalysts to those of freely diffusing molecular catalysts [65] will also
be an important step in the electrochemical study of molecular catalysts.
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Figure 1: Steady-state catalytic waveshapes for adsorbed catalysts and enzymes. The
black lines show the various catalytic wave shapes (i against E) for adsorbed catalysts,
predicted by the ECi, EECi (substrate oxidation only), ECr, and EECr models (rows
1 to 4, respectively), considering either Nernstian equilibrium between the catalyst and
the electrode (1st column), or the effect of slow interfacial ET (second column), and a
dispersion of k0 values (3rd and 4th columns, k0 and βd0 are defined in the main text).
The shapes allowed by the two-electron models (EEC) are actually more diverse than these
illustrations suggest. The insets show the plots of log(iilim/i − 1) against E, with slopes
indicated as multiples of −nF/RT . Vertical ticks in panels i–p indicate the OCP values.
The 1st derivatives of the signals (di/dE) are shown as dashed blue lines. Table 1 lists
the corresponding equations.
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Figure 2: Large hysteresis resulting from the slow, reversible conversion between active and
inactive forms of the enzyme (all data recorded at a RDE). The dotted lines are the fits of
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range 2–20 mV/s [47]. Panel c: H2 oxidation by the V74N mutant of D. fructosovorans
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A general concern in enzyme kinetics is that kinetic models based on differ-
ent hypotheses may produce the same rate equation. This implies that the
parameters in the rate equation have intrinsically ambiguous meaning.
For example, it is well known that all models in the table below give the
Michaelis-Menten rate law, but with different meanings for vm and KM ;
this leads to endless debates about whether or not the value of KM can be
interpreted as a thermodynamic parameter (a true dissociation constant).
Based on the results of steady-state measurements alone, it is not possible
to differentiate between these possibilities.

Models giving rate equation v = vm/(1 +KM/[S]) vm KM

E + S
Kd

 ES → E + P k2CE Kd

E + S
k1/k−1


 ES
k2→ E + P k2CE

k2+k−1

k1
> Kd

E + S
k1→ ES

k2→ E + P k2CE
k2
k1

E + S
k1/k−1


 ES
k2→ ES′ k3→ E + P k2k3CE

k2+k3
k3

k2+k3

k−1+k2
k1

The same considerations apply in electrochemical studies. In Table 1 we only
listed the equations of the EEC models; not those of the related ECEC &
EECC models, because they are identical. However, the meaning of the cat-
alytic potentials is different and is model-dependent. In particular, only in
the case of the simplest EEC models are the catalytic potentials determined
by fitting equal to "true" thermodynamic parameters [22, ••]. (A different
equation is only obtained if one simultaneously considers intra and inter-
molecular ET, which is the EECr(R) model in ref [22, ••] and in Table 1.)
This issue is also relevant in the case of a diffusing catalyst, as evidenced in
the equations recently derived for the EECiCi and ECiECi reaction schemes
[59, ••] (the corresponding Cr cases have not been considered yet).
Box 1: The parameter ambiguity issue, in solution kinetics and in electro-
chemical studies of adsorbed or diffusing catalysts.
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