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We address the problem of a planner looking for the efficient network when
agents play a network game with local complementarities and links are costly.
We show that for general network cost functions, efficient networks belong to
the class of nested split graphs. Next, we refine our results and find that, de-
pending on the specification of the network cost function, complete networks,
core–periphery networks, dominant group architectures, quasi-star networks,
and quasi-complete networks can be efficient.
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1. Introduction

Social networks play an important role in shaping agents’ decisions. A natural concern
for a planner is thus to find the network structure that maximizes social welfare. We
examine this efficiency problem in a two-stage game: first, the planner designs a costly
network and second, agents choose an effort level in a game where interactions are lin-
ear and neighbors’ effort levels are strategic complements. In this setting, equilibrium
utilities are proportional to the square of agents’ Bonacich centralities (Ballester et al.
2006) and therefore are dependent on the network structure designed in the first stage.
The cost of forming links is defined in a general way: agents have an individual linking
type, which determines how costly it is to link them to each other, and the network cost
is increasing in the sum of the value of all the links in the network. This general formu-
lation includes the standard case of a constant cost per link, as well as many other cases
described below.
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Our general result (Theorem 1) is that efficient networks belong to the class of nested
split graphs (NSG). We prove this by identifying a multiple-link reallocation between two
agents that increases the sum of utilities. This reallocation, herein called a neighborhood
switch, consists in deleting the links of the agent with lower centrality and recreating
them for the agent with higher centrality. If the network cost increases with this reallo-
cation, we combine it with the permutation of the two agents so as to guarantee that so-
cial welfare strictly increases. Our finding complements the results of König et al. (2014),
who obtain the NSGs in a decentralized dynamic link formation process where costless
linking opportunities appear at random. In other words, not only stable networks,1 but
also efficient networks are NSGs.

Next, we specify various network cost functions and single out specific members
of the class of NSGs. We start by considering a case where individuals have the same
linking type. When interaction intensity goes to zero, we show that for any network cost
function, the efficient network is either empty, a quasi-star network, or a quasi-complete
network (Proposition 1). A quasi-star network is built by forming as many central agents
as possible with a given number of links, while a quasi-complete network is built by
forming the largest possible complete component. When interaction intensity is general
and the network cost is a concave or linear transformation of the number of links, the
efficient network is either the empty or the complete network (Proposition 2). Under
more general network costs, numerical simulations show that complex NSG structures
can be efficient.

We then turn to heterogeneous individual linking types and consider two polar
cases. When the cost of a link between two individuals depends on the lower individual
linking type of the two, the efficient network is a core–periphery network (Proposition 3),
which is a generalization of the star network with several central agents. Conversely,
when the cost of a link between two agents depends on the higher individual linking
type of the two, the efficient network is a dominant group architecture (Proposition 4),
which is a family of networks consisting of a complete component of any size and iso-
lated agents. Finally, we consider general cases of heterogeneity in individual linking
types and illustrate again how efficient NSGs can have complex structures.

Related literature

The issue of finding efficient networks has been analyzed in the context of strategic
network formation games. A pioneering literature addressed this question in a set-
ting where agents derive utility from their connections (for seminal contributions, see
Jackson and Wolinsky 1996 and Bala and Goyal 2000). However in this paper, agents
derive utility from a chosen action.

Some recent papers have addressed efficiency in models of network formation with
endogenous choice of action. In the context of research and development (R&D) net-
works, Goyal and Moraga-González (2001) restrict their attention to regular networks
(i.e., where agents all have the same number k of links) and derive the number k that

1The stability notion we refer to is the one used in König et al. (2014), where agents dynamically revise
their linking strategies. We refer the reader to their paper for more details.
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maximizes social welfare. In a dynamical setting, König et al. (2012) show that the ef-
ficient network structure depends on the marginal cost of collaborations. When cost
is high, it is asymmetric and has a nested structure. Westbrock (2010) and Billand
et al. (2015) study efficiency in games with global spillovers à la Goyal and Joshi (2003),
whereas we consider a network with bilateral influences. In the context of local public
goods, Galeotti and Goyal (2010) focus on games where actions are strategic substitutes
and show that either the star network or the empty network is efficient.

More closely related to our work, two papers analyze efficiency when the planner
chooses both the network and the individual effort levels. Hiller (2014) explores nonlin-
ear interactions in a game with pure local complementarities, and finds that the efficient
network is either empty or complete, while König (2013) finds that the efficient network
has a dominant group architecture in a model with both complements and substitute
interactions. Our contribution differs in two principal respects. First, these papers deal
with constant cost per link, whereas we use general network cost functions. Second, we
assume that effort levels are endogenously chosen by the agents. When the cost per link
is constant, we find that the efficient network is either empty or complete (see Propo-
sition 2) and we also show (see Remark 1) that our result extends to the case where the
planner additionally chooses effort levels. In König (2013), the substitution effect im-
pedes the building of too large a group, explaining why dominant group architectures
emerge. In Proposition 4 we also obtain that efficient networks are dominant group
architectures, but the mechanism that leads to this class is different: they result from
heterogeneous linking costs instead of global substitutabilities.

The contribution closest to ours is by Corbo et al. (2006), who analyze efficiency in
the same game as we do, where the planner only chooses the network. However, they
assume that the planner has an exogenous and fixed number of links to arrange and
they restrict their attention to connected graphs. They show that when the level of in-
teraction tends to its upper bound and when the number of links is equal to n − 1, the
star is the unique connected network maximizing social welfare. Our paper takes the
analysis further: the number of links is not restricted to n − 1, being determined en-
dogenously; we do not restrict to connected graphs; and we also examine every possible
level of interaction.

Finally, our finding complements König et al. (2014). In the decentralized framework
described in that paper, an agent is picked at random at each step and is offered the op-
portunity to create a new link, while existing links vanish with time. The authors show
that this process leads to the NSG class. This is because an agent’s best decision is to cre-
ate a link to an agent with high centrality, while the links that disappear first are those
to agents with low centrality. This mechanism is therefore close to a single-link realloca-
tion, where an agent can both delete and create a link at the same time. However, as we
show through an example in Section 3, while a single-link reallocation increases the util-
ity of the agent reallocating the link, it may decrease the sum of utilities due to negative
externalities. In the efficiency problem addressed here, the multiple-link reallocation we
identify can be thought of as a series of simultaneous single-link reallocations targeted
on a specific group of agents. It is both this simultaneity and the targeting of a specific
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group that guarantee that the sum of utilities will increase. This parallel between the two
mechanisms may explain why both stable and efficient networks are NSGs.

The rest of the paper is organized as follows. Section 2 introduces the model. In
Section 3 we characterize efficient networks as NSGs, while in Section 4 we specify some
cost functions and refine our results. We conclude in Section 5. All proofs can be found
in the Appendix.

2. The model

We consider a fixed and finite set of agents N = {1�2� � � � � n} who interact on a network
and choose some effort level. An agent’s payoff is determined both by his effort and by
the effort of the agents he is linked to.

2.1 The network

The networks we consider are collections of binary and symmetric relationships, repre-
sented by an adjacency matrix G = (gij)i�j∈(1�n)×(1�n), where gij = 1 when there is a link
between agents i and j, and gij = 0 otherwise. By convention gii = 0. By abuse of nota-
tion, G will alternatively stand for the network and its adjacency matrix. When gij = 1
(resp. gij = 0) we will say ij ∈ G (resp. ij /∈ G). We let Ni(G) = {j ∈ N;gij = 1} denote
the set of neighbors of agent i in network G and we let deg(i�G) = #Ni(G) denote the
number of these neighbors (the degree).

A component is defined as a set of individuals such that there is a path between
every pair of individuals belonging to the component, and there is no path between in-
dividuals inside the component and individuals outside the component. A component
is said to be nontrivial if it contains strictly more than one agent. Let Gn denote the set
of all networks with n agents and let Gn(l) denote the set of all networks in Gn with l links
(0 ≤ l ≤ n(n − 1)/2). Finally denote by μ(G) the largest eigenvalue (or the index) of the
adjacency matrix G.

2.2 Bonacich centralities and social welfare

Agent i chooses effort level xi ∈ R+. Let X ∈ Rn+ be the profile of individual efforts and
let x−i denote the profile of the efforts of all agents other than i. We consider a standard
linear quadratic utility function with synergies as in Ballester et al. (2006). It is formed
of an idiosyncratic component resulting from own effort and a term reflecting strategic
complementarities between neighbors.

ui(xi�x−i�G�δ) = xi − 1
2x

2
i + δ

n∑
j=1

gijxixj�

where δ > 0 measures the intensity of interactions between agents.
A (pure) Nash equilibrium X∗ of this game satisfies the first order conditions

(I − δG)X∗ = 1�
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As shown in Ballester et al. (2006), an equilibrium exists if and only if δμ(G) < 1. In
that case, the inverse matrix M = (I − δG)−1 is nonnegative and the linear system ad-
mits a unique solution. This solution coincides with the Bonacich centralities of agents
(Bonacich 1987), i.e.,

X∗ = B(G�δ) =
+∞∑
k=0

δkGk1�

Agent i’s Bonacich centrality can be interpreted as the weighted sum of paths of any
length starting from agent i in network G. By denoting B(G�δ) = (bi(G�δ))i∈N , we have

bi(G�δ) =
+∞∑
k=0

δkPk(i�G)�

where Pk(i�G) is the number of paths of length k, including loops, starting from agent i
(formally, Pk(i�G) is the ith component of Gk1). Given the linear quadratic specification
under consideration, agents’ utility at equilibrium is given by

ui(X
∗�G�δ) = 1

2b
2
i (G�δ)�

We address the problem of a social planner looking for the network maximizing so-
cial welfare. When doing so, we implicitly assume that on any given network G and
for any given level of interactions δ, agents exert their equilibrium effort. Because of
the uniqueness of the equilibrium efforts, we drop X∗ from the arguments of the utility
function (ui(G�δ) ≡ ui(X

∗�G�δ)). To guarantee that equilibrium exists on every net-
work, we impose δ ∈ [0�1/(n− 1)[.2

We assume that the total cost of a network (called the network cost) is given by

�

( ∑
i�j∈N

gij · cij
)
�

where �(·) is an increasing function, with �(0) = 0, and where cij is a positive number
characterizing the link between agents i and j, defined as a function of i and j’s indi-
vidual linking types: let C = (ci)i∈N be a vector in Rn+ of individual linking types; then
cij = f (ci� cj), where f (·� ·) is positive, increasing in both arguments, and symmetric, i.e.,
f (ci� cj) = f (cj� ci).

Individual linking types may reflect individuals’ capacity for social life, ability to
communicate with peers, etc. In turn, cij can be interpreted as the cost of forming a
link between agents i and j when �(x) = x. More general formulations of �(·) indi-
cate that the contribution of a link to the network cost depends on the structure of the
current network.

2Indeed, 1/(n − 1) is, among all possible networks with n agents, the largest possible index. It is asso-
ciated with the complete network. If δ ≥ 1/(n − 1), the equilibrium efforts in the complete network are
infinite, so that the problem at hand is trivial.
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This formulation covers numerous situations. It includes the standard case where
the network cost is proportional to the number of links it contains when �(x) = x and
cij = c for all i and j. Then the cost of a network with l links is simply c · l.

It also allows for increasing transformations of the number of links (in some contexts
any additional link may be more costly—or conversely, less costly—than the previous
link), and it allows for more general situations where cij may be heterogeneous, such as
cij = ci + cj , cij = ci · cj , cij = Min{ci; cj}, cij = Max{ci; cj}, etc.

We define social welfare as a function of network, of interaction level, and of network
cost:

W (G�δ�C) =
∑
i∈N

ui(G�δ)−�

( ∑
i�j∈N

gij · cij
)

(1)

= 1
2

∑
i∈N

b2
i (G�δ)−�

( ∑
i�j∈N

gij · cij
)
�

A network G ∈ Gn is efficient whenever

W (G�δ�C) ≥W (G′� δ�C) for all G′ ∈ Gn�

Remark 1. We show in the Appendix that in a game where the planner chooses both
the network and the effort levels, the sum of utilities is proportional to the sum of equi-
librium efforts in a game with interaction intensity 2δ. Our proofs concerning the max-
imization of the sum of equilibrium utilities also cover the maximization of the sum of
equilibrium efforts. Thus, all our results apply to this alternative problem.

2.3 Some specific network structures

Before turning to the analysis, we present some network structures that will play a
prominent role: the class of nested split graphs (NSGs). NSGs were first introduced in
graph theory by Chvátal and Hammer (1977) as threshold graphs. They propose several
equivalent definitions, among which is the following.

Definition 1 (Nested split graph). A graph G is called a nested split graph if

[ij ∈G and deg(k�G) ≥ deg(j�G)] 	⇒ ik ∈G�

This definition, while not standard in the graph theory literature, will be useful in our
context. A nonempty NSG is a network with one nontrivial component, in which agents’
neighborhoods are nested. A nonempty NSG can also have additional isolated agents.
Agents in the nontrivial component can be partitioned into p classes, where agents in
the same class have the same degree and agents in class i are linked to every agent in
classes 1 to p− i+ 1.3

3By convention we assume that isolated agents do not form a class of the NSG, as they will play a limited
role in our analysis.
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Figure 1. NSG with five classes and three isolated agents; n= 11, l = 13.

Out of their many interesting properties (see, for instance, König et al. (2014) for an
extensive analysis of the properties of NSGs), the following four properties are particu-
larly worthy of note. First, the nontrivial component of the NSG is of diameter 2. Second,
agents are ordered by degree. Class 1 agents have degree nC − 1 (where nC is the size of
the nontrivial component) and as the class index increases, degree strictly decreases.
Thus in an NSG, deg(i�G) > deg(j�G) implies that i is in a higher class than j. Third,
the set of agents belonging to the first E[(p + 1)/2] classes forms a complete subgraph
(also called a clique). Last, for every interaction level δ, the Bonacich centrality ranking
of agents is aligned with their degree ranking. Figure 1 presents an NSG with 11 agents
and 5 classes (dotted circles represent classes).

We now present some members of the class of NSGs that will play a role in the rest of
the analysis. In addition to the standard complete network (a single class of agents with
no isolated agents) or the star network (two classes, the central agent in class 1 and the
peripherals in class 2), the NSG class contains other prominent networks. We present
four subclasses of interest.

The core–periphery networks are a generalization of the star network with several
central players. They are defined and explored in Galeotti and Goyal (2010) among oth-
ers. We provide the following equivalent definition.

Definition 2 (Core–periphery networks). A network is a core–periphery if and only if
it is an NSG with at most two classes of agents and no isolated agents.

Another prominent subclass of NSGs is the dominant group architecture, introduced
by Goyal and Joshi (2003), which consists of a complete component and isolated agents.
We provide the following definition in terms of classes.

Definition 3 (Dominant group architecture). A network is a dominant group archi-
tecture if and only if it is an NSG with one class of agents and possibly some isolated
agents.
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Figure 2. Quasi-complete graphs with n= 5.

So as to define the next member of the class, let Kp denote a complete subgraph with
p agents.

Definition 4 (Quasi-complete graph). A graph G ∈ Gn(l) is called a quasi-complete
graph, denoted QC(l), if it contains the complete subgraph Kp with p(p − 1)/2 ≤ l <

p(p+ 1)/2, and the remaining l −p(p− 1)/2 links are set between one other agent and
agents in Kp.

A quasi-complete graph is an NSG with either a single class of agents when l =
p(p − 1)/2, or with three. Figure 2 presents some quasi-complete graphs. Note that
QC(3) =K3, QC(6) =K4, and QC(10) =K5.

Definition 5 (Quasi-star graph). A graph G ∈ Gn(l) is called a quasi-star graph, de-
noted QS(l), if it has a set of p central agents with n − 1 links, and the remaining
l −p(n− 1) links are set so as to construct another central agent.

A quasi-star graph contains one class of agents if it is the complete network; oth-
erwise it contains either two, three, or four classes of agents. Figure 3 presents some
quasi-star graphs, where, for instance, QS(4) contains two classes, QS(5) contains three
classes, and QS(6) contains four classes.

3. Efficient networks

First we identify a specific procedure of link reallocation that increases the sum of util-
ities without changing the number of links. A natural way to tackle our problem would
be to delete an existing link between a pair of agents i and j in the network and re-
place it by a link between agent i and another agent k that has a higher Bonacich cen-
trality than agent j. Unfortunately, these intuitive single-link reallocations may not be
enough to increase social welfare. This is illustrated in Figure 4, where we present a
network that is never the efficient network, whatever the cost function, but where such
a link reallocation would result in a strict decrease of social welfare. In this example,
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Figure 3. Quasi-star graphs with n= 5.

Figure 4. A single-link reallocation that decreases social welfare. An example with n = 25,
l = 59, and δ= 0�03.

bk(G�δ)− bj(G�δ) = 0�005 for δ = 0�03. A single-link reallocation from ij to ik decreases
social welfare. This is due to the fact that after the reallocation, although all the agents in
the star are better off, all the agents in the complete component are less well off. Despite
the increased sum of efforts after the reallocation, in this example the losses in terms of
utility are not compensated by the gains.

We thus investigate specific multiple-link reallocations: Consider agents j and k,
and define Nj\k(G) as the set of neighbors of j who are not neighbors of k: Nj\k(G) =
{i ∈N;gij = 1 and gik = 0}. We define a neighborhood switch from j to k, called hereafter
an N(j�k) switch, as a reallocation of the links between j and Nj\k(G) to links between k

and Nj\k(G).

Let A
j\k
l = (aim)i�m∈(1�n)×(1�n) be such that aim = ami = 1 if i ∈ Nj\k(G) and m = l,

aim = 0 otherwise. This matrix contains a 1 between agent l and all of agent j’s neighbors
who are not neighbors of agent k, and it contains 0 otherwise.

Definition 6 (N(j�k) switch). Consider a network G. An N(j�k) switch is a multiple-link

reallocation leading to the network G′, where G′ =G+A
j\k
k −A

j\k
j .
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Figure 5. An N(j�k) switch.

Figure 5 illustrates an N(j�k) switch. Note that agent j could be isolated after the
switch. An N switch has the following interesting properties in terms of aggregate
utilities.

Lemma 1. Consider a network G with agents j and k such that bj(G�δ) ≤ bk(G�δ) and

Nj\k �= ∅. Let G′ = G + A
j\k
k − A

j\k
j . Then for any 1/(n − 1) > δ > 0,

∑
i∈N ui(G

′� δ) >∑
i∈N ui(G�δ).

To prove Lemma 1, we first determine the equilibrium efforts in the network before
the N(j�k) switch. Then we implement the N(j�k) switch and we track how equilibrium
efforts are modified. The special feature of this type of reallocation is that the only agent
who may suffer from the reallocation is j, while all others benefit from k’s higher central-
ity. This is its main difference from the single-link reallocation illustrated above, where
all of j’s neighbors may also suffer from j’s decreased centrality. The use of a simultane-
ous best-response algorithm (SBRA) then allows us to conclude that the aggregate gains
of others are higher than j’s loss.

Lemma 1 identifies an operation that increases the sum of utilities. At the same time,
the N(j�k) switch also changes the network cost. If ck ≤ cj , the switch decreases the net-
work cost, while it could increase it if cj < ck. In that case, we resort to a permutation of
agents j and k at the same time as we implement the N(j�k) switch, to guarantee that the
network cost does not increase. We can now state our main result.

Theorem 1. An efficient network G is a nested split graph. Moreover, if ci < cj , then
deg(i�G) ≥ deg(j�G).

The proof of this theorem heavily relies on Lemma 1 and on the very fact that the
only networks with no N switches are the nested split graphs.

Complementarities, together with the convexity of equilibrium utilities, encourage
accumulation around a subset of agents. This is what NSGs do, because agents in the
first class of an NSG are connected to everyone else in the single component, turning
them into (partially) central agents. This accumulation leads to very high centrality for
these agents and to short distances that will guarantee strong feedback effects on other
agents. Furthermore, the agents with the lowest individual linking types are more cen-
tral because they have more links. Indeed, in NSGs, centrality and degree coincide.
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Figure 6. N-switches and key player policies.

Remark 2. BecauseN switches potentially exclude agents from the network, they might
bring to mind key player policies (see Ballester et al. 2006). In our setting, there are two
possible analogies with the key player. First, the key player could be the agent contribut-
ing most to aggregate efforts, and as such, should be the agent receiving the reallocated
links. Alternatively, we could define the “inverse key player” as the player contributing
least to aggregate efforts and consider that this agent should be the one excluded from
the network.

However, we show with the counterexample in Figure 6 that neither of these analo-
gies is correct. This network has 9 agents and 9 links. For δ = 0�19, the player contribut-
ing most (the key player) is agent 5, while the players contributing least (the inverse key
players) are agents 8 and 9. However, the best N switch to be implemented on this net-
work is the N(5�4) switch (consisting of reallocating links 56 and 57 to 46 and 47). Thus,
on the one hand it is better to maintain the agents contributing least in the network
(agents 8 and 9) rather than disconnecting them, while on the other hand it is better
to partly disconnect the key player (agent 5) despite his high contribution to aggregate
outcomes.

The problem of discriminating between different NSGs so as to find the efficient
network is difficult to tackle analytically, principally because in an NSG, no link reallo-
cations are possible from an agent with low centrality to another with higher central-
ity. This implies that any improvement on a given NSG is obtained by reallocating links
toward agents with lower centralities. However, we are able to refine our results with
specific cost functions.

4. Specific cost functions

In this section, we examine some cost function specifications that include standard
cases. Before proceeding, we present a process of adding links that guarantees that the
gains in aggregate utility are increasing as links are added.

Consider an arbitrary network G. Let G− be the network in which links from k to

Nk\j(G) are severed, together with the links from j to Nj\k(G): G− = G − A
k\j
k − A

j\k
j ;

let G+ be the network in which links from j to Nk\j(G) are added, together with the links

from k to Nj\k(G): G+ = G+A
k\j
j +A

j\k
k . The three different networks are illustrated in

Figure 7.
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Figure 7. Networks G− and G+ are, respectively, left and right of the initial network G.

We have the following lemma.

Lemma 2. If Nk\j(G) �=∅, then

∑
i∈N

(ui(G
+� δ)− ui(G�δ)) >

∑
i∈N

(ui(G�δ)− ui(G
−� δ))�

To prove our result, we decompose the effect of both link additions (from G− to G

and from G to G+) on agents j and k on the one hand and on the other agents on the
other hand. The effect on the other agents is unambiguous: the second link addition
increases their utilities more than the first link addition does. For agents j and k, the
effects are not straightforward. We show that the effect on agent k’s utility (respectively,
j’s utility) of the second link addition is greater than the effect of the first link addition
on agent j’s utility (respectively, k’s utility).4

4.1 Homogeneous individual linking types

Assume cij = c for any pair of agents i and j. Before turning to general levels of interac-
tion intensity, we start by examining the case of low levels.

• Low levels of interaction

When interactions go to 0, the effects of complementarities vanish faster as they
transit along longer paths. Short paths contribute more to centralities and the efficient
networks are those maximizing the number of short paths.

Proposition 1. Assume cij = c for every i and j. When δ tends to 0, the network maxi-
mizing social welfare is either empty, a quasi-star network, or a quasi-complete network.

4The process just considered consists of adding several links at once. This is a necessary condition.
Indeed, we have constructed an example in which the addition of any single link increases aggregate utility
less than the contribution of any existing link. The example is available upon request.
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The sketch of the proof goes as follow. First, we note that when δ goes to 0, the
problems of maximizing the sum of the Bonacich centralities or the sum of their squares
are equivalent. Then we decompose the sum of Bonacich centralities into the weighted
sum of paths of lengths 0, 1, and 2 and the weighted sum of all paths of length greater
than 3. We show that when δ goes to 0, this last sum is negligible. We are then left
with three terms, of which the first two are shown to be constant over the whole set of
networks with n agents and a fixed number l of links. Finding the network maximizing
the sum of Bonacich centralities thus boils down to finding the network that maximizes
the number of paths of length 2. Observing that the number of such paths is equal to the
sum of squares of the degrees in a network, we rely on Ábrego et al. (2009), who identify
QS(l) and QC(l) as well as other networks identified for a few very specific values of
n and l. All the networks belong to the NSG class. Where there is equality between
different networks, we turn to paths of length 3 to discriminate. All the networks they
identify are beaten at the third order either by QS(l) or QC(l).

Exploiting the results of Ábrego et al. (2009), we can go a little further: if l ≤ 1
2

(n
2

)− 1
2n,

the network with l links that maximizes social welfare is QS(l), while if l ≥ 1
2

(n
2

)+ 1
2n, it is

QC(l). This implies that the efficient network’s structure is not unique, as it depends on
the optimal number of links. When this number is low, QS(l) performs better, whereas
QC(l) performs better when this number is high. This condition reveals the trade-off
between having a hub linking a large number of agents, all of whom transit through
the hub to generate many short paths with few links, or building many triangles with a
complete subgraph.

Interestingly, the principles behind accumulation of links on a subset of agents is
still what drives the result, but we clearly see here that there are two typical ways of
accumulating. Accumulation can either be built around the largest possible subset of
agents (as in QC(l)) or it can be achieved by increasing the centrality of one central agent
as much as possible before trying to include another central agent (as in QS(l)). Which
type of accumulation is best depends on the number of links in the network.

• General levels of interaction

For general levels of interaction, which network is efficient depends on whether �(·)
is concave, linear, or convex. We start with the concave and linear cases.

Proposition 2. Assume cij = c for every i and j and that �(·) is concave or linear. If
n/(2(1−δ(n−1))2) > �( 1

2n(n−1) · c), then the efficient network is the complete network,
otherwise it is the empty network.

Remark 3. In the alternative problem where effort levels are chosen by the planner, the
above condition becomes n/(1 − 2δ(n− 1)) > �( 1

2n(n− 1) · c).

When the cost function is concave or linear, it can be shown that the link contribut-
ing most to social welfare is the last link that is added when the complete network is
formed. This is no longer true if �(·) is not concave. In that case, accumulating links
until the complete network is reached may not be efficient because the last links could

13



Figure 8. QS-like networks.

be too costly. To find the efficient network for a given level of interactions, the number of
links has to be fixed and the corresponding network maximizing aggregate utilities have
to be found. Then the social welfare for every possible number of links can be com-
pared, identifying the best number of links l∗, together with the corresponding network
structure.

However, the problem of finding, for a fixed number of links, the network maximiz-
ing the sum of utilities as a function of δ remains unsolved. We ran simulations to com-
pare nested split graphs and check whether any pattern emerged. We tested for values
of n between 3 and 24, and for every n, we varied l from 3 to 1

2n(n− 1). For every n and l

pair, we simulated 104 values of δ. Once n, l, and δ were fixed, we computed the sum of
utilities in every possible nested split graph so as to find the best one.5

Our simulations reveal two main features. First, for a low density of links, only two
networks appear to be candidates for efficiency: QC(l) and QS(l). The quasi-star net-
work emerges as best for low values of δ, while the quasi-complete network is best for
high values. In turn, when the density of links is high, the QC(l) appears to be the best,
whatever the value of δ.

Second, for intermediate densities, other complex NSGs can be efficient. We illus-
trate in Figures 8–10 some typical structures that might emerge. Figure 8 shows two
examples of “QS-like” networks formed of isolated agents and a quasi-star network with
the remaining agents. The one on the left (n = 8) is efficient for δ ∈ [0�001�0�025] when
the network cost function �(·) is such that the optimal number of links l∗ is 11. The one
on the right is efficient for n = 14, l∗ = 21, and δ ∈ [0�029�0�038]. Figure 9 shows struc-
tures that are hybrids of QC and QS for n = 9 and l∗ = 11 (efficient for δ ∈ [0�001�0�04]) as
well as for n = 14 and l∗ = 39 (efficient for δ ∈ [0�001�0�011]). We also found other struc-
tures that do not fit into the first two categories. In Figure 10, we illustrate two examples,
for n = 11 and l∗ = 25 (efficient for δ ∈ [0�001�0�012]) and for n = 18 and l∗ = 30 (efficient
for δ ∈ [0�021�0�053]).

5The generation of all NSGs is made possible by a mapping between the set of NSGs with n agents and
the integers between 0 and 2n−1, according to the following rule: every agent is a bit in a binary number,
with state either 0 or 1. Every agent in state 1 is linked to all his predecessors while agents in state 0 are
not. The last agent, having no predecessor, does not count. For instance, with n = 4, all NSGs are mapped
by numbers from 0 to 7, with respective binary sequences 000 to 111. Sequence 000 is the empty network,
sequence 111 is the complete network, sequence 001 is the star, and sequence 101, for instance, is the kite.
The reader interested in the computational details of constructing NSGs can refer to Hagberg et al. (2006).
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Figure 9. Hybrids.

Figure 10. Other networks.

4.2 Heterogeneous individual linking types with linear network cost function

In this part, we assume that �(x) = x and allow for heterogeneity across individual
linking types. We start by examining two polar cases where cij ≡ Min{ci; cj} and cij ≡
Max{ci; cj}.

Proposition 3. Suppose that �(x) = x and cij ≡ Min{ci; cj}. The efficient network is a
core–periphery network.

This result drastically reduces the class of efficient networks to NSGs with one or two
classes and no isolated agents. The intuition of this result relies on the observation that
as soon as one agent is connected to another, any other agent should be connected to
the least costly of these two agents.

Proposition 4. Suppose that �(x) = x and cij ≡ Max{ci; cj}. The efficient network is a
dominant group architecture.

The difference from the Min function is the following: When a pair is formed, every
agent with an individual linking type lower than the most costly of the two agents in the
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pair should be connected to him. But he should also be connected to the other member
of the pair, who has a lower linking type. This is why the component is complete and the
NSG only contains one class. Contrary to the previous case, we can end up with some
isolated agents, those with too high an individual linking type.

Remark 4. Assume that �(x) = x and cij = αci + βcj , where α�β ≥ 0. Propositions 3
and 4 combined give us some bounds on the efficient network: it contains the dom-
inant group architecture maximizing social welfare when the cost function is cij =
(α+β)Max{ci; cj} and it is contained by the core–periphery network maximizing social
welfare when the cost function is cij = (α+β)Min{ci; cj}.

With other cost functions, NSGs with more than two classes can be efficient, for the
same reasons as with a convex function �(·): some links may be worth creating while
others may not. Indeed, assume, for instance, that cij = ci · cj and take as an example
the complex network on the left side of Figure 10, with 11 agents and 4 classes of agent.
By setting c1 = 0�001, c2 = c3 = 0�1, c4 = · · · = c10 = 0�3, and c11 = 10, the four-class NSG
is efficient. Accordingly, the same network would be efficient if the linking type func-
tion were cij = ci + cj and we set c1 = 0�001, c2 = c3 = 0�015, c4 = · · · = c10 = 0�03, and
c11 = 0�045.

5. Conclusion

We have examined the problem of finding the efficient structure in a network game
where interactions are linear, neighbors’ efforts are pure strategic complements, and
network formation is costly. We focus on the role played by the class of nested split
graphs and some specific members of this class. This work complements König et al.
(2014), who examine strategic network formation in a dynamic setting and show that
stable networks are NSGs.

This analysis could be extended to more general utility functions. Indeed, one can
show that the N switch increases the sum of utilities as soon as utilities are convex in
Bonacich centralities. However, not much is known for more general utility functions.
It would therefore be interesting to characterize the class of network games for which
efficient networks are NSGs.

Appendix: Proofs

Proof of Remark 1. Once a network G is fixed, the planner maximizes

∑
i∈N

ui(X�G�δ) =
∑
i∈N

(
xi − 1

2x
2
i

)
+

∑
i∈N

δ
∑
j∈N

gijxixj� (2)

The first order conditions (FOCs) give

xi = 1 + 2δ
∑
j∈N

gijxj
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 and the solution X̂ is given by

x̂i = bi(G�2δ)�

which is equal to the equilibrium efforts in the game with interaction intensity δ′ = 2δ.
Plugging the FOC into (2), we get

∑
i∈N

ui(X̂�G�δ) =
∑
i∈N

x̂i

(
1 − 1

2 x̂i + δ
∑
j∈N

gijx̂j

)

= 1
2

∑
i∈N

x̂i�

Thus a planner choosing both efforts and the network is maximizing

V (G�δ�C) = 1
2

∑
i∈N

bi(G�2δ)−�

( ∑
i�j∈N

gij · cij
)
� (3)

Note that (3) is obtained by replacing b2
i (G�δ) by bi(G�2δ) in (1). �

Proof of Lemma 1. We show that following an N(j�k) switch, a sequence of simultane-
ous myopic individual best responses leads to an increase of both the sum of efforts and
the sum of utilities. Consider an initial network G with equilibrium efforts X∗(G). There
are two cases.

Case 1: jk /∈ G. We modify network G by implementing an N(j�k) switch so as to

obtain the network G′ = G + A
j\k
k − A

j\k
j and initiate a simultaneous best-response al-

gorithm (SBRA) on the modified network G′. We denote by X(t) the vector of efforts of
agents at the end of period t. We start with initial conditions X(0) =X∗(G) that satisfy⎧⎨

⎩
x(0)j = 1 + δ

∑
c∈Nj(G)∩Nk(G) x

(0)
c + δ

∑
s∈Nj\k(G) x

(0)
s

x
(0)
k = 1 + δ

∑
c∈Nj(G)∩Nk(G) x

(0)
c + δ

∑
p∈Nk\j(G) x

(0)
p �

and agent i’s best-response updating process at period t + 1 is given by x(t+1)
i = 1 +

δ
∑

j∈Ni(G) x
(t)
j .

This SBRA will converge to the unique effort equilibrium on the network G′ by stan-
dard contraction properties (see, for instance, Milgrom and Roberts 1990, for conver-
gence in games with strategic complementarities).

At step 1 of the algorithm we get⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(1)j = x
(0)
j − δ

∑
s∈Nj\k(G) x

(0)
s

x(1)k = x(0)k + δ
∑

s∈Nj\k(G) x
(0)
s

x(1)s = x(0)s + δ(x(0)k − x(0)j ) for all s ∈Nj\k(G)

x(1)q = x(0)q for all q �= j�k;q /∈Nj\k(G)�
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Since, by hypothesis, x(0)k ≥ x(0)j , all efforts weakly increase except that of agent j. But
agent k’s increase compensates agent j’s decrease. Further, utilities being quadratic in
effort, the increase in utility of agent k is larger than the decrease in utility of agent j by
convexity (given that x(0)k ≥ x

(0)
j ). It follows that the sum of utilities at X(1) is greater than

at X(0). However, agent j’s loss could have feedback effects on other agents in future
steps of the SBRA. We examine step 2:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(2)j = x(1)j

x(2)k = x(1)k + δ
∑

s∈Nj\k(G)(x
(1)
s − x(0)s )

x
(2)
s = x

(1)
s + δ(x

(1)
k − x

(0)
k )

x(2)q ≥ x(1)q for all q �= j�k;q /∈Nj\k(G)

with x(2)q ≥ x(1)q because of complementarities. Therefore, X(2) ≥ X(1). By complemen-
tarities, from step 2 onward, the efforts will increase at each step of the SBRA and con-
verge to X(∞) =X∗(G′) ≥X(1).

Case 2: jk ∈ G. The process needs to be decomposed into two sequential SBRA on
network G′. First, we take X(0) = X∗(G) as the initial efforts on G′, and we restrict the
SBRA to agents j and k, keeping all other efforts fixed. This process converges to X(∞),
where only agents j and k have changed their effort. Second, we take Y(0) = X(∞) as
the initial efforts and apply a SBRA to all agents. This process will converge to Y(∞) =
X∗(G′), which is the equilibrium in the modified network.

As jk ∈G, X(0) now satisfies

⎧⎨
⎩
x
(0)
j = 1 + δ

∑
c∈Nj(G)∩Nk(G) x

(0)
c + δ

∑
s∈Nj\k(G) x

(0)
s + δx

(0)
k

x(0)k = 1 + δ
∑

c∈Nj(G)∩Nk(G) x
(0)
c + δ

∑
p∈Nk\j(G) x

(0)
p + δx(0)j �

(4)

Thus we get

⎧⎨
⎩
y(0)j = 1 + δ

∑
c∈Nj(G)∩Nk(G) x

(0)
c + δy(0)k

y
(0)
k = 1 + δ

∑
c∈Nj(G)∩Nk(G) x

(0)
c + δ

∑
s∈Nj\k(G) x

(0)
s + δ

∑
p∈Nk\j(G) x

(0)
p + δy

(0)
j �

(5)

Using (4) and (5), we find

x(0)j + x(0)k = y(0)j + y(0)k � (6)

Noticing by (4) and (5) that y(0)k − x(0)k = δ
∑

s∈Nj\k(G) x
(0)
s + δ(y(0)j − x(0)j ) and by (6),

that y(0)k − x
(0)
k = x

(0)
j − y

(0)
j , we get

y(0)k − x(0)k = δ

1 + δ

∑
s∈Nj\k(G)

x(0)s > 0�
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Altogether, the first SBRA, restricted to agents j and k, leads to

{
y(0)j + y(0)k = x(0)j + x(0)k

y(0)k > x(0)k �

Now apply a second SBRA on network G′, with Y(0) as initial efforts. Let us describe
the modified efforts after the first step for every type of agent. Agents in Nj\k(G) increase

their effort because y(0)k > x(0)j . Agents in Nk\j(G) also increase their effort because

y(0)k > x(0)k . Agents in Nj(G) ∩ Nk(G) do not modify their effort because x(0)j + x(0)k =
y
(0)
j + y

(0)
k . Finally, agents j and k do not modify their effort because they are at the

equilibrium effort level of the first SBRA.
At the end of the first step, Y(1) ≥ Y(0), and by complementarities, X∗(G′) = Y(∞) ≥

Y(0). In profile Y(0), the sum of utilities exceeds the sum of utilities in profile X(0); there-
fore our conclusion holds. �

Proof of Theorem 1. We first need to prove a lemma that uses the following
definition.

Definition 7. Let G(j�k) = G+A
j\k
k −A

j\k
j +A

k\j
j −A

k\j
k denote the network G in which

agents j and k are permuted.

Lemma 3. Consider a network G and agents j and k such that bj(G�δ) ≤ bk(G�δ) and
Nj\k �= ∅. If ck ≤ cj , the N(j�k) switch strictly increases social welfare. If cj < ck, then
permuting agents j and k and implementing the N(k�j) switch on network G(j�k) strictly
increases social welfare.

Note that when cj < ck, the N switch and the agent permutation have to be imple-
mented together. Indeed, either the permutation alone or the switch alone might result
in increased network cost.

Proof of Lemma 3. We examine the two cases and use the following observation: be-
cause f (·� ·) is increasing in both arguments, we have [ci < cj ⇒ f (ci� ck) ≤ f (cj� ck)] for
all k ∈ N \ {i� j}.

Case 1: If ck ≤ cj , then every link that is reallocated from agent j to agent k is weakly
less costly. As the number of links in the network is constant with the reallocation,
Lemma 1 guarantees that social welfare strictly increases after the switch.

Case 2: If cj < ck, consider network G(j�k) in which agents j and k exchange their
position. Because this permutation does not affect the network structure, we have
bj(G�δ) = bk(G(j�k)� δ) ≤ bj(G(j�k)� δ) = bk(G�δ). We now implement an N(k�j) switch
on network G(j�k) and we denote by G′ the resulting network.

In G′, the cost of every link that does not involve j or k is the same as the cost in the
initial network G. This is also true for every link in Nj(G

′) ∩ Nk(G
′) as well as for every

link that has been reallocated (because agents j and k exchanged positions before the
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reallocation). Finally, the links between k and Nk\j(G) in the original network G have
become links between j and Nk\j(G). Therefore, their cost is lower in G′ than in G. �

We can now proceed with the proof of Theorem 1. We show that a network that is
not an NSG always offers the possibility of an N switch, i.e., there is a pair j, k such
that Nj\k(G) �= ∅ and bk(G�δ) ≥ bj(G�δ). Assume G is not an NSG. Then, by definition,
there are three agents i, j, and k such that ij ∈ G, deg(k�G) ≥ deg(j�G), and ik /∈ G.
Therefore, i ∈Nj\k(G). Assume now bk(G�δ) < bj(G�δ). If Nk\j �=∅, then we can imple-
ment the N(k�j) switch, a contradiction. Hence, Nk\j =∅ and, therefore, Nk(G) ⊆Nj(G).
Together with the condition that deg(k�G) ≥ deg(j�G), we obtain deg(k�G) = deg(j�G)

which is a contradiction to the fact that i ∈ Nj\k(G). An efficient network is necessarily
an NSG.

Next, assume G is an NSG in which deg(j�G) > deg(k�G) and cj > ck. Then we can
increase social welfare by permuting agents j and k. �

Proof of Lemma 2. If, for a fixed δ, we denote by X (resp. Y and Z) the vector of equi-
librium efforts in network G (resp. G− and G+), we have∑

i∈N
(ui(G

+� δ)− ui(G�δ)) >
∑
i∈N

(ui(G�δ)− ui(G
−� δ))

⇐⇒
∑
i �=j�k

(z2
i − x2

i )+ (z2
j − x2

j )+ (z2
k − x2

k) >
∑
i �=j�k

(x2
i − y2

i )+ (x2
j − y2

j )+ (x2
k − y2

k)�

Let A+ = G+ − G and A− = G − G−. Then using the fact that (I − δG)X =
(I − δG−)Y = (I − δG+)Z = 1, we get{

X −Y = δM−A−X
Z −X = δMA+Z�

where M = (I − δG)−1 and M− = (I − δG−)−1. Hence,{
xi − yi = (

∑
l∈Nk\j δm

−
il )xk + δm−

ik(
∑

l∈Nk\j xl)

zi − xi = (
∑

l∈Nk\j δmil)zj + δmij(
∑

l∈Nk\j zl)�
(7)

Step 1. We show that for all i �= j�k,

z2
i − x2

i > x2
i − y2

i � (8)

Note that G− �G�G+ implies Y <X <Z, as well as M− ≤M (this inequality holds
term by term). Next, agents j and k have symmetric positions in G− and G+, so zj = zk
and yj = yk, and for all l, m−

lk = m−
lj and m+

lk = m+
lj . Putting these observations together,

we get zi − xi > xi − yi. Because zi + xi > xi + yi, we get (8).
Step 2. We show that {

z2
k − x2

k > x2
j − y2

j

z2
j − x2

j > x2
k − y2

k�
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Since G− ⊂ G ⊂ G+, we have xk > yk, and as yk = yj , we get xk > yj ; we also have
zj > xj , and as zk = zj , we get zk > xj . Altogether,

zk + xk > xj + yj� (9)

We now use (7), applied to j for the first equality and to k for the second equality.
Because m−

lj = m−
lk and M− ≤M , we get m−

lj ≤mlk for all l ∈Nk\j ; we also have xk < zk =
zj and m−

jk ≤mjk, so that

zk − xk > xj − yj� (10)

Putting (9) and (10) together, we obtain

z2
k − x2

k > x2
j − y2

j �

Reproducing the same steps, we also obtain

z2
j − x2

j > x2
k − y2

k

and the desired conclusion follows. �

Proof of Proposition 1. Let Pk(G) be the number of paths of length k in network G

(including loops). Then

∑
i

bi(G�δ)= n+ δ2l + δ2P2(G)+
+∞∑
k=3

δkPk(G)�

The first two terms of the sum are constant across any network in G(l). Furthermore, if
Gc is the complete network with n agents (i.e., the network with

(n
2

)
links), then

+∞∑
k=3

δkPk(G) ≤
+∞∑
k=3

δkPk(G
c)=

+∞∑
k=3

δkn(n− 1)k�

while

δ2P2(G) ≥ δ2�

Therefore, ∑+∞
k=3 δ

kPk(G)

δ2P2(G)
≤ δ3n(n− 1)3[∑+∞

j=0 (δ(n− 1))j]
δ2 �

As
∑+∞

j=0 (δ(n− 1))j = 1/(1 − δ(n− 1)), we get

∑+∞
k=3 δ

kPk(G)

δ2P2(G)
≤ δn(n− 1)3

1 − δ(n− 1)
�

which implies

lim
δ→0

∑+∞
k=3 δ

kPk(G)

δ2P2(G)
= 0�
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Hence, when δ → 0, the network maximizing the sum of Bonacich centralities is the
network maximizing the number of paths of length 2. Simple algebra leads to the con-
clusion that maximizing the sum of the squares of Bonacich centralities is also equiva-
lent to maximizing the number of paths of length 2.

The number of paths of length 2 in a network G is given by the sum of all the ele-
ments of G2: P2(G) = 1TG21. Because G =GT , we get P2(G) = (G1)T (G1), where G1 is
the vector of degrees in network G. Therefore, P2(G) = ∑

i d
2
i . We then refer to Ábrego

et al. (2009) to conclude. �

Proof of Proposition 2. Theorem 1 tells us that the efficient network G is an NSG.
Assume that G is not empty and that it contains at least two classes of agents. Pick an
agent j in the second class and another agent k in the first class. Then Nj(G) ⊂ Nk(G)

and Lemma 2 ensures that adding the links between j and agents that are in Nk\j(G)

will increase aggregate utilities more than the contribution to aggregate utilities of all
existing links between k and Nk\j(G). Because �(·) is concave or linear, the cost of
adding these new links to G is weakly lower than the cost of the existing links between
k and Nk\j(G). This contradicts the fact that G is efficient and implies that an efficient
NSG that is nonempty contains only one class.

Next, an efficient network has no isolated agents: if an agent i is isolated, we can
apply the same reasoning as above by replacing j by i and get the same contradiction.
The only NSG containing all agents in one class is the complete network.

Finally, the social welfare of the empty network being 0, the complete network be-
comes the efficient network once it induces positive social welfare. The Bonacich cen-
trality of every agent in the complete network with n agents is 1/(1 − δ(n − 1)), and the
sum of utilities is n/(2(1−δ(n−1))2). There are 1

2n(n−1) links in the complete network,
so the cost of the complete network is �( 1

2n(n− 1) · c) �

Proof of Proposition 3. Consider a nonempty NSG G and assume it is efficient. We
first show that it has no isolated agents. Assume agent j is isolated, and pick any agent
k in the nontrivial component of the NSG. Then Nk\j(G) = Nk(G) and Nj\k(G) = ∅. By
Lemma 2, adding links between j and Nk(G) is profitable in terms of aggregate utilities.
Furthermore, Theorem 1 tells us that cj ≥ ci for every agent i in the component. There-
fore, cij = ci for any i in the component, and linking j to the network by forming links
between j and Nk(G) increases social welfare.

Next we show that a nonempty efficient network has at most two classes. Assume G

has p classes of agents (p> 2). We consider two cases.

• The case when p ≥ 4. Then pick agent j in the class p (the last one) and k in class
p − 1. By definition of an NSG, j is connected to every agent of class 1, while k is
connected to everyone in class 1 as well as to agents in class 2. By Lemma 2,∑

i∈N
(ui(G

+� δ)− ui(G�δ)) >
∑
i∈N

(ui(G�δ)− ui(G
−� δ))�

where G+ = G + A
k\j
j and G− = G − A

k\j
k . Moreover, by Theorem 1, ci ≤ cj for

all i ∈ Nk\j(G), so that every link in G+ − G has a cost of Min{ci; cj} = ci, which is
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exactly the same cost as for the links in G−G−. Taking benefits and costs together,
the addition of links from G to G+ strictly increases social welfare.

• The case when p = 3. Pick agent j in the last class (class 3) and agent k as the
agent in class 2 with the highest individual linking type. By definition, j is linked
to every agent in class 1 while k is also linked to agents of his own class. Therefore,
Nk\j(G) is the set of all agents in class 2, except k. Applying Lemma 2, it is clear
that aggregate utilities strictly increase.

Because k is the agent with the highest linking type in class 2, we have Min{ci; ck} = ci
for all links in G − G−. Also, Min{ci; cj} = ci for all new links in G+ − G, so that cij = cik
for all i in class 2 other than k.

Again, taking benefits and costs together, the addition of links from G to G+ strictly
increases social welfare. �

Proof of Proposition 4. Consider a nonempty NSG G, with at least two classes of
agents and assume it is efficient. Pick agent k in the first class (the higher one) and pick
the agent j with the highest individual linking type cj . By Theorem 1, agent j has to be
in the last class (the lower one).

Lemma 2 says that∑
i∈N

(ui(G
+� δ)− ui(G�δ)) >

∑
i∈N

(ui(G�δ)− ui(G
−� δ))�

where G+ =G+A
k\j
j and G− =G−A

k\j
k .

Now, because cj ≥ ci for all i, we have Max{cj; ck} = cj = Max{cj; cl} for all l ∈ Nk\j(G)

so that ∑
i�j∈N

cij(g
+
ij − gij) =

∑
i�j∈N

cij(gij − g−
ij )�

Combining the two, we get

W (G+� δ�C)−W (G�δ�C) >W (G�δ�C)−W (G−� δ�C)�

which contradicts the fact that G is efficient. �
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