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1 Introduction

The literature on one-sector Real Business Cycle models with productive external-

ities and increasing returns to scale (IRS) offers today a relatively exhaustive pic-

ture of the conditions required for the existence of local indeterminacy and sunspot

fluctuations.1 Local indeterminacy typically requires a large enough elasticity of in-

tertemporal substitution in consumption (EIS), a large enough degree of increasing

returns to scale (IRS), and a large enough elasticity of aggregate labor supply. These

conditions obviously interact together: for a given labor supply elasticity, a lower

degree of IRS must be combined with a larger EIS in consumption in order to obtain

indeterminacy, and vice-versa. Likewise, for any given degree of IRS, a lower EIS

in consumption must be combined with a larger elasticity of aggregate labor supply

for indeterminacy to prevail. Despite these tradeoffs in the relative intensities of

these economic mechanisms, a standard conclusion from one sector models is that

indeterminacy hardly occurs for empirically plausible calibrations of the parameters

unless other features such as a variable capital utilization rate are introduced (Wen

[25], Benhabib and Wen [5]).

One noticeable feature of two-sector Real Business Cycle models is that local

indeterminacy typically requires much lower degrees of IRS than their one-sector

equivalents. This is well known from the canonical two-sector model of Benhabib

and Farmer [3] – featuring a separable utility function with a unitary EIS – in

which only 7% of IRS are required for indeterminacy compared to about 50% in the

corresponding one-sector model of Benhabib and Farmer [2]. However, the literature

on two-sector models is far from being as exhaustive on the required combinations in

terms of labor supply elasticity, intertemporal substitution effects and externalities

consistent with indeterminacy as the literature on one-sector models is. Actually,

many of the results obtained in two-sector models have been derived under relatively

narrow specifications for technology and/or preference, without much systematic

analysis of the interplays between the relevant underlying economic mechanisms,

and often through numerical simulations.2

Our aim in this paper is to contribute to fill this gap by providing an exten-

1See among others Benhabib and Farmer [2], Lloyd-Braga et al. [16], Nishimura et al. [18],

Pintus [20], Wen [25].

2For example, in Benhabib and Farmer [3], the utility function is restricted to be logarithmic

in consumption (unitary EIS). In Harrison [13], a more general utility function for consumption

is considered, but the analysis is restricted to the case of an infinitely elastic labor supply. These

analyses thus do not cover the set of empirically credible calibrations for these parameters.
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sive analysis of the local stability properties of two-sector optimal growth model,

considering a fairly general class of additively separable preferences.3 Starting from

the Benhabib and Farmer [3]’s formulation with increasing social returns to scale

but considering a more general additively separable utility function, we analyze the

interplays between the degree of IRS, the EIS in consumption and the labor supply

elasticity in the emergence of local indeterminacy.

Assuming in a first step a sufficiently elastic labor supply, which includes the

range of empirically credible values for this elasticity, we prove that local indeter-

minacy occurs quite generally, in particular for arbitrarily low EIS in consumption,

provided that the degree of increasing social returns is larger than some (empirically

plausible) lower bound. This conclusion is drastically different from what is known

from the previous literature, in which a large enough EIS was always assumed in or-

der to get indeterminacy with empirically plausible amounts of externalities (Garnier

et al. [8, 9], Harrison [13]). We show that changes in the local stability properties

of the model occur through both flip and Hopf bifurcations, and we provide the

analytical expressions for these bifurcation values. We also prove that local indeter-

minacy occurs no matter how elastic or inelastic the labor supply is, provided the

EIS in consumption and the amount of externalities are in an intermediary range

still compatible with empirically relevant values. As a result, we show that indeter-

minacy and sunspot driven fluctuations can occur under a wide range of empirically

credible calibrations for all the structural parameters.

The rest of this paper is organized as follows. We present the model and we

characterize the intertemporal equilibrium and the steady state in the next Section.

In Section 3, the complete set of conditions for indeterminacy are derived and some

numerical illustrations are provided. Some concluding remarks are stated in Section

4, whereas all the technical details are given in an Appendix.

2 The model

We consider a standard infinite-horizon two-sector real business-cycle model à la

Benhabib and Farmer [3], with productive externalities in the investment sector.4

3For a thourough analysis of two-sector model with GHH preferences – with no-income effects

on labor supply – see Dufourt et al. [7].

4As is well-known, externalities in the consumption sector tend to increase the aggregate degree of

IRS required for indeterminacy Moreover, a constant returns to scale technology in the consumption

sector and an increasing returns to scale technology in the investment sector are consistent with

the empirical findings of Basu and Fernald [1] and Harrison [14].
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2.1 Production

The economy produces a consumption good, c, and an investment good, I, with

constant returns to scale Cobb-Douglas technologies at the private level in both

sectors and output externalities in the investment sector only. We denote by Yc and

YI the outputs of sectors c and I, and by A the external effects. The production

functions at the private level are thus:

Yct = Kα
ctL

1−α
ct , YIt = AtK

α
ItL

1−α
It (1)

where Kct and Lct are capital and labor units allocated to the consumption sector,

and KIt and LIt are capital and labor units allocated to the investment sector. The

externality parameter At depends on K̄I,t and L̄I,t, the average levels of capital and

labor in sector I, such that

At = K̄αΘ
It L̄

(1−α)Θ
It (2)

with Θ ≥ 0. These economy-wide averages are taken as given by individual firms.

Assuming that factor markets are perfectly competitive and that capital and labor

inputs are perfectly mobile across the two sectors, the first order conditions for profit

maximization of the representative firm in each sector are

rt = αYct
Kct

= pt
αYIt
KIt

, ωt = (1−α)Yct
Lct

= pt
(1−α)YIt
LIt

(3)

where rt, pt and ωt are respectively the rental rate of capital, the price the investment

good and the real wage rate at time t, all in terms of the price of the consumption

good.

2.2 Preferences

We consider an economy populated by a continuum of unit mass of identical

infinitely-lived agents. At each period, a representative agent supplies elastically

an amount lt of labor, consumes ct and invests It so as to accumulate capital. He

derives current period utility from consumption and labor according to a standard

additively separable utility function given by

U(c, l) = c1−σ

1−σ −
l1+χ

1+χ
(4)

with σ ≥ 0 and χ ≥ 0 which are respectively the inverse of the EIS in consumption

and the inverse of the Frisch wage elasticity of labor supply.

Denoting by kt the household’s capital stock and by Yt the GDP, the budget

constraint faced by the representative household is

ct + ptIt = Yt = rtkt + ωtlt (5)
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Assuming that capital depreciates at rate δ ∈ (0, 1) in each period, the law of motion

of the capital stock is:
kt+1 = (1− δ)kt + It (6)

with k0 given. Combining (5) and (6), the representative household then maximizes

its present discounted lifetime utility

max
{ct,lt,kt+1}t=0...∞

+∞∑
t=0

βt
[
c1−σt
1−σ −

l1+χ
t
1+χ

]
s.t. kt+1 = (1− δ + rt)kt + ωtlt − ct, t = 0...∞,

k0 given

(7)

with β ∈ (0, 1) the discount factor. The first-order conditions are, for t = 0...∞,
c−σt = βc−σt+1

[
rt+1+(1−δ)pt+1

pt

]
(8)

ωtc
−σ
t = lχt (9)

Equation (8) is the standard Euler equation, and (9) corresponds to the trade-off

between consumption and leisure.

2.3 Intertemporal equilibrium and steady state

We consider symmetric perfect-foresight equilibria which consist of prices

{rt, pt, ωt}t≥0 and quantities {ct, lt, It, kt, Yct, YIt,Kct,KIt, Lct, LIt}t≥0 that satisfy

the household’s and the firms’ first-order conditions as given by (3) and (8)-(9), the

technological and budget constraints (1)-(2) and (5)-(6), and the market equilibrium

conditions. All firms of sector I being identical, we have K̄It = KIt and L̄It = LIt

for any t. The production function at the social (aggregate) level in the investment

good sector is defined as

YIt = K
α(1+Θ)
It L

(1−α)(1+Θ)
It (10)

We thus have increasing returns at the social level with size given by Θ.

The market clearing conditions for the consumption and investment goods are

ct = Yct and It = YIt, while the market clearing conditions for capital and labor yield

Kct +KIt = kt and Lct +LIt = lt. Any solution that also satisfies the transversality

condition
lim

t→+∞
βtc−σt kt+1 = 0

is called an equilibrium path.

A steady state is defined by constant equilibrium quantities and prices. We

provide the following Proposition:

Proposition 1. Assume that Θ 6= (1 − α)/α and χ 6= χ̂ ≡ σ(1−α)+αΘ
1−α(1+Θ) . Then there

exists a unique steady state.
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Proof : See Appendix 5.1.

We can now turn to the analysis of the local stability properties of the model,

considering a family of economies parameterized by the EIS in consumption 1/σ,

the degree of IRS Θ and the wage elasticity of labor supply 1/χ.

3 Local stability analysis

After some manipulations, the two-sector model described above can be reduced to

a two-dimensional dynamic system in (kt, ct) . Linearizing this system in a neigh-

borhood of the steady state yields a Jacobian matrix for which the characteristic

polynomial is given in Appendix 5.2. In this Appendix, we also show that for a given

value of χ, the Trace and Determinant of the Jacobian matrix are linear functions

of σ. This means that when σ is varied over (0,+∞), the Trace and Determinant

move along a line, denoted by ∆χ, whose location depends on the parameters, in

particular on the size of externalities Θ and the (inverse of) the elasticity of the

labor supply χ. Thus, we can analyze the local stability properties of the model by

using the geometrical methodology described in Grandmont et al. [10].

Let us introduce at this stage the following parameter restrictions, which enable

us to simplify the analysis by restricting the number of possible configurations:

Assumption 1. α ∈ (1/4, 1/2), β ∈ (β̂, 1), δ < δ̂ and Θ ∈ (Θ, Θ̄) with β̂ ≡
max{(1− 2α)/[(1− δ)(1− α)2], (1− α − δ)/(1− δ)(1− α)}, δ̂ ≡ [β(1− α)− 2(1−
β)]/β(2− α), Θ = δ/(1− δ) and Θ̄ = α/(1− α).5

These restrictions are sufficient to consider the whole range of empirically credible

values for these parameters. Estimates for the labor share (equal to 1 − α in the

model) in industrialized economies are typically in the range 60-70%. Estimates for

the quarterly depreciation rate are typically close to 2.5%, and estimates for the

subjective discount factor are typically around 0.99. Using a standard calibration

of RBC models compatible with quarterly data, namely (α, δ, β) = (0.3, 0.025, 0.99),

Assumption 1 holds and is compatible with mild external effects since β̂ ≈ 0.837,

δ̂ ≈ 0.4, Θ ≈ 0.0256 and Θ̄ ≈ 0.4286. The interval for Θ largely covers the range

of available empirical estimates for the amount of IRS to scale in the US economy.6

5Note that under Assumption 1, Θ̄ < (1 − α)/α.

6For example, Basu and Fernald [1] obtain a point estimates for the degree of IRS in the durable

manufacturing industry in the US economy of 0.33, with standard deviation 0.11.
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Note also that Assumption 1 implies that all our results are compatible with standard

negative slopes for the capital and labor equilibrium demand functions.

Denoting θ = β(1 − δ), let us also introduce the following bounds on χ and Θ,

important for the local stability properties of the model (see below):

χ = αΘ
1−α(1+Θ) , Θ̃χ =

α(1+β)[1−θ(1−α)+χ]
1−θ +

(1−α)(1−θ)
2 (1− βαδ

1−θ )
α(χ̃−χ)

with
χ̃ = (1−δ)(1+β)(1−α)−δα

δα

Since Θ̃χ is increasing in χ, there are two main cases to consider: (i) χ is not

too large, i.e. the elasticity of the labor supply curve is not too small, so that

Θ̃χ ∈ (Θ, Θ̄) ; (ii) χ is large (the elasticity of the aggregate labor supply curve is

small), so that Θ̃χ > Θ̄. The next subsection is devoted to case (i) which, we argue,

covers all the empirically relevant configurations. Subsection 3.2 will consider instead

the case of an arbitrary value for the elasticity of aggregate labor supply, restricting

then the range of values considered for the degree of IRS Θ. This second case is

mostly important for theoretical purposes as it covers the case of a fixed labor supply.

3.1 Local indeterminacy for small elasticities of intertemporal sub-

stitution in consumption

Let us first consider the case of a not too small labor supply elasticity, so that

Θ̃χ ∈ (Θ, Θ̄). For practical purposes, we assume that χ ∈ [0, 2/3), an interval for

which the condition Θ̃χ ∈ (Θ, Θ̄) is always satisfied under Assumption 1.7 This

interval covers values for the elasticity of the aggregate labor supply curve ranging

from 3/2 to +∞, which includes the range of empirically credible values for this

elasticity according to Prescott and Wallenius [21] and Rogerson and Wallenius [23],

who concluded for values typically larger than 2 and probably around 3.8 This

range also covers Hansen’s [12] and Rogerson’s [22] models of indivisible labor (with

employment lotteries), corresponding to χ = 0.

We can now apply the geometrical methodology of Grandmont et al. [10]. In

appendix 5.2, we show that when σ increases from 0 to +∞, the value of the pair

(T ,D) varies along a line ∆χ, whose starting and ending points depend on the values

7Using again as an example the standard calibration (α, δ, β) = (0.3, 0.025, 0.99), we get Θ̃χ ≈
0.1033 when χ = 0, and Θ̃χ ≈ 0.316 when χ = 2/3. Note also that the threshold χ lies in [0, 2/3)

in all cases.

8See Prescott and Wallenius [21] for a discussion of the factors that make the wage elasticity of

aggregate labor supply significantly different from the corresponding elasticity at the micro level.
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of structural parameters, in particular regarding the amount of externalities Θ and

the labor supply elasticity, 1/χ.9

In Appendix 5.3, we show that when externalities are weak, Θ ∈ (Θ, Θ̃χ), we

have the following geometrical configurations (see Figure 1,a,b)
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Figure 1: Local indeterminacy with Θ ∈ (Θ, Θ̃χ).

Figure 1(a) corresponds to the case of a large (possibly infinite) labor supply

elasticity: χ ∈ [0, χ). The line ∆χ crosses the triangle ABC in which both char-

acteristic roots have a modulus less than 1 and local indeterminacy arises. Indeed,

when σ increases from 0, the value of the pair (T ,D) varies along ∆χ. The steady

state is first saddle-point stable for σ ∈ [0, σ̄T ), becomes unstable for σ ∈ (σ̄T , σ̄H),

then locally indeterminate when σ ∈ (σ̄H , σ̄F ) and is finally saddle-point stable for

σ > σ̄F . When σ crosses σ̄T , one positive characteristic root crosses the value 1

and a transcritical bifurcation occurs.10 When σ crosses σ̄H , one pair of complex

characteristic roots crosses the unit circle and a Hopf bifurcation occurs generating

quasi-periodic endogenous fluctuations. When σ crosses σ̄F , one negative character-

istic root crosses the value −1 and a flip bifurcation occurs generating period-two

cycles.

Figure 1(b) covers the case of a smaller labor supply elasticity: χ ∈ (χ, 2/3).

As can be observed, the local stability properties of the steady-state are the same,

except that the starting point of the line ∆χ (associated to σ = 0) is now located

above the triangle ABC, where the steady-state is unstable, so that the transcritical

bifurcation no longer exists. The steady-state is thus unstable for σ ∈ (0, σ̄H),

9The slope of the line is also affected by a change in the values of these parameters. Yet,

these changes are sufficiently contained under our parameter restrictions that they do not lead to

additional conceptual configurations.

10Note that a transcritical bifurcation is usually associated with two-steady-states. However, as

proved by Proposition 1, the steady state is unique. It follows that this transcritical bifurcation is

degenerate and only associated with a loss of stability of the unique steady state.
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locally indeterminate for σ ∈ (σ̄H , σ̄F ) and saddle-point stable for σ > σ̄F .

The Hopf, flip and transcritical bifurcation values are respectively given by (see

Appendix 5.3):

σ̄H =
(1− βδα

1−θ )
Θ(χ+α)(1−δ)(1−β)

δ

−Θ[(1−α)(1−θ)−δ−χδα]
δ

+
α(1−β)[1−θ(1−α)+χ]

1−θ
(11)

σ̄F =
(1− βδα

1−θ )
Θ[α(1+θ)(2−δ)+χ[2(1−δ)(1+β)+δα(1−θ)]]−δχ(1−α)(1−θ)

δ(1−α)

2
[
−Θ[(1−δ)(1−α)(1+β)−δα(1+χ)]

δ(1−α)
+
α(1+β)[1−θ(1−α)+χ]

(1−α)(1−θ)

]
+(1−θ)(1− βδα

1−θ )
(12)

and
σ̄T =

[1−α(1+Θ)](χ−χ)

(1−α)
(13)

When the amount of externalities is larger, Θ ∈ (Θ̂χ, Θ̄), we get the following

geometrical configurations.
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Figure 2: Local indeterminacy with Θ ∈ (Θ̃χ, Θ̄).

Comparing Figure 2(a) to Figure 1(a), we observe that the stability properties

of the model are the same, except that the line ∆χ now has a terminal point (for

σ = +∞) which is located in the interior of the triangle ABC (where the model is

locally indeterminate), and no longer crosses the line generated by AB, so that the

flip bifurcation no longer occurs. The steady-state is thus locally indeterminate for

any σ > σ̄H , i.e. for arbitrarily low values for the EIS in consumption. Likewise, in

Figure 2(b) where χ ∈ (χ, 2/3), the situation is the same as in Figure 1(b) except that

the flip bifurcation no longer exists. Indeterminacy thus also occurs for arbitrarily

low values for the EIS.

We summarize these results in the following Proposition:

Proposition 2. Under Assumption 1, let χ ∈ [0, 2/3). Then, there exist δ, δ̄, with

0 < δ < δ̄ ≤ δ̂, and β ∈ [β̂, 1) such that if δ ∈ (δ, δ̄) and β ∈ (β, 1), the following

results hold:

i) For Θ ∈ (Θ, Θ̃χ), when χ ∈ [0, χ), the steady state is saddle-point stable

when σ ∈ [0, σ̄T ), undergoes a transcritical bifurcation at σ = σ̄T , becomes locally
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unstable when σ ∈ (σ̄T , σ̄H), undergoes a Hopf bifurcation at σ = σ̄H , becomes

locally indeterminate when σ ∈ (σ̄H , σ̄F ), undergoes a flip bifurcation at σ = σ̄F ,

and becomes again saddle-point stable when σ ∈ (σ̄F ,+∞). When χ ∈ (χ, 2/3),

the transcritical bifurcation disappears so that the model is locally unstable for σ ∈
[0, σ̄H).

ii) For Θ ∈ (Θ̃χ, Θ̄), when χ ∈ [0, χ), the steady state is saddle-point stable when

σ ∈ [0, σ̄T ), undergoes a transcritical bifurcation at σ = σ̄T , becomes locally unstable

when σ ∈ (σ̄T , σ̄H), undergoes a Hopf bifurcation at σ = σ̄H , and becomes locally

indeterminate when σ ∈ (σ̄H ,+∞). When χ ∈ (χ, 2/3), the transcritical bifurcation

disappears so that the model is locally unstable for σ ∈ [0, σ̄H).

Proof : See Appendix 5.3.

In Proposition 2, the bounds δ, δ̄ and β are complicated expressions of the

structural parameters, obtained from second-order polynomials derived in Appendix

5.3. Of course, the conditions β ∈ (β, 1) and δ ∈ (δ, δ̄) are always satisfied under

Assumption 1 by our benchmark calibration (α, δ, β) = (0.3, 0.025, 0.99), and are

also always satisfied in a significantly large neighborhood of this calibration.

Comments. Proposition 2 provides new clear-cut conditions for the occurrence

of local indeterminacy in two-sector RBC models with additively separable prefer-

ences, generalizing the results obtained by Benhabib and Farmer [3] in the particular

case of utility function that is logarithmic in consumption (unitary EIS). First, we

prove the existence of a Hopf and, in some cases, of flip and transcritical bifurcations

in the parameter space.11 Second, we prove that local indeterminacy can arise in

two-sector models for an arbitrarily small EIS in consumption 1/σ, provided that

the amount of IRS in the investment sector is in an intermediary range, namely

Θ ∈ (Θ̃χ, Θ̄). Note that this range includes the empirical estimates of Basu and Fer-

nald [1] for the degree of IRS in the US durable manufacturing industry. Third, we

easily derive from equations (11) that ∂σH/∂Θ > 0 and ∂σF /∂Θ > 0. We conclude

from case ii) of Proposition 2 (where indeterminacy requires σ ∈ (σ̄H ,+∞)) that

for any labor supply elasticity χ ∈ (0, 2/3), decreasing the amount of externalities

actually favors the emergence of indeterminacy by increasing the range of values

for σ for which the steady-state is locally indeterminate. The conclusion is different

in case i) of Proposition 2, where indeterminacy requires σ ∈ (σ̄H , σ̄F ), since both

bifurcation parameters are decreasing in Θ.

11In Benhabib and Farmer [3] the existence of the Hopf bifurcation is mentioned but not proved,

while Harrison [13] focuses exclusively on the flip bifurcation through a numerical analysis.
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As an application from Proposition 3 , Figures 3(a) and (b) display the de-

terminacy/indeterminacy areas in the (σ,Θ) plane for two different values for the

elasticity of the aggregate labor supply curve: χ = 0, which corresponds to Hansen’s

[12] assumption of indivisible labor, and χ = 1/3, which corresponds to a labor

supply elasticity of 3, the value recommended by Prescott and Wallenius [21] and

Rogerson and Wallenius [23] to calibrate business cycle models. We observe that

indeterminacy prevails for a wide range of empirically plausible values for σ and Θ.

For example, when χ = 0 and the amount of IRS is calibrated to Θ = 0.33 (the point

estimate obtained by Basu and Fernald [1]) indeterminacy requires σ > σ̄H ≈ 0.83,

i.e. an EIS in consumption smaller than 1.2. When χ = 1/3, indeterminacy requires

σ > σ̄H ≈ 0.65, i.e. an EIS in consumption smaller than 1.54. This range of values

is consistent with most, although not all, empirical estimates for this coefficient.12
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Figure 3: Indeterminacy areas in the (σ,Θ) plane

12There is no agreement in the empirical literature about the precise value of the EIS in con-

sumption, since most estimates typically vary between 0 and 2. See in particular Campbell [6] ,

Kocherlakota [15] and Vissing-Jorgensen [24] for estimates smaller than 1, and Mulligan [17] and

Gruber [11] for estimates ranging between 1 and 2.
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3.2 Local indeterminacy for any elasticity of the labor supply

In the previous Section we have shown that by focusing on an empirically realistic

subset of values for the wage-elasticity of labor supply, we can get local indeterminacy

for arbitrarily low values of the EIS and mild externalities. We now consider the

possibility of obtaining local indeterminacy for any labor supply elasticity, enabling

us in particular to cover the case of a fixed labor supply (obtained as the limiting

case where χ tends to +∞). Following such a route requires to restrict the size of

externalities, and we consequently introduce the following bound on Θ:

Θ̂ = δα[1−θ(1−α)]
(1−α)(1−θ)(1−δ) (14)

In appendix 5.4, we prove that when Θ ∈ (Θ, Θ̂), depending on whether χ is larger

or lower than χ, we get the same geometrical configurations as those described by

Figure 1,a,b. We can then establish the following Proposition:

Proposition 3. Under Assumption 1, let Θ ∈ (Θ, Θ̂). Then there exist δ, δ̄, with

0 < δ < δ̄ ≤ δ̂, and β ∈ [β̂, 1) such that when β ∈ (β, 1) and δ ∈ (δ, δ̄), the following

results hold:

i) If χ ∈ [0, χ), the steady state is saddle-point stable when σ ∈ [0, σ̄T ), undergoes

a transcritical bifurcation at σ = σ̄T , becomes locally unstable when σ ∈ (σ̄T , σ̄H),

undergoes a Hopf bifurcation at σ = σ̄H , becomes locally indeterminate when σ ∈
(σ̄H , σ̄F ), undergoes a flip bifurcation at σ = σ̄F , and becomes again saddle-point

stable when σ ∈ (σ̄F ,+∞).

ii) If χ ∈ (χ,+∞), the steady state is locally unstable when σ ∈ [0, σ̄H), undergoes

a Hopf bifurcation at σ = σ̄H , becomes locally indeterminate when σ ∈ (σ̄H , σ̄F ),

undergoes a flip bifurcation at σ = σ̄F , and becomes saddle-point stable when σ ∈
(σ̄F ,+∞).

Proof : See Appendix 5.4.

Proposition 3 also generalizes previous results obtained in the literature on two-

sector models with additively separable preferences.13 Considering the case of a

utility function with a unitary EIS in consumption, Benhabib and Farmer [3] show

how varying the wage-elasticity of labor supply affects the range of values for which

indeterminacy occurs. They show in particular that considering an infinitely elastic

labor supply allows to minimize the amount of externalities required for indetermi-

nacy. We prove here that adjusting the EIS in consumption is another way to favor

13See in particular Benhabib and Farmer [3] and Harrison [13].
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the occurrence of local indeterminacy since, provided the amount of externalities is

mild enough (i.e. Θ ∈ (Θ, Θ̂)), indeterminacy can occur for any elasticity of labor

supply.14 This conclusion thus covers the case of a fixed labor supply.

4 Concluding comments

Although two-sector infinite-horizon models require smaller degrees of increasing re-

turns to scale for indeterminacy than aggregate models, they are usually criticized

on the fact that they rely on too large values for the EIS in consumption, and too

large values for the elasticity of the labor supply with respect to empirically plau-

sible estimates. However, most of the contributions are based on relatively narrow

specifications for technology and preferences and/or often rely on numerical simula-

tions, preventing from getting a full picture of the configurations giving rise to local

indeterminacy and sunspot fluctuations. We have proved that local indeterminacy

occurs through flip and Hopf bifurcations for any value of the elasticity of the labor

supply, and can even be compatible with an arbitrarily low EIS in consumption.

Moreover, the existence of expectation-driven fluctuations is consistent with a mild

amount of increasing returns.

5 Appendix

5.1 Proof of Proposition 1

Equation (6) evaluated at the steady state gives I = YI = δk. Moreover, we derive

from (3) that r/p = αYI/KI = αδk/KI . It follows from (8) that KI = βδαk/(1− θ)
with θ = β(1− δ). Merging equations (3) gives LI/KI = Lc/Kc = l/k and thus we

get from (10)

k̄ = l
(1−α)(1+Θ)
1−α(1+Θ) δ

Θ
1−α(1+Θ)

(
βα
1−θ

) 1+Θ
1−α(1+Θ) ≡ l

(1−α)(1+Θ)
1−α(1+Θ) κ̄ (15)

assuming of course that Θ 6= (1 − α)/α. Consider now c = Yc = Kα
c L

1−α
c =

(k −KI)
(
l
k

)1−α
. Substituting (15) into this expression gives

c̄ =
(

1− βδα
1−θ

)
κ̄αl

1−α
1−α(1+Θ) ≡ ψ̄l

1−α
1−α(1+Θ) (16)

From the expression of the prices in (3) we derive

14For an analysis of the role of the labor supply elasticity in two sector models where technologies

have constant social returns to scale, see Benhabib and Nishimura [4], Garnier et al. [8, 9] and

Nishimura and Venditti [19].
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ω̄ = (1− α)κ̄αl
αΘ

1−α(1+Θ) ≡ φ̄l
αΘ

1−α(1+Θ) , r̄ = αl
−(1−α)Θ
1−α(1+Θ) κ̄α−1, p̄ = β

1−θ r̄
(17)

Equation (9) now gives using (15)-(17):

(1− α)
(

1− βδα
1−θ

)σ
δ

Θα(1+σ)
1−α(1+Θ)

(
βα
1−θ

) (1+Θ)α(1+σ)
1−α(1+Θ)

= lχ−χ̂ (18)

with
χ̂ ≡ σ(1−α)+αΘ

1−α(1+Θ)

Assuming now that χ 6= χ̂, we derive

l = (1− α)
1

χ−χ̂
(

1− βδα
1−θ

) σ
χ−χ̂

δ
Θα(1+σ)

[1−α(1+Θ)](χ−χ̂)

(
βα
1−θ

) (1+Θ)α(1+σ)
[1−α(1+Θ)](χ−χ̂) (19)

5.2 Computation of the linearized dynamical system

Let us introduce the following elasticities:

εcc = − U1(c,l)
U11(c,l)c = 1

σ , εll = − U2(c,l)
U22(c,l)l = 1

χ
(20)

Consider the first-order condition (9) together with the expression of the wage rate

as given by (3). We easily get

lt = (1− α)
1

α+χ k
α

α+χ

t c
−σ
α+χ

t ≡ l(kt, ct)
Substituting this function into the expressions of the prices (3) allows to get rt =

r(kt, ct), ωt = ω(kt, ct) and pt = p(kt, ct). Consider now the first-order condition (8)

with the capital accumulation equation. We have the following two equations

c−σt+1 [r(kt+1, ct+1) + (1− δ)p(kt+1, ct+1)] = βp(kt, ct)c
−σ
t

kt+1 = (1− δ)kt + r(kt,ct)kt+ω(kt,ct)l(kt,ct)−ct
p(kt,ct)

Using (17), total differentiation of these equations in a neighborhood of the

steady state gives after simplifications the following linear system

A

 ĉt+1

k̂t+1

 = B

 ĉt

k̂t


with

A =

 σ − σ(1−α)(1−θ)
α+χ + Θθ

[
1− σ(1−α)(1−θ)(1− βδα

1−θ )
(α+χ)βδα

]
χ(1−α)(1−θ)

α+χ +
Θ(1−δ)(1−θ)

(
1−χ(1−α)(1−θ)

α+χ

)
δα

0 1


and

B =

 σ + Θ

[
1− σ(1−α)(1−θ)(1− βδα

1−θ )
(α+χ)βδα

]
Θ(1−θ)

(
1−χ(1−α)(1−θ)

α+χ

)
βδα

− 1−θ
β(α+χ)

[
σ(1−α)

α + 1− βδα
1−θ

]
1
β

[
1 + (1−α)(1−θ)

α+χ

]
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It follows that the linearized system is ĉt+1

k̂t+1

 = J

 ĉt

k̂t


with J = A−1B. Denoting by T and D the Trace and Determinant of J , tedious but

straightforward computations allow therefore to compute the following characteristic

polynomial Pσ(λ) = λ2 − T λ+D = 0 with

D = Dχ(σ) =
σ
[
− 1−δ

δ
Θ+(1+Θ)α+

(χ+α)α
(1−α)

(
1+Θ(1−θ)

1−θ

)]
−(1− βαδ

1−θ )
(1−δ)Θ(χ+α)

δ(1−α)

σ
[
− θΘ

δ
+βα+

(χ+α)βα
(1−θ)(1−α)

]
−(1− βαδ

1−θ )
θΘ(χ+α)
δ(1−α)

T = Tχ(σ) = 1 +Dχ(σ) +
(1−θ)(1− βαδ

1−θ )
[
σ+

χ(1−α(1+Θ))−Θα
1−α

]
σ
[
− θΘ

δ
+βα+

(χ+α)βα
(1−θ)(1−α)

]
−(1− βαδ

1−θ )
θΘ(χ+α)
δ(1−α)

We derive from this that when σ is varied over the interval [0,+∞), D and

T are linked through a linear relationship D = ∆χ(T ) = T Sχ + C with a slope

Sχ = (∂Dχ(σ)/∂σ)/(∂Tχ(σ)/∂σ). Let us introduce the following notation:

N =
(1− βαδ

1−θ ){
σ
[
− θΘ

δ
+βα+

(χ+α)βα
(1−θ)(1−α)

]
−(1− βαδ

1−θ )
θΘ(χ+α)
δ(1−α)

}2

We easily derive that

∂Dχ(σ)
∂σ = −N θΘ2(χ+α)α(1+χ)

δ(1−α)2 < 0

∂Tχ(σ)
∂σ = −Nβα

Θ(χ+α)(1+χ)
{

(1−α)(1−δ)(1−θ)(1+Θ)
χ+α

+(1−δ)(1+Θ)−1
}

+χδ(1−α)(1+Θ)(1+χ−θ(1−α))

δ(1−α)2

and thus

Sχ = (1−δ)Θ2(χ+α)(1+χ)

Θ(1+χ)

{
(1−α)(1−δ)(1−θ)(1+Θ)+(χ+α)[(1−δ)(1+Θ)−1]

}
+χδ(1−α)(1+Θ)(1+χ−θ(1−α))

Under Assumption 1, we conclude that if Θ > Θ, then ∂Tχ(σ)/∂σ < 0 and thus

Sχ > 0. We also derive that Sχ < 1 if and only if

χ2δ (Θα− (1− α))− χ
{

Θ2(1− α)(1− δ)(1− θ)

+ Θ
[
(1− α)(1− θ)− δ[1 + α(1− θ(1− α))]

]
+ δ(1− α)(1− θ(1− α))

}
− Θ

{
(1− α)(1 + Θ)(1− θ)(1− δ)− δα

}
≡ g(χ) < 0

(21)

Under Assumption 1, there exists δ̃ ≤ δ̂ such that g(χ) < 0 for any χ ≥ 0 if δ < δ̃.

In other words, ∆χ(T ) corresponds to a half-line in the (T ,D) plane with the

starting point (Tχ(+∞),Dχ(+∞)) obtained when σ = +∞ such that

Dχ(+∞) =
− (1−δ)Θ

δ
+(1+Θ)α+

(χ+α)α
(1−α)

(
1+Θ(1−θ)

1−θ

)
− θΘ

δ
+βα+

βα(χ+α)
(1−θ)(1−α)

Tχ(+∞) = 1 +Dχ(+∞) +
(1−θ)(1− βαδ

1−θ )
− θΘ

δ
+βα+

βα(χ+α)
(1−θ)(1−α)
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and the end-point (Tχ(0),Dχ(0)) obtained when σ = 0 such that:

Dχ(0) = 1
β , Tχ(0) = 1 +Dχ(0)− δ(1− θ)χ(1−α(1+Θ))−αΘ

θΘ(χ+α)

For the starting point, when σ = +∞, i.e. εcc = 0, we get:

P+∞(1) = − (1−θ)(1− βαδ
1−θ )

− θΘ
δ

+βα+
βα(χ+α)

(1−θ)(1−α)

P+∞(−1) =
2
[
− (1−δ)(1+β)Θ

δ
+(1+β+Θ)α+

(χ+α)α
(1−α)

(
1+β+Θ(1−θ)

1−θ

)]
+(1−θ)(1− βαδ

1−θ )

− θΘ
δ

+βα+
βα(χ+α)

(1−θ)(1−α)

For the end point, when σ = 0, i.e. εcc = +∞, we get:

P0(1) = (1−θ)δ[χ(1−α(1+Θ))−αΘ]
(χ+α)θΘ

P0(−1) = χ{Θ[2(1−θ(1−δ))+δ(1−θ)α]−δ(1−θ)(1−α)}+α(1+θ)(2−δ)Θ
(χ+α)θΘ

It follows immediately that P0(1) > 0 if and only if χ > αΘ/[1 − α(1 + Θ)] ≡ χ,

while it can be easily shown that P0(−1) > 0 if Θ > Θ.

5.3 Proof of Proposition 2

We assume first that χ ∈ [0, χ). We know that the end point satisfies Dχ(0) = 1/β >

1, P0(1) < 0 and P0(−1) > 0. The starting point can be written:

Dχ(+∞) = δα(χ1−χ)(Θ−Θ1)

β(1−α)(1−δ)(Θ−Θ̂χ)

P+∞(1) =
δ(1−θ)(1− βαδ

1−θ )
β(1−δ)(Θ−Θ̂χ)

P+∞(−1) =
2δα(χ̃−χ)(Θ−Θ̃χ)

β(1−α)(1−δ)(Θ−Θ̂χ)

with

Θ̂χ = δα[1−θ(1−α)+χ]
(1−α)(1−θ)(1−δ) , Θ̃χ =

α(1+β)[1−θ(1−α)+χ]
1−θ +

(1−α)(1−θ)
2 (1− βαδ

1−θ )
α(χ̃−χ) , Θ1 = 1−θ(1−α)+χ

(1−θ)(χ1−χ)

and
χ1 = 1−α−δ

δα , χ̃ = (1−δ)(1+β)(1−α)−δα
δα

Under Assumption 1 we get χ < 2/3 < χ1 < χ̃ and Θ < Θ̂χ < Θ̃χ < Θ1 < Θ̄ for

any χ ∈ [0, 2/3). Let us denote by σ̄H the value of σ that solves Dχ(σ) = 1.

a) Assume first that Θ < Θ < Θ̂χ. We get Dχ(+∞) > 1/β = Dχ(0), P+∞(1) <

0 and P+∞(−1) > 0. Therefore, assuming β ∈ (β̃, 1) and δ ∈ (δ0, δ̃), provided

Tχ(σ̄H) ∈ (−2, 2), we conclude that the ∆χ line is located as in Figure 1(a).

b) Assume then that Θ̂χ < Θ < Θ1. We get Dχ(+∞) < 0, P+∞(1) > 0 and

P+∞(−1) < 0 if Θ ∈ (Θ̂χ, Θ̃χ) while P+∞(−1) > 0 if Θ ∈ (Θ̃χ,Θ1). Provided

Tχ(σ̄H) ∈ (−2, 2), we conclude that when Θ ∈ (Θ̂χ, Θ̃χ), the ∆χ line is located as in

case (a) of the following Figure:
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Figure 4: Local indeterminacy with Θ ∈ (Θ, Θ̂χ).

and when Θ ∈ (Θ̃χ,Θ1), the ∆χ line is located as in Figure 2(a). It is worth noting

that the local stability properties of the steady state in Figure 4(a) are exactly the

same as those implied by Figure 1(a).

c) Assume finally that Θ ∈ (Θ1, Θ̄). We get under Assumption 1 Dχ(+∞) ∈
(0, 1) and P+∞(−1) > 0. Therefore, provided Tχ(σ̄H) ∈ (−2, 2), the ∆χ line is again

located as in Figure 2(a).

We need now to prove that Tχ(σ̄H) ∈ (−2, 2). Solving Dχ(σ) = 1 gives

σ̄H =
(1− βδα

1−θ )Θ(χ+α)(1−δ)(1−β)

−Θ[(1−α)(1−θ)−δ−χδα]+
δα(1−β)[1−θ(1−α)+χ]

1−θ
(22)

Under Assumption 1, there exists δ0 ∈ (0, 1) as given by

δ0 = (1− β)−{Θ[1+χα−2β(1−α)]+α[1+χ−β(1−α)]}+
√

Λ
2β{Θ[1+χα−β(1−α)]+α(1−α)(1−β)} (23)

with
Λ = {Θ [1 + χα− 2β(1− α)] + α [1 + χ− β(1− α)]}2

+ 4Θβ(1− α) {Θ [1 + χα− β(1− α)] + α(1− α)(1− β)}
such that σ̄H > 0 if and only if δ ∈ (δ0, 1). Moreover, there exists β̃ ∈ [β̂, 1) such

that δ0 < δ̃ ≤ δ̂ when β ∈ (β̃, 1). Assuming β ∈ (β̃, 1) and δ ∈ (δ0, δ̃), we then derive

Tχ(σ̄H) = 2−
(1−θ)(1− βαδ

1−θ )
[
σ̄H+

[1−α(1+Θ)](χ−χ)

1−α

]
σ̄H
[
θ(Θ−Θ̂)

δ
− χβα

(1−θ)(1−α)

]
+(1− βαδ

1−θ )
θΘ(χ+α)
δ(1−α)

Under Assumption 1, the denominator of the ratio in Tχ(σ̄H) is positive for all χ ≥ 0.

Let β = β̃ and β ∈ (β, 1). As χ ∈ [0, χ), we need to study the numerator of the

ratio in Tχ(σ̄H). Note that

σ̄H +
[1−α(1+Θ)](χ−χ)

1−α > σ̄H − αΘ
1−α =

(1− βδα
1−θ )Θ(χ+α)(1−δ)(1−β)(1−α)−αΘdenσ̄H

(1−α)denσ̄H

with denσ̄H the denominator of σH . We have shown previously that denσ̄H > 0

if and only if δ ∈ (δ0, 1), with limδ→δ0 denσ̄
H = 0. Moreover, we derive from the
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expression of σ̄H that limδ→1 σ̄
H = 0. Therefore, we conclude that there exists

δ1 ∈ (δ0, δ̃] such that the numerator of the ratio in Tχ(σ̄H) is positive for all χ ≥ 0

if δ ∈ (δ0, δ1). It follows that Tχ(σ̄H) < 2 for all χ ≥ 0 if δ ∈ (δ0, δ1). Let us then

denote δ̄ = δ1. As in case i), since limδ→0 Θ̂ = 0, we get limδ→0 S = 0 and thus

limδ→0 Tχ(σ̄H) = −∞. Therefore, there exists δ ∈ [δ0, δ̄) such that when δ ∈ (δ, δ̄),

Tχ(σ̄H) ∈ (−2, 2).

Finally, we may compute the bifurcation values of σ. The Hopf bifurcation

value σ̄H is given by (11), while the flip bifurcation value σ̄F is such that

Pσ(−1) = 1 + Tχ(σ) +Dχ(σ) = 0, which leads to the expression given by (12). The

transcritical bifurcation value σ̄T is such that Pσ(−1) = 1 − Tχ(σ) + Dχ(σ) = 0,

leading to the expression given by (13).

We assume now that χ ∈ (χ, 2/3). The same proof as in the case χ ∈ [0, χ)

applies except that now P0(1) > 0. Provided Tχ(σ̄H) ∈ (−2, 2), it follows that

depending on the value of Θ, the ∆χ line is again located as in Figures 1(b), 4(b)

or 2(b).

The last step consists finally in showing that Tχ(σ̄H) ∈ (−2, 2). Let us note first

that Tχ(σ̄H) can be written as follows:

Tχ(σ̄H) = 2−
(1−θ)(1− βαδ

1−θ )
[
σ̄H+

[1−α(1+Θ)](χ−χ)

1−α

]
σ̄H(Θ−Θ̂χ)+(1− βαδ

1−θ )
θΘ(χ+α)
δ(1−α)

As we have shown previously, σ̄H > 0 if and only if δ ∈ (δ0, 1) with δ0 as

given by (23). Moreover, there exists β̃ ∈ [β̂, 1) such that δ0 < δ̃ ≤ δ̂ when β ∈
(β̃, 1). From now on, let β ∈ (β̃, 1) and δ ∈ (δ0, δ̃). Under these restrictions, when

Θ ∈ (Θ, Θ̂χ), Assumption 1 ensures that the denominator of the ratio in Tχ(σ̄H)

is positive. Moreover, when χ ∈ (χ, 2/3), the numerator of the ratio in Tχ(σ̄H) is

positive. It follows that Tχ(σ̄H) < 2. Let us then denote δ̄ = δ̃ and β = β̃. Note that,

as limδ→0 Θ̂χ = 0, we get limδ→0 S = 0 and thus limδ→0 Tχ(σ̄H) = −∞. Therefore,

there exists δ ∈ [δ0, δ̄) such that when β ∈ (β, 1) and δ ∈ (δ, δ̄), Tχ(σ̄H) ∈ (−2, 2).

Assume now that Θ > Θ̂χ. The denominator of the ratio in Tχ(σ̄H) is positive

and thus Tχ(σ̄H) < 2 for all χ ∈ (χ, 2/3). We have shown previously that denσ̄H > 0

if and only if δ ∈ (δ0, 1), with limδ→δ0 denσ̄
H = 0. Moreover, we derive from the

expression of σ̄H that limδ→1 σ̄
H = 0. Therefore, we conclude that there exists

δ1 ∈ (δ0, δ̃] such that the numerator of the ratio in T0(σ̄H) is positive and T0(σ̄H) < 2

if δ ∈ (δ0, δ1). Let us then denote δ̄ = δ1 and consider the case δ = δ0. As denσ̄H = 0

we derive
Θ = δ0α(1−β)[1−θ(1−α)+χ]

[(1−α)(1−θ)−δ0(1+χα)](1−θ) ≡ Θδ0

and σ̄H =∞ with Θδ0 > Θ̂χ for any χ ∈ (χ, 2/3). It follows therefore that
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Tχ(σ̄H)
∣∣∣
δ=δ0

= 2−
(1−θ)

(
1−βαδ0

1−θ

)
Θδ0−Θ̂χ

Straightforward computations show that Tχ(σ̄H)|δ=δ0 > −2 is equivalent to

4(δ0α)2 [1− θ(1− α) + χ] (1 + χ) > [1− θ − βδ0α](1− θ)(1− α)(1− δ0)

× [(1− α)(1− θ)− δ0(1 + χα)]

As this equality is satisfied when β = 1, there exists β ∈ [β̃, 1) such that

Tχ(σ̄H)|δ=δ0 > −2 for any β ∈ (β, 1). Denoting δ = δ0 we conclude that when

δ ∈ (δ, δ̄) and β ∈ (β, 1), Tχ(σ̄H) ∈ (−2, 2).

5.4 Proof of Proposition 3

From the proof of Proposition 2, let Θ̂ = Θ̂0 and assume that Θ ∈ (Θ, Θ̂). It

follows easily that Dχ(+∞) > 1/β = Dχ(0), P+∞(1) < 0 and P+∞(−1) > 0 for any

χ ≥ 0. Therefore, assuming β ∈ (β̃, 1) and δ ∈ (δ0, δ̃), provided Tχ(σ̄H) ∈ (−2, 2),

we conclude that i) when χ > χ, the ∆χ line is located as in Figure 4(a), and ii)

when χ < χ, the ∆χ line is located as in Figure 4(b). Depending on whether χ is

larger or lower than χ, the arguments to prove that Tχ(σ̄H) ∈ (−2, 2) are the same

as those presented in the proof of Proposition 2.
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