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Wood-decay fungi contain the cellular mechanisms to decompose such plant cell
wall components as cellulose, hemicellulose, and lignin. A multi-omics approach to
the comparative analysis of wood-decay fungi gives not only new insights into their
strategies for decomposing recalcitrant plant biomass, but also an understanding of
how to exploit these mechanisms for biotechnological applications. We have developed
an analytical workflow, Applied Biomass Conversion Design for Efficient Fungal Green
Technology (ABCDEFGT), to simplify the analysis and interpretation of transcriptomic
and secretomic data. ABCDEFGT utilizes self-organizing maps for grouping genes
with similar transcription patterns, and an overlay with secreted proteins. The key
feature of ABCDEFGT is simple graphic outputs of genome-wide transcriptomic and
secretomic topographies, which enables visual inspection without a priori of the omics
data and facilitates discoveries of co-regulated genes and proteins. Genome-wide
omics landscapes were built with the newly sequenced fungal species Pycnoporus
coccineus, Pycnoporus sanguineus, and Pycnoporus cinnabarinus grown on various
carbon sources. Integration of the post-genomic data revealed a global overlap,
confirming the pertinence of the genome-wide approach. ABCDEFGT was evaluated
by comparison with the latest clustering method for ease of output interpretation,
and ABCDEFGT gave a better biological representation of fungal behaviors. The
genome-wide multi-omics strategy allowed us to determine the potential synergy of
particular enzymes decomposing cellulose, hemicellulose, and lignin such as Lytic
Polysaccharide Monooxygenases, modular enzymes associated with a cellulose binding
module1, and Class II Peroxidase isoforms co-regulated with oxido-reductases. Overall,
ABCDEFGT was capable of visualizing genome-wide transcriptional and secretomic
profiles for intuitive interpretations and is suitable for exploration of newly-sequenced
organisms.

Keywords: self-organizing maps, data visualization, multi-omics integration, LPMOs, lignocellulosic biomass,
biorefinery, CAZymes
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INTRODUCTION

The wealth of genomic and transcriptomic information from
filamentous fungi has revealed an unexpected striking diversity
of lignocellulosic enzymes encoded in their genomes (Floudas
et al., 2015). The regulation of genes coding for cellulases
and hemicellulases in response to isolated plant polysaccharides
has been extensively studied in a few model fungi (Amore
et al., 2013). However, further studies are necessary in order to
understand the fine-tuned enzymatic deconstruction of complex
natural biomasses made of diverse chemical composition.

Saprotrophic white-rot fungi are wood decayers able to
break down major plant cell wall polymers such as cellulose,
hemicelluloses, and lignin to retrieve the carbon necessary to
their growth (Blanchette, 1991; Riley et al., 2014). Such abilities
are related to the secretion of a wide range of enzymes that
may be exploited to improve the degradation of complex plant
biomass for carbon recycling and biofuel production (e.g.,
Couturier et al., 2012). The genus Pycnoporus is known for
the efficient degradation of lignin, and the use of the fungi for
biotechnological applications has been reviewed (Eggert et al.,
1997; Gupta et al., 2011; Lomascolo et al., 2011).

Enzymes active on plant biomass polymers including
glycoside hydrolases (GH), carbohydrate esterases (CE),
polysaccharide lyases (PL), and auxiliary activity enzymes (AA)
are classified in sequence-based families in the Carbohydrate
Active Enzyme database (CAZy1, Levasseur et al., 2013; Lombard
et al., 2014).

The volume of next-generation sequencing (NGS) data
has been increasing rapidly. For example, there are several
hundreds of fungal genomes publically available from MycoCosm
(Grigoriev et al., 2014). These data have been used to study
the portfolio of genes coding for enzymes involved in wood
decay and to analyze the evolution of these gene repertoires
associated with various life styles and environments (Floudas
et al., 2012, 2015; Riley et al., 2014). Beyond gene repertoires,
fungal transcriptomic studies may provide information on the
genes actively expressed in specific conditions, enabling better
understandings of the molecular mechanisms of wood decay
(Hori et al., 2014).

Next-generation sequencing is particularly useful to capture
a quantitative genome-wide picture of the transcribed genes.
However, typical statistical analysis of NGS data produces
complex outputs that are often difficult to interpret from a
biological point of view. Also, extracting biological knowledge
from the ocean of data is a challenge. Thus, the development
of customized tools is desirable for data mining. The ideal
tools would be able to simplify the complexity of input data,
facilitate comparisons of biological responses from various
conditions, and produce user-friendly visual outputs for intuitive
interpretations.

Analysis of grouped genes from multiple conditions is
useful as similar expression profiles may be indicative of co-
functionality of genes (Si et al., 2014). However, finding an
appropriate clustering tool for RNA-seq data is not easy despite
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there are various NGS analytical tools available (Yang and Kim,
2015).

Weighted gene co-expression network analysis (WGCNA)
is a method that constructs correlation networks of genes.
However, a large number of samples per condition are required
to produce reliable results for multiple comparisons (Langfelder
and Horvath, 2008). This requirement is not satisfied for the
typical RNA-seq setup where three biological replicates are used
per condition.

K-means clustering has been applied for the microarray-based
fungal gene expression analysis (MacQueen, 1967). Although it is
an established statistical algorithm, it has a particular limitation
for clustering. The algorithm separates given input data into
k partitions where k is an input parameter that is difficult
to determine when external constraints of the input data are
unknown (Tan et al., 2014). Algorithms used for microarray
analysis are not applicable to RNA-seq data due to the different
nature of output data. For this reason, a Poisson and negative
binomial modeled method MBCluster.Seq has been developed
(Si et al., 2014).

Self-organizing map (SOM) is an unsupervised data-driven
machine learning algorithm. This algorithm constructs a neural
network with given input data. The method is used to simplify
high-dimensional data because it reduces the number of features
by grouping similar items and forming clusters (Kohonen,
1982). This makes it suitable for complex large data such as
RNA-seq data. Conveniently, the SOM algorithm has a unique
feature of making two-dimensional maps in contrast to the
conventional clustering methods creating dendrograms (Lloyd,
1982; Langfelder et al., 2008; Si et al., 2014).

Since the nature of SOM is data-driven, it is possible to
generate neural networks of genes and identify condition-specific
responses in transcriptomes of newly sequenced organisms with
limited gene annotations. The flexible graphics of SOMs can be
exploited to visualize genome-wide transcriptomic data. SOM
has been used in NGS based epigenetic and transcriptomic
studies (Steiner et al., 2012; Kim et al., 2013). The practical
applications for large-scale omics data using SOM have been
reviewed (Binder and Wirth, 2015).

The comparative analysis of fungal multi-omics data gives new
insights into the dynamics of the enzymes produced by the fungi
during decomposition of complex plant materials (Hori et al.,
2014). The selection of secreted fungal enzymes could therefore
be significant for biotechnological applications. In particular, co-
regulated genes coding for enzymes simultaneously produced by
the fungi could inspire the design of new enzyme cocktails for
efficient plant biomass deconstruction. Additionally, comparative
analyses without a priori assumptions may lead to identification
of as-yet-unknown co-regulated genes and proteins potentially
involved in lignocellulose deconstruction. For these reasons, we
created an integrated-omics tool to investigate the mechanisms
of plant biomass conversions in newly sequenced fungi.

The workflow, Applied Biomass Conversion Design for
Efficient Fungal Green Technology, (ABCDEFGT), was designed
to perform omics data mining for co-regulated genes and
corresponding secreted proteins which are potentially involved
in the degradation of complex plant materials. Our workflow
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emphasizes on visualization of the data for intuitive data mining
of genes/proteins of interest. The workflow was demonstrated
with three newly sequenced fungal species Pycnoporus coccineus
(Couturier et al., 2015), Pycnoporus sanguineus (Miyauchi et al.,
in preparation), and Pycnoporus cinnabarinus (Levasseur et al.,
2014). We performed information mining of the fungal omics
data from both transcriptomic and secretomic point of view. Our
approach was evaluated by examining the concordance of the
resultant gene/protein clusters in terms of biological relevance.
Also, our method was compared to the model-based clustering
(i.e., MBCluster.Seq; Si et al., 2014). To the best of our knowledge,
this is the first study in which the genome-wide transcriptome
and secretome of fungi were systematically clustered to generate
layers of omics topographies for biological extrapolations.

RESULTS

Three fungal strains, Pycnoporus coccineus CIRM-BRFM 310
(Pycco 310), Pycnoporus cinnabarinus CIRM-BRFM 137 (Pycci
137), and Pycnoporus sanguineus CIRM-BRFM 1264 (Pycsa
1264) were grown on each of the five carbon sources selected.
Two carbon sources were used as control conditions; maltose,
which is easily assimilated by fungi and Avicel, which was
used as a cellulose model substrate. Ground wheat straw, pine
wood, and aspen wood were used as models for gramineae
biomass, softwood biomass, and hardwood biomass, respectively
(Figure 1).

A visualization workflow for omics integration was developed
for the datasets to identify fungal genes and proteins involved
in lignocellulose deconstruction. The integrated omics model
consists of; (1) genes with similar transcription patterns being
clustered into nodes; (2) the calculation of the node-wise
mean of the normalized transcript read counts, which reflects
the transcription level in response to each condition; (3) the
selection of condition-specific highly transcribed gene clusters;
and (4) the count of secreted proteins detected from the
culture medium (Figure 1). All topographies are comparable
as the positions of the nodes are fixed in the maps, enabling
the simultaneous visual inspection of complementary biological
information (Figure 1).

The Integrated Omics Model of
Pycnoporus coccineus CIRM-BRFM 310
We produced models for Pycco 310 (Figure 2) and two other
strains (Supplementary Figures S1 and S2). The mid-level
transcribed nodes in orange, yellow, and light green (12–14
log2 mean transcription) included the genes up-regulated on
pine, aspen, or wheat straw (Figure 2). Similarly regulated genes
were highlighted in circles in order to visually separate the gene
groups (Figure 3C). This approach was found to be effective
because gene clusters with similar transcriptomic patterns had
neighboring locations in the topography. This is due to the
hexagram format of SOM, which produced six related gene
clusters in proximity, and enabled us to neatly visualize the
transcriptomic patterns of the genes in response to the different
types of substrates.

The nodes in red (>15 log2 mean transcription) at the
right bottom corner were the genes most highly transcribed
(Figure 3A). Because these nodes were highly transcribed
under all growth conditions including the control condition,
maltose (Figure 3C), we considered these nodes as essential for
housekeeping processes. Since these particular nodes were not
specific for degradation of the testing substrates (i.e., aspen, pine,
wheat straw), this aspect was not investigated further.

Globally, the areas of nodes with above 10 log2 read count
(right side of Figure 3A) coincide with nodes with higher
counts of secreted proteins (right side of Figure 3B). This
trend was observed also for the other two strains Pycci 137
and Pycsa 1264 (Supplementary Figures S1 and S2). The
correlation coefficients of transcriptomic and secretomic profiles
for the three strains were approximately 0.55 (p < 0.001;
Supplementary Table S1; Supplementary Data S1). The moderate
correlation might be explained by; (1) the nodes with around
12 log2 mean transcription mainly contain the high number
of proteins (Figures 3A,B); (2) the most highly transcribed
nodes (>15 log2 mean transcription) contain genes that
are considered for housekeeping and information on such
intracellular proteins is absent in the secretomic data; (3) the
omics data used were fungal early responses to the substrates
on the third day of cultivation. The corresponding proteins
from the highly expressed genes might not have been sufficiently
accumulated in the culture medium for detection at the time
point.

Selection of Genes Regulated in
Substrate-Specific Manners
Our strategy was to overlay complementary information
from genome-wide transcriptomics and the secretomics of
corresponding gene products. Our intention was to investigate
the genes regulated in response to lignocellulosic substrates
(wheat straw, pine, and aspen). Such genes were potentially
involved in the deconstruction of the complex linkages such
as hemicellulose and lignin intra- and inter-chain linkages. For
this purpose, we filtered the genes that were both specifically
highly transcribed and differentially expressed on lignocellulosic
substrates as compared to the two simple carbon sources, maltose,
and cellulose.

In the case of Pycco 310, we identified nodes that contained
genes highly transcribed on wheat straw, pine, or aspen (>12
log2) but not on maltose or cellulose. The genes that were
significantly up-regulated on complex plant substrates (log2 fold
change > 1; adjusted p < 0.05), in comparison to maltose, were
further selected from the nodes (Table 1).

We identified seven nodes commonly selected from the
transcriptomic data generated from wheat straw, pine, and aspen
culture conditions (the full list is in Supplementary Data S2). Of
these, particularly noteworthy nodes were 12, 16, 31, and 239.

Some nodes contained genes coding for predicted CAZymes
active on hemicellulose and CAZymes active on pectin. There
were two CAZymes potentially active on hemicellulose (GH12;
protein ID 1358049 and GH43; 1435501) and one active on
pectin (GH28; 688728) in node 12 (Supplementary Data S2). The
presence of these three CAZymes within a single node suggests
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FIGURE 1 | Overview of the experimental design and the integration of the transcriptomic and secretomic data using the Applied Biomass
Conversion Design for Efficient Fungal Green Technology (ABCDEFGT) workflow.

that the fungus simultaneously produces these enzymes to cleave
hemicellulose and pectin polymers of the plant biomass. A similar
co-regulation pattern was observed in node 52 where genes
were highly transcribed and up-regulated on aspen including a
xylanase gene (GH10; 1435885) and pectin-active enzymes such
as CE8 (1438246) and GH28 (1377553; 1446047).

Auxiliary activity 2 peroxidases are involved in lignin
breakdown and often work in concert with other oxidoreductases
such as glucose–methanol–choline (GMC) oxidoreductases

(CAZy family AA3; Hernández-Ortega et al., 2012). Two AA2
peroxidases (1468611; 1436321) in node 31 and the AA3
(1368318) in node 16 could have been involved in lignin
breakdown since they all show up-regulation on the three
substrates. Cooperative activity has also been shown between
AA2 peroxidases and AA5_1 glyoxal oxidases (Kersten and
Cullen, 2014). One predicted AA5_1 glyoxal oxidase (1480943,
node 74) had its gene regulated on wheat straw and aspen,
suggesting that it could have synergistic activity with the
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FIGURE 2 | Integrated omics model of Pycco 310. Mean transcription of biological replicates for the individual substrates. The node identification is labeled (i.e.,
1–320).

FIGURE 3 | Integrated omics model of Pycco 310. The node identification is labeled (i.e., 1–320). (A) Global mean transcription levels per node combined from
the five cultivation conditions. (B) The count of the total proteins secreted per node indicates secretion hotspots. (C) Groups of highly transcribed genes (>12 log2
read count) were labeled and highlighted in circle. C, Common to all substrates; M, Maltose; Av, Avicel; W, Wheat straw; P, Pine; A, Aspen.

above-mentioned AA2 peroxidases. In addition, a coordinated
breakdown for lignin and hemicellulose might have occurred
in our cultures with the presence of two AA2 genes (1431101;
1464049), a GH10 xylanase (1395316) and CE1 acetylxylan
esterase (1377160) found together in a node (node 9).

The genes coding for non-secreted proteins were enriched
in node 239; this trend was seen across the three complex
substrates. Non-secreted proteins specifically up-regulated on
pine were found in nodes 94, 113, 114, 133, and 197. These
genes may be expressed intracellularly for metabolic adaptation
of the fungus to the plant biomass. For example, the genes
(protein ID : 1436381; 1439874; 1521754) encoding predicted
cytochrome P450s in nodes 94, 113, and 239 may have a role in
detoxifying toxic compounds resulting from the decomposition
of pine (Supplementary Data S2).

Additionally, we identified genes coding for predicted secreted
proteins with unknown functions. Some of these genes are co-
regulated with CAZyme genes and could participate in the
breakdown of the plant biomass such as protein ID 1363452
and 1364528 in node 12, 1438837, and 1425076 in node 16, and
1439153 in node 52. Such genes could be of interest for further
functional studies.

In conclusion, the genes clustered based on similar
transcription profiles. Differential transcription was observed
from the growth on complex plant substrates in comparison to
maltose and cellulose. The result gave enzymes potentially active
in synergy on hemicellulose, pectin, and lignin polymers. Since
enzymes active on plant biomass polymers are often members
of multi-copy gene families, this strategy was particularly
effective to identify the individual gene copies used by the
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TABLE 1 | Pycco 310 genes up-regulated on complex plant substrates.

Substrate Nodes Genes Secreted/predicted CAZymes Unknown

Aspen 15 121 22/49 (45%) 23 16

Pine 21 224 24/58 (41%) 20 18

Wheat straw 16 105 16/34 (67%) 14 10

Nodes: The number of substrate-specific nodes containing genes highly transcribed only on the plant substrates. Genes: The number of genes highly transcribed and
differentially regulated in the substrate-specific nodes. Secreted/predicted: The number of secreted proteins detected in the culture medium at least in one growth
condition/the number of proteins with predicted signal peptides (as determined by SignalP). CAZymes (carbohydrate active enzymes): The number of predicted proteins
similar to carbohydrate active enzymes. Unknown: The number of proteins with predicted secretion and no predicted function.

TABLE 2 | Pycco 310 nodes most enriched in secreted proteins and their corresponding transcriptome profiles.

ID Proteins Mal Avi Asp Pin Whs CAZyme

120 26 12 15 13 13 13 GH47, GH92, GH27, GH17, GH5_22, PL8_4

14 24 7 15 14 13 13 CBM1-GH6, CBM1-GH5_7, AA9-CBM1, GH7, AA8-AA3_1, GH115, AA9-CBM1, CBM1-CE16,
GH131-CBM1

35 23 7 12 13 12 13 GH28, Lysophospholipase, GH3, GH45, Peptidase S10, Peptidase S53

220 23 7 13 12 10 9 GH7, CE16, GH12, CBM1-CE1, CBM1-GH3, CBM1-GH5_5, CBM1-CE15, CBM1

ID: Identification of the nodes from the integrated omics model (Figure 3). Proteins: Total number of secreted proteins detected from the culture medium.
Mal/Avi/Asp/Pin/Whs: Mean log2 read count of the genes per node in response to maltose, Avicel, aspen, pine, or wheat straw. CAZyme: Predicted functions of
the secreted proteins based on CAZy and KOG annotations.

fungus in our growth conditions. Finally, the integration of
whole-transcriptome data enabled the identification of metabolic
adaptations potentially related to plant substrate deconstruction,
including detoxification mechanisms.

Selection of Nodes Enriched in Secreted
Proteins
We identified sets of co-regulated genes coding for abundantly
secreted proteins that potentially act synergistically for the
degradation of the substrates. We observed that the nodes
containing genes highly transcribed on cellulose (Avicel) and
highly transcribed on pine, aspen, or wheat straw tended to
have the highest number of secreted proteins (Figure 3B). Also,
the mean transcription of the genes in response to Avicel was
mostly higher than any other substrates (Table 2; Supplementary
Table S2). This observation is consistent with the study on
saprotrophic fungi, in which cellulose is perceived as a signal for
the transcription of a wide range of genes coding for enzymes
active on cellulose and hemicellulose (Amore et al., 2013).

Four nodes showing the highest number of proteins detected
in the secretome were selected from the secretomic topography
(Figure 3B). Interestingly, most of the genes from the selected
nodes coded for CAZymes. In particular, CAZymes associated
with a Carbohydrate Binding Module 1 (CBM1) were abundant
in nodes 14 and 220. CBM1 is a protein domain mainly found in
fungi that has affinity to crystalline cellulose and improves access
of the enzyme catalytic module to the substrate (Guillén et al.,
2010). The identified CBM1-containing CAZymes are active
on cellulose (AA9-CBM1, CBM1-GH5_5) and glucan polymers
(GH131-CBM1, CBM1-GH6, and CBM1-GH3). An enrichment
of such CAZymes in the selected nodes was consistent with up-
regulation of the genes in response to cellulose-derived stimuli
(Table 2). It was observed that enzymes active on the branching
linkages from the hemicellulose polymer backbone were clustered
together with cellulose-active enzymes (e.g., GH115, CE16, CE1,

and CE15), suggesting the fungal response to cellulose and plant
biomass-derived stimuli involves a diverse set of enzymes acting
in synergy on a variety of linkages.

Comparison of the Clustering Methods
We measured the biological relevance of our model in
comparison to MBCluster using the Pycco 310 data. Correlations
were estimated between the average transcription levels of
the individual gene clusters and the corresponding count of
the secreted proteins (Supplementary Data S3). Given that
in general a higher gene transcription level corresponds to a
higher expression of gene products, we expected some positive
correlation if a clustering method is biologically relevant.

Self-organizing map and MBCluster were used separately to
generate 320 gene clusters. This number of clusters was optimal
for SOM and gave a resolution of about 35 genes/cluster. The
correlation coefficients were 0.55 and 0.24 (p < 0.001) for SOM
and MBCluster, respectively, suggesting that SOM combined
the transcriptomic and secretomic data more effectively than
MBCluster.

An additional attempt was made to increase the correlation
coefficient for MBCluster by arbitrarily lowering the number
of clusters to 100, giving 112 genes/cluster with the correlation
coefficient 0.31 (p < 0.001). This coefficient was still lower than
that of SOM with the high resolution of 35 genes/cluster. It might
not be practical to target 112 genes per cluster because such a low
resolution could be less useful for refined analysis. Therefore, we
concluded that SOM was superior to MBCluster for this analysis
due to the higher correlation coefficient and higher resolution.

The Robustness of the Integrated Omics
Models
The integrated omics models of Pycci 137 and Pycsa 1264 were
constructed in order to evaluate the robustness of our method.
There were moderate correlations between the transcriptomic
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and secretomic profiles of the two strains similar to that of Pycco
310 (ρ = 0.55; p < 0.001; Supplementary Table S1). Similar
transcriptomic tendencies were observed among the three strains.
There were clusters of nodes highly transcribed only on the
complex plant substrates (Supplementary Figures S1 and S2). The
genes differentially expressed and co-regulated in response to the
complex plant substrates were analyzed using the Pycci 137 and
Pycsa 1264 data. A detailed discussion for the selected genes and
proteins is provided (Supplementary Text S1).

To summarize our findings, Pycci 137 had eight, eleven, and
twelve nodes containing genes differentially regulated on wheat
straw, pine, and aspen, respectively. As observed with Pycco 310,
some genes of Pycci 137 were specifically regulated on pine which
could reflect both a metabolic adaptation to this substrate and to
the detoxification of the molecules derived from its degradation
(e.g., predicted cytochrome P450; protein ID 5741 and 5611).

Meanwhile, Pycsa 1264 had eleven and thirteen nodes that
contained genes that were differentially regulated on wheat
straw and aspen, respectively. The behavior of Pycsa 1264
was similar to Pycci 137 as the strain showed differential
expression of; (1) an AA1_1 laccase (protein ID; 1560767)
on the complex plant substrates; and (2) the up-regulation
of pectin (GH88; 1428239) and hemicellulose active enzymes
including a predicted GH2 mannosidase (1664834) on the
complex biomasses (Supplementary Table S3; Supplementary
Data S2)

The three nodes showing the highest numbers of secreted
proteins were selected based on the secretomic topography
(Supplementary Figure S2). The genes coding for the most
frequently secreted proteins showed the similar tendencies to
Pycco 310 (Supplementary Table S2). The growth on Avicel
might have triggered the intensive transcription of the genes
that led to the production of cellulases and hemicellulases.
The selected nodes showed similar repertoires of CAZymes to
Pycco 310, which contained a consistent number of CAZymes
active on cellulose and glucan polymers associated with a
CBM1 module. Notably, CBM1-associated CAZymes were
systematically grouped in the same nodes (nodes 14 and 220 for
Pycco 310, node 7 for Pycci 137, and node 281 for Pycsa 1264),
suggesting that those genes are co-regulated in response to the
different substrates.

Overall, similar trends were observed among the three strains.
Our method is robust as the biological interpretation of the
integrated omics models made sense using the three strains from
different fungal species.

DISCUSSION

Evaluation of the Integrated Omics
Strategies
We demonstrated systematic data mining of genome-wide fungal
transcriptomics and secretomics. The purpose was to observe the
organisms as a whole, which is different from the conventional
gene-by-gene approach.

Simple visual inspection of the integrated omics data
enabled us to pinpoint various biological hotspots. Three

layers of biological information were presented in our models
(Figures 1–3). The first layer, the mean transcription of biological
replicates per substrate, was indicative of the dynamics of
the genome-wide transcription responding to the substrates
(Figure 2). Secondly, the condition-specific transcriptomic
patterns showed substrate-wise co-regulation of the genes
(Figure 3C). Thirdly, the total count of proteins secreted under
all conditions facilitated the genome-wide view of which gene
clusters actively produced extracellular proteins (Figure 3B).

The layers of genome-wide complementary omics
information revealed a global picture of the fungal response
to the growth conditions. The transcriptomic and secretomic
topographies of the three fungal strains were moderately
correlated on the genome scale (Supplementary Table S1).
Thus, our method allowed us to exploit the interconnected
omics information by selecting nodes of interest containing
co-regulated genes and corresponding gene products.

We demonstrated two different approaches to data mine
genes/proteins of interest. The co-regulated genes/proteins were
determined by either transcriptomic or secretomic pattern-
oriented selection. The former approach unveiled the dynamics
of genome-wide transcription patterns in response to the
substrates. The latter approach was suitable for identifying
enzymes synergistically involved in decomposition of the
substrates. Overall, both strategies led to the discoveries of
numerous genes of unknown functions and uncharacterized
proteins expressed under the specific conditions.

Comparison of the Clustering
Methods
Although MBCluster uses mathematically sophisticated models,
the generated gene clusters might be biologically unimportant
as the algorithm groups genes based on differential expression
patterns (Si et al., 2014). We observed that with this clustering
method the genes were clustered according to the similar
fold change trends regardless of the scale of the transcription
levels (Supplementary Data S3). The disregard for high and
low transcription levels makes less sense for interpretation of
biological phenomena.

Furthermore, we found the design of the method was inflexible
in terms of combining omics information and graphic outputs.
Branches of the dendrogram can swap and shift making it difficult
to grasp the relationship of slightly distant branches. This linear
distance-based graphic format could possibly lose some degree of
biological relevance.

In contrast, SOMs solved this problem by using six neighbors
in proximity, allowing the visual observation of the relationship
of the gene clusters on a broad scale. Thus, our models were
found to be more biologically significant for the representation
of transcriptomics and secretomics, supporting the effectiveness
of our approach.

Construction of Gene Clusters with SOM
It was empirically found that targeting 35 genes in a single node
gave optimal resolution of the gene clusters. We observed that
when a target of less than 35 genes per node was applied, some
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nodes had only few or no genes, suggesting a target of 35 genes
per node was the lowest limit. The number of genes grouped
in one node varied depending on how similar transcriptional
patterns were responding to the particular culture conditions.
Targeting more than 35 genes per node led to a greater number of
genes clustered per node, which decreased the resolution of the
SOMs.

We considered genes clustered in a single node as one group.
The node-wise selection based on the mean transcription level of
all genes within a node was to minimize the loss of biologically
relevant information. It treated all genes in a selected node as
relevant even if an individual gene in the node had a read count of
slightly below 12 log2. Such selection of grouped genes enabled a
fuzzy cutoff of around 12 log2 normalized read count for filtering
the genes. The idea of grouped genes for comparisons has been
successfully demonstrated for microarray analysis (WGCNA;
Langfelder and Horvath, 2008).

The default function of a random initialization of weight
vectors was applied for simplicity as it does not require
additional calculations. Alternatively, linear initialization could
be applied with the additional parameters of first eigenvectors
corresponding to largest eigenvalues of the input data (Binder
and Wirth, 2015). This initialization is suitable for comparisons
between separately built SOMs (Steiner et al., 2012). In our case,
a single master SOM was constructed for the superimposition
of the omics data for comparisons (Figures 1–3). The relative
arrangement of the SOMs would not be affected regardless of
which initialization methods were used.

CONCLUSION

We have developed a new method that systematically identifies
condition-specific regulated genes and enzymes synergistically
involved in the degradation of plant biomass. Our unique strategy
was to compress large-scale omics information into simple
graphs in order to assist intuitive biological extrapolations. Visual
inspection of the topographies made it easy to find molecular
hotspots buried in the complex omics data. We have developed
the workflow ABCDEFGT to produce a graphic representation
of integrated omics data capable of portraying a genome-wide
landscape of fungal machineries.

MATERIALS AND METHODS

Fungal Strains, Genomes, RNA
Extraction, RNA-Sequencing, Protein
Extraction, and Detection
Pycnoporus coccineus CIRM-BRFM 310 (herein called Pycco310),
Pycnoporus cinnabarinus CIRM-BRFM 137 (Pycci 137), and
Pycnoporus sanguineus CIRM-BRFM 1264 (Pycsa 1264) strains
were obtained from the CIRM collection2 at the National Institute
of Agricultural Research. All three genomes were sequenced by

2Centre International de Ressources Microbiennes: https://www6.inra.fr/cirm_
eng/Filamentous-Fungi

US Department of Energy Joint Genome Institute and annotated
using the Joint Genome Institute (JGI) Annotation Pipeline
(Grigoriev et al., 2014).

Transcriptome and secretome data were collected from
triplicated independent three day-cultures in the presence of
either 20 g.l−1 maltose, 15 g.l−1 Avicel, 15 g.l−1 ground wheat
straw, 15 g.l−1 pine wood, or 15g.l−1 aspen wood as the sole
carbon source. Three day-cultures were chosen because, by
this stage, most of the three day-cultures grown under the all
conditions had gone through DNA synthesis, indicating that
the fungi were in comparable physiological states (Miyauchi
et al., in preparation). The high concentrations of the substrates
provided were excess to the growth requirements of the fungal
cultures (Miyauchi et al., in preparation). RNA libraries were
prepared and sequenced on Illumina HighSeq-2500 (Couturier
et al., 2015). The sequence data are available on NCBI (GEO
accession: GSE82486). The transcriptome response of Pycsa1264
to pine could not be analyzed due to poor quality of the extracted
RNAs from these samples. Secreted proteins were collected from
the same cultures, dia-filtered and identified by ESI-MS/MS
(Couturier et al., 2015).

Data Preparation and Manipulations
The obtained Illumina RNA-Seq 150 bp paired end reads were
filtered and trimmed using the JGI QC pipeline. QCed reads
were aligned to the genomes using TopHat 2 (Kim et al.,
2013), counted with HTSeq (Anders et al., 2014), normalized
with dsNorm from the DESeq2 Bioconductor package, and log2
transformed (Love et al., 2014). The reliability of the data was
verified using a selection of genes by Real Time quantitative
PCR (Couturier et al., 2015). Transcriptomic and secretomic
data were combined for the data processing. R was used for
data manipulations using our customized scripts (R Core Team,
2013).

SOMs for the Integrated Omics Models
Self-organizing maps were constructed with the R package
kohonen (Wehrens and Buydens, 2007). The genes showing
similar transcription levels were grouped into nodes of SOMs.
It was empirically found that a target of 35 genes per single
node of the SOM gave the best resolution of the gene clusters.
The default parameters were used for initialization, learning rate,
and radius. Hexagonal SOM models were applied to have six
neighboring nodes. The map units used were 320, 285, 340 for
Pycco 310, Pycci 137, and Pycsa 1264, respectively. The number
of iterations used was 100 times more than the map units in order
to minimize the Euclidian distances between the nodes for the
optimal convergence.

Genome-Wide Omics Models for the
Three Strains
Omics models of the strains were generated by training a
SOM with the normalized log2 read count of the fungal
responses to maltose, Avicel, pine, aspen, and wheat straw.
A topography depicting substrate-specific transcriptomic
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patterns was comprised of a mean read count of combined
biological replicates grown in each carbon source substrate.
A topography representing high transcriptional patterns was
made by filtering nodes showing a mean read count of the
combined triplicates > 12 log2 on each carbon source substrate,
which constituted approximately above 75th percentile of the
entire gene population. A secretomic topography was created by
superimposing the total count of proteins detected mapped onto
the SOM nodes.

Correlation of Transcriptomic and
Secretomic Profiles
Spearman’s rank correlation was estimated between the mean
transcription level of all conditions (i.e., the node-wise mean
transcription topography) and the total count of proteins secreted
from all conditions (i.e., the secretomic topography).

Selection of Genes Showing
Substrate-Specific Up-Regulation
Gene clusters (nodes) highly transcribed (>12 log2) on each
substrate and commonly highly transcribed (>12 log2) on the
substrates were identified. Differentially regulated nodes, which
were up-regulated on the complex biomass but not on maltose
and Avicel, were determined. Then, the differentially regulated
genes were further filtered on the basis of statistically significant
log2 fold changes (>1) estimated with DESeq2 (p adjusted < 0.05:
FDR and Bonferroni correction; Love et al., 2014). The final
outputs of the transcriptomics analysis were lists of genes
highly transcribed in response to complex plant biomass and
differentially regulated as compared to the maltose and Avicel
growth conditions.

Selection of Genes Coding for Frequently
Secreted Proteins
The nodes with top three highest counts of proteins were
determined from the secretomic topography.

Comparison of the SOM and MBCluster
Methods
The RNA-seq data of Pycco 310 was used for the comparison.
Gene clusters were generated with the R package MBCluster.Seq
(Si et al., 2014). The number of partitions (k = 320) was used to
initialize the cluster centroids with the negative binomial model;
this number was chosen to match the number of the gene clusters
used for SOMs with this fungal strain. The default function of
the package, Expectation-Maximization method with negative

binomial model was used for clustering. The global mean
transcription of the individual clusters was calculated from the
results of SOM and MBCluster. The total count of proteins was
calculated for the individual clusters. Spearman’s rank correlation
coefficients of the transcriptomic and the secretomic profiles were
used as an indicator for the biological relevance of the constructed
models.
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