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In this paper we study various MIDAS models for which the future daily variance is directly 
related to past observations of intraday predictors. Our goal is to determine if there exists an 
optimal sampling frequency in terms of variance prediction. Via Monte Carlo simulations we 
show that in a world without microstructure noise, the best model is the one using the highest 
available frequency for the predictors. However, in the presence of microstructure noise, the 
use of very high-frequency predictors may be problematic, leading to poor variance forecasts. 
The empirical application focuses on two highly liquid assets (i.e., Microsoft and S&P 500). 
We show that, when using raw intraday squared log-returns for the explanatory variable, there 
is a “high-frequency wall” – or frequency limit – above which MIDAS-RV forecasts dete-
riorate or stop improving. An improvement can be obtained when using intraday squared 
log-returns sampled at a higher frequency, provided they are pre-filtered to account for the 
presence of jumps, intraday diurnal pattern and/or microstructure noise. Finally, we compare 
the MIDAS model to other competing variance models including GARCH, GAS, HAR-RV 
and HAR-RV-J models. We find that the MIDAS model – when it is applied on filtered data – 
provides equivalent or even better variance forecasts than these models.*

I. Introduction

Volatility has been, and will remain, one of the most active and successful research topics in 
financial econometrics and economic forecasting. Nowadays, due to the widespread progress 
of financial activities, different financial agents have developed relatively different expecta-
tions and views on forecasting volatility. High-frequency traders are certainly interested in 
computing ultra-high-frequency volatility forecasts (e.g., second-by-second volatility fore-
casts), while financial regulators, for instance, still require daily up to bi-weekly volatility 
forecasts. In addition, due to the widespread availability of high-quality financial data sampled 
at very high-frequency, and the rich information it is supposed to contain, traders might be 
tempted to use it as predictors of volatility, regardless of the volatility forecasts horizon. 
However, high-frequency data is costly, processing it requires supplementary human capital, 
and nothing guarantees that very high-frequency data improves the quality of daily/weekly/ 
bi-weekly volatility forecasts.
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This paper focuses on longer horizon variance forecasts (i.e., daily/weekly/bi-weekly vari-
ance forecasts needed, inter alia, in the context of portfolio management, option pricing and 
financial market regulation), and, more precisely, on the type and frequency of predictors used 
to obtain these forecasts. To this end, we use the mixed data sampling (henceforth MIDAS) 
regression model, introduced in GHysels, e., P. santa-claRa, and R. ValkanoV [2004], 
as it makes it possible for instance, to forecast a measure of the daily variance (e.g., real-
ized variance) by considering past intraday log-returns. In their seminal paper, GHysels, e., 
P. santa-claRa, and R. ValkanoV [2006] consider various MIDAS regressions with different 
daily (squared returns, absolute returns, realized variance, realized power and return range) and 
intradaily regressors (squared returns, absolute returns), to examine whether one specification 
dominates the others. The goal of our study is different in that it consists in determining for a 
given intradaily predictor whether a sampling frequency (or range of frequencies) dominates 
the others.1 The objective is then to identify the best sampling frequency, using out-of-sample 
forecast  evaluation criteria.

This issue is not straightforward. On the one hand, not including the readily available 
high-frequency observations to perform variance forecasts implies a loss of information due 
to temporal aggregation. On the other hand, if the sampling frequency of the predictors is 
increased too much, market microstructure noise (bid-ask bounce, screen fighting, jumps, and 
irregular or missing data) may lead to less accurate variance forecasts.

This question is different in nature from the well-documented discussion about the optimal 
sampling frequency of the returns used to compute realized estimators of daily variance (see 
Hansen, P. R., and a. lunde [2004]; aït-saHalia, y., and l. Mancini [2008]; GaRcia, R., and 
n. MeddaHi [2006]; GHysels, e., P. santa-claRa, and R. ValkanoV [2006], among others).
Our goal consists in focusing on the optimal sampling frequency for the purpose of variance
prediction, and not for variance measurement. Consider a MIDAS variance model whose aim
is to predict a measure of variance over some future horizon. This variance measure is typi-
cally a realized measure (realized variance, realized kernel etc.), based on intradaily returns
sampled at a certain frequency (one minute, five minutes, etc.). In order to forecast variance,
we consider intradaily predictors (squared returns, intradaily bipower variation, etc.) sampled
at a frequency that may be different from that used to compute the realized measure of vari-
ance. As indicated above, the upcoming discussion concerns only the sampling frequency of
the predictors.2 With this in mind, we consider MIDAS models in which we directly project

1. In this study, we limit our analysis to the MIDAS specifications in which the future variance is directly related to 
past observations of intraday predictors, as in GHysels, e., P. santa-claRa, and R. ValkanoV [2006]. An alternative 
consists in using high-frequency data to compute daily realized measures (realized variance, two-scale estimator,
realized kernel, etc.) which are, in a second step, introduced as predictors into a MIDAS regression model, as in
GHysels, e., P. santa-claRa, and R. ValkanoV [2006] and GHysels, e., and a. sinko [2011].
2. In a related paper, GHysels, e., and a. sinko [2011] also examine the optimal sampling for the purpose of variance 
prediction, but in a slightly different context. The authors observe that, generally, discussions about the impact of
microstructure have mostly focused on measurement. GHysels, e., and a. sinko [2011] focus instead on the prediction 
of variance, by using as regressors variance measures that are contaminated by market microstructure noise. Their
dependent variable is defined as the two scales estimator of the weekly variance aït-saHalia, y., P. a. Mykland, 
and l. ZHanG [2005], and computed from the 5-minute, 1-minute or 2-second returns. One of the main differences
with our study is that the authors consider various MIDAS specifications for which the predictors also correspond to 
realized estimators (plain vanilla, two scales estimator; ZHou, B., [1996], etc.), constructed using different sampling
frequencies (from two seconds to ten minutes). Thus, high-frequency data is aggregated into daily realized measures, 
which are then used as predictors of future variance. In contrast, our goal is to analyze the direct impact of the intra-

2



future realized variance onto high-frequency regressors, as in GHysels, e., P. santa-claRa, 
and R. ValkanoV [2006].3

To address these issues, we investigate the sensitivity of MIDAS variance models to the 
choice of the sampling frequency of predictors on real data, i.e., log-returns of the S&P 500 
index and Microsoft over the period from October 29, 2004 to December 31, 2008. Thus, 
we apply simple MIDAS specifications in which daily realized variance is predicted by past 
intradaily squared log-returns sampled at a frequency ranging from one minute to one day. The 
variance forecasts are compared based on the robust loss function proposed by Patton, a. J. 
[2011] and the model confidence set (MCS) test introduced by Hansen, P. R., a. lunde, and 
J. M. nason [2011]. This test identifies, among the set of competing models (i.e., sampling 
frequencies), the subset of models that are equivalent in terms of forecasting ability and which 
outperform all the other models for a given confidence level. The empirical results obtained for 
these two assets allow us to draw some interesting conclusions. First, when using raw intraday 
returns, variance forecasts are not statistically different for sampling frequencies of the predic-
tors ranging from five minutes to one hour. Moreover, it turns out that very high-frequency 
regressors (i.e., higher than five minutes) do not provide useful information to improve the 
variance forecasts because the loss function increases. The shape of the loss function indicates 
the presence of a “high-frequency wall’’, i.e., a limit frequency beyond which the quality of 
the forecasts deteriorates or stops improving. This result is due to the presence of microstruc-
ture noise, jumps and intraday diurnal patterns in the regressors. When the MIDAS regression 
model is applied to filtered data lee, s. s., and P. a. Mykland [2008], Boudt, k., c. cRoux, 
and s. lauRent [2011], laHaye, J., s. lauRent, and c. J. neely [2011], the conclusion in favor 
of the use of the highest available frequency remains valid. This point is crucial and indicates 
that the mixing frequency may require the use of filtered series. Indeed, the weighting scheme 
in MIDAS models does not allow us, by itself, to underweight the observations affected by 
jumps or other market microstructure noise. These results are robust to the choice of the vari-
ance measure (realized variance, realized kernel), the forecasting horizon and the sample 
period (calm/crisis).

Finally, we compare the performance of the MIDAS model (considering filtered or unfil-
tered regressors) to other competing variance models, namely the GARCH(1,1), the Student 
Generalized Autoregressive Score (GAS) model cReal, d. d., s. J. kooPMan, and a. lucas 
[2013], the Heterogeneous Autoregressive Realized Variance-based (HAR-RV) model coRsi, F. 
[2009] and the HAR-RV adjusted for jumps andeRsen, t. G., t. BolleRsleV, and F. x. dieBold 
[2007]. We show that MIDAS models provide comparable or even better variance forecasts 
when filtered high-frequency data is used.

The paper is structured as follows. section II introduces the notations, the MIDAS model 
and the sampling frequency puzzle. section III presents the main results of a Monte Carlo 
simulation study. In section IV, we perform an empirical analysis and study the influence of 
the jumps and the intraday diurnal pattern on the MIDAS performances. We also compare 
MIDAS to other competing variance models. section V concludes.

daily predictors on the variance forecasts, and ultimately to evaluate the usefulness of the mixing of frequencies in 
this context.
3. Surprisingly, GHysels, e., P. santa-claRa, and R. ValkanoV [2006] find that the forecasts directly using high-fre-
quency data do not outperform those based on daily regressors (although the daily regressors are themselves obtained 
through the aggregation of high-frequency data). One related question is to understand whether this result depends on 
the sampling frequency of the high-frequency data.
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II. Modeling Strategies

II.1. Notation

To set the notation, let pt  denote the price for a financial asset sampled at daily frequency, 
and the corresponding daily return be defined by r log p log pt t t t, 1 1( ) ( )− −≡ − . The equally 
spaced series of continuously compounded returns is assumed to be observed m  times per 
day (or to have a horizon of 1 / m ), and be computed as r log p log pt t m

m
t t m, 1/

( )
1/( ) ( )− −≡ − ,

where t m= 1 / ,  2 / ,...m  Throughout the analysis, we consider that the trading day spans 
the time period from 9:30 am to 16:00 pm, covering for instance m = 390  1-minute equally 
spaced intervals and m = 78  5-minute equally spaced intervals. rt t, 1/ 78−  corresponds to the 
last 5-minute return of the day t − 1, rt t− −1/ 78, 2 / 78  corresponds to the return of the penultimate 
5-minute period of day t − 1, and so on.

II.2. MIDAS variance Models and Sampling Frequency

MIDAS models for variance predictions have been introduced in a number of recent studies, 
including GHysels, e., P. santa-claRa, and R. ValkanoV [2005], GHysels, e., P. santa-claRa, 
and R. ValkanoV [2006], GHysels, e., and a. sinko [2011], GHysels, e., and R. ValkanoV 
[2012], cHen, x., and e. GHysels [2011], among others.

The general specification of the MIDAS variance model is given by:

σ µ φ εt H t H m H m H m
m

t t m
m

tL X+ −+ +,
2

, , ,
1/

, 1/= ( )
1 1 1

1

1

1Ω ( ) , (1)

where σt H t+ ,
2  is a measure of variance evaluated over some future horizon H , and Xt t m

m
, 1/ 1

1
−

( )

denotes an intradaily regressor sampled at frequency m1 . The distributed lag polynomial is 
defined as:

ΩH m
m

k

k
k m

H m H mL L k
max

,
1/

=0

/
, ,1

1 1
1 1

( ) = ,∑ ( )ω θ , (2)

where ω θH m H mk, ,1 1
,( )  corresponds to the lag coefficient associated with Xt t m

m
, 1/ 1

1
−

( ) , θH m, 1

is a finite set of parameters, L  is the lag operator such that L X Xm
t t m
m

t m t m
m1/

, 1/ 1/ , 2/
1

1

1

1 1

1=− − −
( ) ( ) ,  

and kmax  denotes the maximum number of lagged coefficients. In this specification, the 
low-frequency variance (for instance, daily variance if H = 1 , weekly variance if H = 5 ,  
etc.) is predicted by the right-side intradaily forecasting factors, which are sampled at a 
high-frequency m1  (for instance, five minutes if m1 = 78 ). Several intradaily regressors can 
be considered with this aim in mind (e.g., intradaily squared returns, intradaily bipower vari-
ation). Following GHysels, e., P. santa-claRa, and R. ValkanoV [2006] we consider the 

intradaily squared returns rt t m
m

, 1/
( )

1

1
2

− , while other alternatives will be used to appraise the robust-
ness of our results.4

4. Another alternative would be to accommodate large volumes of data in a parsimonious way by using intraday
aggregate measures of variance (e.g., 5-minute realized variance, etc.) as regressors. However, the aim of this paper
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Since σt H t+ ,
2  is unobservable, we rely on a proxy. For simplicity, we adopt the realized 

variance andeRsen, t. G., and t. BolleRsleV [1998a], defined for the period t  to t H+  as 
follows:5

RV I L rt H t
m

H m
m

t H t H m
m

+ + + −,
( )

,
1/

, 1/
( )2

2
2

2

2= ( )
2

(3)

where the distributed lag polynomial in L m1/ 2  is defined such that I L LH m
m

j
Hm j m

,
1/

=0
/

2
2 2 2( ) = ∑ ,  

and m2  accounts for the sampling frequency of the squared returns used to compute the real-
ized variance. Notice that the frequencies m1  and m2  may be different. In fact, the choice of 
m2  is related to the variance measurement issue (see Hansen, P. R., and a. lunde [2004]; 
aït-saHalia, y., and l. Mancini [2008]; GaRcia, R., and n. MeddaHi [2006]; GHysels, e., 
P. santa-claRa, and R. ValkanoV [2006], among others), i.e., the consistency of the estimator
defined by the realized measure.6 On the other hand, the choice of the sampling frequency of
the predictors, m1  is related to the variance prediction issue. Indeed, this choice determines 
the regressors in the MIDAS variance model, and, as a consequence, its forecasting abilities.

Under these assumptions, the MIDAS-RV regression becomes:

RV L rt H t
m

H m H m H m
m

t t m
m

t+ −+ +,
( )

, , ,
1/

, 1/
2

1 1 1
1

1
1

2
= ( )µ φ εΩ ( ) . (4)

One advantage of this specification is that it preserves the information contained in 
high-frequency data GHysels, e., and R. ValkanoV [2012] without computing daily aggre-
gates such as realized variance for the regressors. In this context, we aim at determining the 
influence of the sampling frequency m1  on the forecasting performances of the MIDAS model. 
In a related study, GHysels, e., P. santa-claRa, and R. ValkanoV [2006] compare several 
MIDAS specifications based on different intradaily or daily variance regressors (e.g., squared 
returns, absolute returns, realized variance, realized power, and range). The rationale is similar 
here, except that we consider the same intradaily regressor, i.e., Xt t m

m
, 1/ 1

1
−

( ) , for various sampling 
frequencies. For instance, we compare various MIDAS models where the same predictor is 
sampled at one minute ( m1 = 390 ), two minutes ( m1 = 195 ), five minutes ( m1 = 78 ), and so 
on. The question is whether increasing the sampling frequency m1  systematically improves 
the quality of the variance forecasts, and ultimately whether we need high-frequency data in 
order to forecast daily variances.

is rather to observe the behavior of high-frequency data when estimating/forecasting variance and not to propose the 
best variance model and/or predictor of variance.
5. A large number of alternative estimators (e.g., realized bipower variation, realized kernel, etc.) that deal with issues
such as jumps and other market microstructure noise, have been proposed, especially by BaRndoRFF-nielsen, o. e., 
and n. sHePHaRd [2004a], BaRndoRFF-nielsen, o. e., P. R. Hansen, a. lunde, and n. sHePHaRd [2008], ZHanG, l.
[2006], Hansen, P. R., and G. HoRel [2009], inter alia. Some of these will be considered in the section devoted to the 
robustness analysis of our findings.
6. Since this study is not meant to determine the optimal sampling frequency m2, in the rest of the paper, the
daily RV will always be computed by summing up 5-minute squared returns (i.e., m2 78= ), as recommended by 
andeRsen, t. G., and t. BolleRsleV [1997a]. Since the RV is derived from observed trades and/or quotes that are 
contaminated with market microstructure noise (which can lead to an autocorrelation of the intraday returns), the RV 
might become biased and inconsistent for the integrated variance. Nevertheless, andeRsen, t. G., and t. BolleRsleV 
[1997a] argue that it is common practice to use moderate-frequency intraday returns, such as 5-minute returns, as this 
partially offsets the bias.
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Another key feature of MIDAS models is that they provide a parsimonious specification. 
This property is particularly important in our context, as the inclusion of high-frequency data 
might imply a significant increase in the number of lagged forecasting variables, and hence in 
the number of unrestricted parameters to be estimated GHysels, e., and R. ValkanoV [2012]. 
For instance, running unrestricted regressions based on the intraday information over the last 
30 days implies estimating 30 390×  parameters for a 1-minute regressor, 30 78×  parameters 
for a 5-minute regressor, and so on. Nevertheless, the MIDAS model directly projects future 
variance onto a large number of high-frequency lagged regressors while considering a small 
number of parameters. The trick consists in using a suitable parametrization for the weights 
ω θH m H mk, ,1 1

,( )  to circumvent the problem of parameter proliferation. Therefore, as noted by
GHysels, e., P. santa-claRa, and R. ValkanoV [2006], the parametrization ω θH m H mk, ,1 1

,( )
becomes a key ingredient in a MIDAS regression.

Two specifications of the weight function are generally considered, namely the expo-
nential Almon lag and the Beta lag GHysels, e., a. sinko, and R. ValkanoV [2007]. These 
specifications have several interesting features: i ) the distributed lag polynomial is tightly 
parameterized and prevents the proliferation of parameters as well as additional pre-testing 
or lag-selection procedures;7 ii ) the coefficients are positive, which guarantees non-negative 
weights and consequently non-negative variance forecasts; iii ) the sum of the data-driven 
weights is normalized to one in order to identify the scale parameter φH m, 1

. There is no clear 
theoretical a priori for assuming that one specification is better than the other. However, 
cHen, y.-c., and W.-J. tsay. [2011] and FRale, c., and l. MonteFoRte. [2011] find that 
the Beta function is more suitable for an important number of time lags, as Almon can be 
very  computationally demanding in such a context. For this reason, we adopt the Beta lag 
 polynomial 

ω θ
θ θ

θ θ
H m H m

j

k
k

f k k

f j k
, ,

1 2

=0
1 2

1 1
( , ) =

( / , ; )

( / , ; )

max

max
max

∑
, (5)

where θ θ θH m, 1 21
= ,( )′  is a vector of positive parameters, f z a b z za b( , , ) = (1 ) /1 1− −− B

( , )a b , with B (.)  the Beta function defined as B ( , ) = ( ) ( ) / ( )a b a b a bΓ Γ Γ + , and Γ( ).  repre-
senting the Gamma function. Depending on the value of the parameter θ1 , this weight function 
can take many shapes, including flat weights, gradually declining weights and hump-shaped 
patterns. The second parameter, θ2 , determines the decreasing speed of the weighting shape. 
The smaller the parameter θ2 , the smoother the weighting scheme. In other words, θ2  deter-
mines the proportion of the total weight associated with the more recent past observations.

III. Monte Carlo Simulation Study

Before starting the empirical application, we proceed by a Monte Carlo simulation study to 
analyze the influence of the sampling frequency of the regressors on the predictive abilities of 

7. The selection of k max can be done by considering a large value and letting the weights vanish.
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MIDAS-RV models.8 Considering a noise-free diffusion process, we generate returns series 
at different sampling frequencies and daily realized variance measures, using the same set of 
continuous-time structural parameters. We apply simple MIDAS specifications in which daily 
realized variance is predicted by past intradaily squared log-returns sampled at a frequency 
ranging from one minute to one day. Sequences of T = 500 daily realized variance forecasts, 

{ }1,
( )

=1
2RV t t
m

t
T

 + , are then computed for each MIDAS-RV specification.9

In order to compare the variance forecasts, we use a loss function defined as a general 
function of the variance forecasts and the true variance. In the simulation framework, the 
variance can be measured by the daily integrated variance, IVt t t

t
, 1 1

2= ( )− −∫ σ τ τd . However,
in practice, the integrated variance is not observable and we have to use a proxy. To repro-
duce the real conditions of the MIDAS-RV models, we also consider a variance proxy in 
the simulation study, i.e., the realized variance RVt H t

m
+ ,
( )2 . However, it is well known that the 

use of a proxy may distort the ranking of models based on loss functions. andeRsen, t. G., 
and t. BolleRsleV [1998a] and andeRsen t. G., t. BolleRsleV, and n. MeddaHi [2005] 
show that the comparison of losses – even based on a conditionally unbiased proxy – may 
lead to a different outcome than the one obtained if the true latent variable had been used. 
More recently, Hansen, P. R., and a. lunde [2006a], Patton, a. J., and k. sHePPaRd [2009], 
Patton, a. J. [2011], lauRent, s., J. V. RoMBouts, and F. Violante [2013] have also insisted 
on the possible distortions observed in the ranking of variance/volatility forecasts induced by 
the use of a noisy proxy.10 For these reasons, we adopt the family of robust and homogeneous 
loss functions proposed by Patton, a. J. [2011], i.e.,

(6)

with b  a scalar parameter, σ2  a measure of the true variance (i.e., the realized variance in our 
case) and σ

2
 the predicted variance measure. This loss function encompasses in particular the

MSE and the QLIKE loss functions when b = 0  and b = 2− , respectively. In the empirical 
application we only consider the results of the QLIKE function. Nevertheless, in order to 
assess the robustness of our results, the three values for the parameter b  are considered in the 
simulation analysis.

8. For ease of exposition, all the results related to this study are reported in a Web Appendix.
9. The Monte Carlo simulation exercise is based on 10,000 replications.
10. The robustness of the ranking forecasts also has an impact on the statistical inference used to asses the predictive 
accuracy. If the loss function ensures consistency of the ranking, the variability of the variance proxy is only likely
to reduce the power of the test, but not its asymptotic size, which means that for a robust loss function it is always
possible to recover the true ranking asymptotically. For more details, see lauRent, s., J. V. RoMBouts, and F. Violante

[2013].

L b

b b b
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Evaluating the influence of the sampling frequency of the predictors on the predictive 
 abilities of the MIDAS-RV model reduces to determining the sign of the derivative of the 
average loss function given by:

L T
L RV RV b

mm
t
T

t t
m

t t
m

1

2 2

=
( , ; )1 =1 1,

( )
1,

( )

1

− + +∂

∂
∑ 

(7)

Since the sign of this derivative cannot be determined analytically, we proceed by 
 numerical analysis.

Therefore, the variance forecasts are compared based on the robust loss function proposed 
by Patton, a. J. [2011] and the model confidence set (MCS) test introduced by Hansen, P. R., 
a. lunde, and J. M. nason [2011].11 This test aims at identifying, among the set of competing
models (i.e., sampling frequencies), the subset of models that are equivalent in terms of fore-
casting ability and which outperform all the other models for a given confidence level. Several
results stand out. First, we observe that a higher sampling frequency for the regressors leads to
attributing higher weights to the most recent observations of the regressors. Second, we show
that increasing the frequency of the regressors always improves the forecasting abilities of the
MIDAS model. The average loss increases when the regressors are sampled less frequently,
regardless of the choice of the loss function. Nevertheless, opting for very high frequency
regressors is not optimal in the presence of microstructure noise. Therefore, the choice of the
optimal sampling frequency m1  for the predictors in MIDAS-RV models is not obvious.

In the Monte Carlo simulation study we considered two cases where the use of the highest 
available frequency does not necessarily improve the quality of the fit or the predictions, 
and discovered that a “high-frequency wall” might exist (i.e., a frequency limit above which 
MIDAS-RV forecasts deteriorate or do not improve). The two following features of the DGP 
were analyzed in order to justify the presence of this “high-frequency wall”:

 —  the process is not a pure continuous-time model, but rather a model where the condi-
tional variance is constant by chunks of, for instance, one or five minutes; 

 — and/or the presence of microstructure noise.

For instance, we know that very a high-frequency price process is likely to be contami-
nated by microstructure effects arising from market frictions.12 Therefore, an important part 
of our simulation study consists in using the pre-averaging method PodolskiJ, M., M. VetteR, 
et al. [2009], Jacod, J., y. li, P. a. Mykland, and M. PodolskiJ, and M. VetteR [2009] as a 
powerful technique to robustify variance estimators to the presence of microstructure noise.13 
FiGuRe I displays the average QLIKE for 500 out-of-sample one-step-ahead forecasts (over 
10,000 replications) as a function of the sampling frequency m1 . Three models are considered. 
The (blue) solid line corresponds to the case where the MIDAS-RV is estimated on non-con-
taminated log-returns. The (red) dashed line corresponds to the case where the MIDAS-RV is 

11. For more details, see Appendix A.
12. To contaminate the log-returns by noise, a normal random variable with mean 0 and variance 10 3− × IQ   is added 

to every 1-second log-return, knowing that the daily integrated quarticity is defined as follows: IQ dt t t

t
, ( )− −

= ∫1
4

1
σ τ τ . 

Including different noise structures (i.e., i.i.d noise vs. autocorrelated noise) remains an interesting direction for future 
research.
13. More technical details on this method are provided in the next section. 
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estimated on contaminated log-returns. The results clearly suggest that microstructure noise 
deteriorates the fit of MIDAS-RV models when using very high-frequency returns. The best 
variance forecasts are obtained for a frequency of the regressors between 15 seconds and five 
minutes, but the average QLIKE is about 40% greater than in the case without noise.

The (black) dashed line corresponds to the case where the MIDAS-RV is estimated on 
contaminated but pre-averaged log-returns. Pre-averaging proves to be useful in the context 
of MIDAS models, especially when relying on data sampled at frequencies higher than 
15 minutes. Interestingly, for frequencies between 15 seconds and five minutes, the QLIKE of 
this model is stable and does not blow up, as in the case of the MIDAS-RV model estimated 
on contaminated log-returns.

IV. Empirical Application

In addition to microstructure noise, it has also been largely documented that high-frequency 
log-returns are characterized by the presence of strong intraday diurnal pattern in variance and 
jumps. Intraday diurnal pattern or periodicity, as it is called by several authors Wood, R. a., 
t. H. McinisH, and J. k. oRd [1985], HaRRis, l. [1986], andeRsen, t. G., and t. BolleRsleV 
[1997b], andeRsen, t. G., and t. BolleRsleV [1998b], Hecq, a., s. lauRent, and F. c. PalM 
[2012], can be defined as the cyclical pattern of variance within the trading day, i.e., the fact 
that variance is typically more important at the opening and closing of the trading day and 
lower in the middle of the day, while jumps correspond to large discontinuities in prices. Unlike 
 intraday pattern, jumps are not regular (most of the time they appear as the result of unexpected 
news) and are known to greatly affect variance estimates and forecasts. For more details about 
the properties and the detection of jumps, see Bates, d. s. [1996],  BaRndoRFF-nielsen, o. e., 

15s     30s    1min    2min   3min   5min   10min  15min  30min  1h05   2h10   3h15   1day   
0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0.055
0.06

0.065

Noise &  Preaveraging  Noise & No Preaveraging No Noise & No Preaveraging

Figure 1. – MIDAS-RV average QLIKE

Note: This figure displays the average QLIKE (y-axis) associated with the MIDAS-RV forecasts based on various sampling frequencies ( )m1  of 
the predictors (x-axis). Three different MIDAS specifications are considered: ( )i  the regressors are not contaminated by noise, ( )ii  the regres-
sors are contaminated by noise, ( )iii  the regressors are contaminated by noise but based on pre-averaged returns. In this experiment the variance 
is assumed to be constant within each 1-minute interval.
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and n. sHePHaRd [2004b], BaRndoRFF-nielsen, o. e., and n. sHePHaRd [2006], lee, s. s., and 
P. a. Mykland [2008], Boudt, k., c. cRoux, and s. lauRent [2011], laHaye, J., s. lauRent, 
and c. J. neely [2011], among many others. In the empirical application, we propose to inves-
tigate the impact of these two additional features of the data on MIDAS-RV forecasting models 
in an application on two highly liquid assets, one exchange-traded fund (ETF) and one quoted 
share. The use of an ETF is justified by the increasing importance of these assets in the fund 
management industry.14

IV.1. Data

The dataset consists of tick-by-tick prices and quotations from the NYSE Trade and Quote 
(TAQ) database for Microsoft (MSFT) and one ETF (provided by SPDR ETFs) that tracks 
the S&P 500 index, spanning the period from September 2, 2004 to December 31, 2008. The 
price and quote series are reported every trading day from 9:30 am to 4:00 pm and rigorously 
cleaned using a set of baseline rules proposed by BaRndoRFF-nielsen, o. e., P. R. Hansen, 
a. lunde, and n. sHePHaRd [2009]. In order to avoid the effect of variance that comes from the
overnight or holiday closures, all the variables are computed by using open-to-close data and
focusing hence only on the effective trading day variance. The equally spaced intraday returns
are subsequently derived from the high-frequency price series. The dataset thus contains 1,101
trading days with 390/78/39/26/13/6/2/1 observations per day of respectively 1-minute/5-
minute/10-minute/15-minute/30-minute/1h05/3h15/1-day log-returns.

To compute the variance forecasts, we consider a rolling sample estimation scheme. The 
parameter estimates are updated every 50 days. For a fair comparison of the MIDAS models, 
the lag order kmax  is fixed such that the information used to estimate the parameters covers a 
period of 70 days, regardless of the sampling frequency of the regressors. For instance, for a 
5-minute regressor we use a kmax  equal to 78 70×  lags, where 78 represents the number of
5-minute intervals within a trading day.

Finally, the out-of-sample sample covers two years, i.e., 2007 and 2008. To test the robust-
ness of the results on the state of financial markets, the sample is split into two periods. The first 
one corresponds to the relatively calm variance period of 2007, and the second to the financial 
crisis of 2008 (the end of this period corresponding to the peak of the subprime crisis).

IV.2. Optimal Sampling Frequency for MIDAS-RV on Raw Data

We first consider one-step-ahead forecasts of MIDAS-RV models estimated on raw data, 
sampled at different frequencies m1  ranging between one minute to one day. Three forecasting 
horizons are considered for the endogenous variable RVt H t

m
+ ,
( )2 , i.e., one day ( H = 1 ), one 

week ( H = 5 ) and two weeks ( H = 10 ).
taBle I reports the MCS test for both the calm and crisis periods. For each horizon H , the 

average QLIKE is reported along with the p-value of the MCS test. The entries in bold corre-
spond to the best models selected by the MCS procedure. The striking result is that the loss 
function does not smoothly decrease with the sampling frequency and seems to indicate the 

14. At the end of August 2015, 4 264 ETFs worldwide were managing USD 2 727 bn. According to the Greenwich
Associates U.S. Exchange-Traded Funds Study, in 2014, 14% of the assets in the fund management industry were
managed by ETFs.
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presence of a “high-frequency wall’’. In particular, the use of very high-frequency regressors 
leads to a deterioration in the quality of variance forecasts.

Consider the S&P 500 during the calm period (Panel A). The loss function has a convex 
shape and its minimum is reached for a predictor sampled at five minutes, whatever the fore-
casting horizon considered. Using 1-minute log-returns leads to a deterioration in the quality 
of the variance forecasts. This deterioration is statistically significant because MIDAS-RV 
 estimated on 1-minute log-returns does not belong to the MCS set of optimal models. For 
the crisis period, the MCS test selects the 5-minute frequency as optimal for H = 1  and 
H = 5 , and 10- and 15-minute frequencies for the two-week horizon. For Microsoft all the 
models but that estimated on 1-minute log-returns are found to be statistically equivalent and 
superior during the calm period (panel A) for H = 1 . All in all, the previous results ques-
tion the usefulness of very high-frequency data in the context of daily/weekly/bi-weekly 
MIDAS-RV models.

Table i. – MIDAS sampling frequency puzzle

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2423 0.0945 0.2161 0.0157 0.2203 0.0663 0.0971 0.0932 0.2357 0.2327 0.1083 0.0095

5min 0.2152 1.0000 0.1369 1.0000 0.1904 1.0000 0.0823 0.9635 0.2061 0.7692 0.0861 0.1837

10min 0.2203 0.3562 0.1412 0.6192 0.1968 0.3828 0.0878 0.4825 0.2013 1.0000 0.0950 0.1770

15min 0.2265 0.0945 0.1447 0.5429 0.2060 0.0663 0.0881 0.4825 0.2245 0.2327 0.0948 0.0985

30min 0.2152 0.9989 0.1407 0.6192 0.1920 0.8240 0.0833 0.9635 0.2140 0.6019 0.0874 0.1837

1h05 0.2254 0.3562 0.1447 0.6192 0.2017 0.3828 0.0933 0.4825 0.2187 0.6019 0.0930 0.1837

3h15 0.2713 0.0232 0.1449 0.6192 0.2471 0.0663 0.0815 1.0000 0.2518 0.2327 0.0732 1.0000

1day 0.2672 0.0945 0.1627 0.5429 0.2359 0.0663 0.0971 0.4825 0.2529 0.2327 0.0943 0.1837

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2185 0.1704 0.8640 0.1235 0.2337 0.1648 0.7399 0.1036 0.5308 0.0651 0.2231 0.1622

5min 0.2033 1.0000 0.2891 0.1998 0.2182 1.0000 0.7152 0.1079 0.4144 0.1915 0.1914 1.0000

10min 0.2166 0.1704 0.1848 1.0000 0.2340 0.1648 0.6791 0.1079 0.3245 0.4715 0.2839 0.1160

15min 0.2172 0.1704 0.1960 0.5976 0.2306 0.1648 0.1820 1.0000 0.3146 1.0000 0.9670 0.0218

30min 0.2317 0.0138 0.7694 0.1998 0.2662 0.0406 0.2397 0.1746 0.3408 0.1915 0.2670 0.1160

1h05 0.2428 0.0138 0.2566 0.1998 0.3081 0.0406 0.2958 0.1079 0.3850 0.1915 0.5070 0.1160

3h15 0.2468 0.1704 0.2612 0.1998 0.3437 0.0075 0.2485 0.1746 0.4352 0.0651 0.2213 0.3685

1day 0.3305 0.0138 0.2539 0.1998 0.3190 0.0283 0.2719 0.1746 0.3911 0.1915 0.2419 0.1622

Note: This table presents the MCS test results for the S&P 500 and Microsoft. The results are reported for three forecasting horizons, i.e., one day 
( H = 1 ), one week ( H = 5 ) and two weeks ( H = 10 ). The QLIKE is reported along with the p -value of the MCS test. The confidence level 
for the MCS test is set to α = 25%  and 10,000 bootstrap resamples are used, with block length of five observations, to obtain the distribution 
under the null of equal predictive accuracy. The set of the competing models includes eight MIDAS specifications with regressors sampled at a 
frequency ranging from one minute to one day.
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IV.3. Breaking the Wall

We can suggest several explanations for the existence of this “high-frequency wall’’: i.e., an 
underlying DGP whose conditional variance is constant by pieces of e.g., one or five minutes; 
or the presence of intraday diurnal pattern pattern, jumps and microstructure noise. While no 
solution for breaking this wall might exist for the first one, filtering the raw lag-returns might 
help to improve the performance of MIDAS-RV in the presence of intraday pattern, jumps and 
microstructure noise. This is precisely the purpose of this section.

IV.3.1. Intraday Diurnal Pattern

FiGuRe 2 illustrates the intraday diurnal pattern in the variance for the S&P 500 and Microsoft 
series by plotting the average squared log-returns for each 1-minute, 5-minute, 30-minute 
and 1h05 interval, respectively. A clear U-shaped pattern is identifiable, as first noted by 
Wood, R. a., t. H. McinisH, and J. k. oRd [1985], suggesting that the variance is systemat-
ically high at the opening, declines to a low point at midday and then increases at the end of 
the trading day.

To estimate the intraday pattern in variance we rely on the non-parametric weighted 
standard deviation (WSD) of Boudt, k., c. cRoux, and s. lauRent [2011], a non-parametric 
estimator that is robust to additive jumps. If ri  denotes a raw return (sampled at a certain 
frequency), the corresponding intraday pattern adjusted return is obtained by dividing ri  by 
f̆i
WSD , i.e., r fi i

WSD
/  , where f i

WSD
  is the estimated WSD of Boudt, k., c. cRoux, and

s. lauRent [2011] for the ith  return.

IV.3.2. Jumps

To filter out the jumps in the regressors of the MIDAS-RV model, we first apply a modified 
version of the jump test of lee, s. s., and P. a. Mykland [2008] proposed by Boudt, k., 
c. cRoux, and s. lauRent [2011]. More specifically, we assume that the log-price process
log p s( )  follows a Brownian SemiMartingale with Finite Activity Jumps (BSMFAJ) diffusion
d d d dp s s s s w s s q s( ) = ( ) ( ) ( ) ( ) ( )µ σ κ+ + , where µ( )s  is the drift, σ( )s  is the spot volatility,
w s( )  is a standard Brownian motion, the occurrence of jumps is governed by a finite activity
counting process q s( )  and the size of the jumps is given by κ( )s .

The idea behind the jump test of lee, s. s., and P. a. Mykland [2008] is that in the absence 
of jumps, instantaneous returns are increments of Brownian motion and, therefore, standard-
ized returns that are too large to plausibly come from a standard Brownian motion must reflect 
jumps. In their original paper, lee, s. s., and P. a. Mykland [2008] standardize every intraday 
return ri  by a robust estimate of the spot volatility, denoted si , that assumes that the volatility 
is constant on a local window spanning between several hours to one or two days before or 

around the tested return. Their original statistic for jumps is J
r
si
i

i
=


, where si is the averaged 

bi-power variation belonging to the local window. To control for the size of the multiple jump 
tests lee, s. s., and P. a. Mykland [2008] use the extreme value theory result that the maximum 
of n  i.i.d. realizations of the absolute value of a standard normal random variable is asymptoti-
cally (for n → ∞ ) Gumbel distributed. More specifically, in the absence of jumps the probability 
that the maximum of any set of n  J-statistics exceeds g b cn n n, = ( (1 ))α α− − − +log log , with 
b nn = 1 / 2 log  and c n n nn = (2 ) [ ( )] / [2(2 ) ]1 2 1/ 2log log log log log/ − +π  is about α . 
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lee, s. s., and P. a. Mykland [2008]’s proposal is that all returns for which the J test statistic 
exceeds this threshold gn,α  should be declared to be affected by jumps. In the application, we 
set α = 1%  and n  to the total number of observations in the sample.
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Figure 2. – Intraday diurnal pattern

Note: This figure displays the average squared log-returns for each 1-minute, 5-minute, 30-minute and 1h05 interval, for the S&P 500 and 
Microsoft.
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However, for such long windows, the assumption of constant volatility is at odds with the 
overwhelming empirical evidence that the intraday variation in market activity causes intraday 
volatility to be strongly time-varying and even displays discontinuities (see FiGuRe 2). For this 
reason, we implemented the modified version proposed by Boudt, k., c. cRoux, and s. lauRent 

[2011] that accounts for the presence of intraday diurnal pattern, i.e., FJ
r

f s
i
WSD i

i
WSD

i
WSD=

� �
, 

where f i
WSD
 is the estimated WSD of Boudt, k., c. cRoux, and s. lauRent [2011] for the ith

return (which is standardized such that its square has mean one in the local window).

Periodicity and jumps adjusted returns are computed as ( / ) ( ), %r f I FJ gi i
WSD

i
WSD

n
 × < 1

( / ) ( < ) ( > ),1% ,1%r f I FJ g I FJ gi i
WSD

i
WSD

n i
WSD

n
ˆ × + , where I (.)  is an indicator function.

IV.3.3. Microstructure noise

Another disadvantage of using high-frequency data is that, at these frequencies, the true price 
process is likely to be contaminated by microstructure effects arising from market frictions, 
such as the bid-ask bounce or the discreteness of prices. This phenomenon produces spurious 
variations in asset prices and induces autocorrelation in high-frequency log-returns (see 
Hansen, P. R., and a. lunde [2006b]; ZHou, B. [1996]; aït-saHalia, y., P. a. Mykland, and 
l. ZHanG [2005]; aït-saHalia, y., and J. yu [2009]. The consequence of this noise on the
realized variance is known (i.e., it is upward biased) but its impact on MIDAS-RV has not
been investigated so far. We argue that this noise has an impact on the optimal frequency of
the variance predictors when relying on raw data, and therefore leads to a loss of information.

To account for the presence of microstructure noise in the context of non-parametric 
variance estimators, it is standard practice to pre-filter high-frequency log-returns using the 
pre-averaging technique introduced by PodolskiJ, M., M. VetteR, et al. [2009] and Jacod, J., 
y. li, P. a. Mykland, and M. PodolskiJ, and M. VetteR [2009].15 To the best of our knowl-
edge,  pre- averaging has never been used in the context of MIDAS models.

Instead of noisy intraday returns ( rt ), the authors suggest using pre-averaged returns ( rt ) 
which, by the law of large numbers, asymptotically lose the noise component. More precisely, 
rt  is approximated by an average of staggered returns rt  in a neighborhood of t , the noise 
being thus averaged away. The pre-averaging approach depends on a bandwidth parameter, 
or window length, that increases with the sample and indicates the weighting scheme to be 
put into effect. The order of the window size is chosen to lead to optimal convergence rates 
( )n−1/ 4 .

The balanced pre-averaging has been applied on 1- and 5-minute returns previously 
filtered for intraday diurnal pattern and jumps,  since it delivers the best rate of convergence, 
according to cHRistensen, k., s. kinneBRock, and M. PodolskiJ [2010].

IV.3.4. Results

FiGuRe 3 displays the filtered 1-minute return series for the S&P 500 and Microsoft, adjusted for 
the intraday diurnal pattern and jumps. The correction procedure purges the intraday pattern, 
identifies and smoothes the jumps, but preserves the variance dynamics. The procedure is also 
applied to the 5-minute return series.

15. For more details on this technique, see Appendix B.
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Figure 3. – Intraday returns and intraday jump-adjusted returns

Note: This figure displays the 1-minute intraday return series (in red) and the 1-minute return series filtered for intraday pattern and jumps (in 
blue) lee, s. s., and P. a. Mykland [2008], Boudt, k., c. cRoux, and s. lauRent [2011].

The MCS test is subsequently applied on the MIDAS out-of-sample obtained with both 
filtered and unfiltered data. The results are reported in taBle II. We notice a significant 
improvement in the MIDAS variance forecasts when using high-frequency predictors filtered 
for intraday diurnal pattern and jumps.

For the calm period (panel A), the S&P 500 forecasts obtained with filtered (both for 
jumps and diurnal pattern) 1-minute predictors always belong to the set of superior forecasting 
models as identified by MCS. During the crisis period, similar results are obtained with filtered 
5-minute regressors for short horizons ( H = 1  or H = 5 ). These results prove the importance
of using the filtered data, especially for short forecasting horizons.

FiGuRes 4 and 5 display the average QLIKE for the calm and crisis periods, and the three 
forecasting horizons, for both the S&P 500 and Microsoft. First, we remark that the gains 
related to the use of filtered data for intraday diurnal pattern are generally lower than the gains 
related to data filtered both for intraday pattern and jumps. Second, considering filtered data 
during a relatively calm period, we obtain a loss function which smoothly decreases with the 
sampling frequency m1  as in the Monte Carlo experiment. Note that when the loss function 
pattern becomes flat, or decreases slowly (as result of the filtering techniques), the variance 
forecasts have statistically the same quality. This means that very high-frequency data predic-
tors (e.g., 1-min data) are equally preferred to lower frequency predictors (e.g., 5-min to 1h05 
data). However, the higher costs of very high-frequency data might discourage traders from 
using it, since variance forecasts are similar.

To complete our analysis, we also perform MIDAS variance forecasts based on regressors 
filtered for intraday diurnal pattern, jumps and microstructure noise (through the pre-aver-
aging technique). The results are available in Appendix C and Appendix D. For instance, we 
observe that 1-minute pre-averaged regressors improve Microsoft variance forecasts during 
both the calm and crisis periods. These results apply also for the S&P 500 variance forecasts 
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Table ii. – MIDAS sampling frequency puzzle: intraday pattern and jump adjustments

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2423 0.1403 0.2161 0.0084 0.2203 0.1032 0.0971 0.1282 0.2357 0.1433 0.1083 0.0119
1min 

Per.Adj
0.2320 0.1403 0.1521 0.0584 0.2078 0.5087 0.0993 0.0944 0.2228 0.6283 0.1104 0.0105

1min 
Jumps.

Adj

0.2141 0.9962 0.1631 0.0084 0.1823 1.0000 0.1105 0.0083 0.2053 0.9284 0.1196 0.0018

5min 
RAW

0.2152 0.9482 0.1369 1.0000 0.1904 0.7536 0.0823 0.9896 0.2061 0.9284 0.0861 0.2639

5min 
Per.Adj 

0.2138 1.0000 0.1399 0.7404 0.1884 0.8198 0.0831 0.9896 0.2063 0.9284 0.0873 0.2639

5min 
Jumps.

Adj

0.2152 0.9962 0.1380 0.7762 0.1850 0.8198 0.0830 0.9896 0.2029 0.9324 0.0888 0.2639

10min 0.2203 0.3497 0.1412 0.7404 0.1968 0.5087 0.0878 0.5991 0.2013 1.0000 0.0950 0.2542
15min 0.2265 0.1403 0.1447 0.6187 0.2060 0.1032 0.0881 0.5603 0.2245 0.2596 0.0948 0.1450
30min 0.2152 0.9962 0.1407 0.7413 0.1920 0.8198 0.0833 0.9896 0.2140 0.8609 0.0874 0.2639
1h05 0.2254 0.3497 0.1447 0.7404 0.2017 0.5589 0.0933 0.5603 0.2187 0.6557 0.0930 0.2639
3h15 0.2713 0.0414 0.1449 0.7404 0.2471 0.1032 0.0815 1.0000 0.2518 0.1433 0.0732 1.0000
1day 0.2672 0.1403 0.1627 0.6187 0.2359 0.1032 0.0971 0.5991 0.2529 0.2596 0.0943 0.2639

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2185 0.0205 0.8640 0.0189 0.2337 0.0354 0.7399 0.0113 0.5308 0.0944 0.2231 0.0616
1min 

Per.Adj 
0.2112 0.0390 0.1635 0.1167 0.2227 0.3369 0.1465 0.1439 0.2975 0.0999 0.1679 1.0000

1min 
Jumps.

Adj 

0.2042 0.0390 0.1587 1.0000 0.2026 0.4552 0.1362 1.0000 0.3172 0.0999 0.1758 0.6321

5min 
RAW 

0.2033 0.0390 0.2891 0.0189 0.2182 0.3369 0.7152 0.0113 0.4144 0.0999 0.1914 0.2172

5min 
Per.Adj 

0.2008 0.0390 0.1673 0.1041 0.2142 0.4552 0.1534 0.1439 0.2737 1.0000 0.4426 0.0145

5min 
Jumps.

Adj 

0.1842 1.0000 0.1598 0.8721 0.1956 1.0000 0.1528 0.1439 0.3073 0.0999 0.1735 0.6321

10min 0.2166 0.0205 0.1848 0.0189 0.2340 0.0354 0.6791 0.0113 0.3245 0.0999 0.2839 0.0240
15min 0.2172 0.0390 0.1960 0.1041 0.2306 0.0354 0.1820 0.0309 0.3146 0.0999 0.9670 0.0145
30min 0.2317 0.0204 0.7694 0.0189 0.2662 0.0212 0.2397 0.0113 0.3408 0.0999 0.2670 0.0145
1h05 0.2428 0.0204 0.2566 0.0189 0.3081 0.0204 0.2958 0.0113 0.3850 0.0999 0.5070 0.0145
3h15 0.2468 0.0205 0.2612 0.0189 0.3437 0.0037 0.2485 0.0177 0.4352 0.0403 0.2213 0.2172
1day 0.3305 0.0204 0.2539 0.0189 0.3190 0.0120 0.2719 0.0113 0.3911 0.0999 0.2419 0.0616

Note: This table presents the MCS test results obtained for two assets (the S&P 500 and Microsoft) during both calm and crisis periods. The 
results are reported for three forecasting horizons, namely one day ( )H = 1 , one week ( )H = 5  and two weeks ( )H = 10 . For each we present 
the average value of the QLIKE loss function along with the corresponding p -value resulting from the MCS test. The confidence level for the 
MCS test is set to α = 25%  and 10,000 bootstrap resamples are used, with block length of five observations, to obtain the distribution under 
the null of equal predictive accuracy. The set of the competing variance models includes eight MIDAS specifications with regressors sampled at 
a frequency ranging from one minute to one day, as well as four MIDAS models with 1- and 5-minute regressors adjusted for intraday diurnal 
pattern and both intraday pattern and jumps.
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Figure 4. – S&P 500 average QLIKE

Note: The S&P 500 - This figure displays the average QLIKE for the MIDAS-RV forecasts for various sampling frequencies ( )m1  of the predic-
tors, and for the three forecasting horizons. The left panel corresponds to the calm period (2007) and the right panel to the crisis period (2008). 
The solid blue line corresponds to the MIDAS-RV model with raw data sampled at frequencies 1-min to 1-day. The green and red dotted lines 
correspond respectively to the MIDAS-RV models on intraday diurnal pattern, and both jumps and intraday pattern filtered log-returns sampled 
at frequencies between 1-min and 5-min.
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at short forecasting horizons. They become more puzzling for long forecasting horizons (e.g., 
two weeks), as well as for the crisis period. For instance, the QLIKE functions for weekly and 
bi-weekly Microsoft variance forecasts (left-middle and left-bottom of FiGuRe 5) show that 
the high-frequency wall persists even after filtering.16 However, we observe that the 1-min 
raw MIDAS model is never included in the subset of best models, according to the MCS test, 
regardless of the period under analysis.

IV.4. Robustness Check

In this section we examine the robustness of our results. Three main exercises are considered, 
namely: ( )i  the identification of the pure effect of sampling frequency; ( )ii  the comparison of 

16. As noted by the anonymous referee, this is not a problem per se, since our objective is to identify the problem,
even if standard filtering techniques are not able to solve it.
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Figure 5. – Microsoft average QLIKE

Note: See FiGuRe 4.

18



the performances of MIDAS-RV models with existing variance forecasting models; ( )iii  the 
logarithmic MIDAS-RV setup.

IV.4.1. The Pure Effect of Sampling Frequency

The first robustness check exercise aims at highlighting the pure effect of sampling frequency. 
To achieve this goal, we first estimated a MIDAS-RV model with regressors sampled at one 
minute and then imposed the weights obtained previously to lower frequency regressors of 
variance. These weights would not be optimal, but it is a good way to isolate the differences in 
predictability attributed to the difference in sampling frequency versus the change in optimal 
weights, with respect to different data samples.17

Table iii. – Same weights

φH m, 1
QLIKE

S&P 500 MSFT S&P 500 MSFT

1min 334.4542 332.3547 0.1547 0.1064

5min 73.1739 76.4844 0.1513 0.1124

10min 36.6549 40.2871 0.1600 0.1230

15min 25.5069 27.8444 0.1596 0.1285

30min 12.9734 14.0814 0.1581 0.1457

1h05 5.7102 6.3409 0.1891 0.1908

3h15 1.6805 1.9722 0.2866 0.3689

1day 0.8570 0.8085 0.3401 1.1116

Note: This table presents the estimates for the scale parameter, φH m, 1
, and the QLIKE loss function for the 

daily MIDAS-RV model with regressors sampled at frequencies ranging from one minute to one day. The 
weights from the model using 1-minute returns are imposed on lower frequency returns.

taBle III presents the estimates for the scale parameter, φH m, 1
, and the QLIKE loss func-

tion for the daily MIDAS-RV model with regressors sampled at frequency ranging from one 
minute to one day. As previously indicated, the weights from the model using 1-minute regres-
sors are imposed on lower frequency regressors. We observe the decreasing pattern of the 
parameter estimates for the two assets. The same declining pattern is also noticed for the 
QLIKE loss function. The more frequent information we use, the more we gain in precision.

IV.4.2. MIDAS and Other Competing Variance Models

In this second robustness check exercise, we compare the predictive accuracy of the MIDAS-RV 
forecasts with those obtained for four widely used variance models based on daily and/or 
intradaily data, i.e., the GARCH model, the Generalized Autoregressive Score (GAS), the 
Heterogeneous Autoregressive Realized Variance-based model (HAR-RV) and the HAR-RV 
adjusted for jumps (HAR-RV-J).

17. We thank the anonymous referee for this suggestion.
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i) The first competing model is the popular GARCH(1,1) model, pioneered by enGle, R. F.
[1982] and BolleRsleV, t. [1986], i.e.:

r c z ht t t t t t+ + ++1, 1, 1,= , (8)

h r c ht t t t t t+ − −+ − +1, 0 1 , 1
2

1 , 1= ( )α α β . (9)

ii) The second model is the GAS model, recently introduced by HaRVey, a. c. [2013] and
cReal, d. d., s. J. kooPMan, and a. lucas [2013]. This model is designed to better deal with 
large outliers. We consider the Student GAS specification where the one step-ahead condi-
tional variance is defined as follows: 

h w a u h ht t t t t t t t+ − − −+ +1, 0 1 , 1 , 1 1 , 1= φ , (10)

with u v z v zt t t t t t, 1 , 1
2

, 1
2= (( 1) ) / ( 2 ) 1− − −+ − + − , and z t vt  (0,1, ) . Notice that for the 

GARCH and GAS models, the variance forecasts for H > 1  are obtained as 
i
H

t i th
=1 ,∑ +  and

not directly from rt H t+ ,  as opposed to the MIDAS-RV model.

iii) The third competing model is the HAR-RV model, proposed by coRsi, F. [2009]:

RV RV RV RVt t t t t t
w

t t
m

t+ − − − ++ + + +1, 0 1 , 1 2 , 1 3 , 1 1= α α α α ε , (11)

where RVt t+1,  is the daily realized variance (Eq. 3) and by convention, RV RVt t
w

i t i t i, 1 =0
4

, 1= 1
5− − − −∑

RV RVt t
w

i t i t i, 1 =0
4

, 1= 1
5− − − −∑ and RV RVt t

m
i t i t i, 1 =0
21

, 1= 1
22− − − −∑ . This model is conceived as an addi-

tive cascade of different variance components defined over different time horizons of one day, 
one week ( )w , and one month ( )m , respectively. The HAR-RV is therefore a constrained 
version of the MIDAS-RV model with intradaily squared return regressors and a particular 
weight structure. Indeed, given the definition of the realized variance, Eq. (11) can be rewritten 
as a weighted sum of past observations of the intraday squared returns. For more details, see 
Appendix E.

iv) andeRsen, t. G., t. BolleRsleV, and F. x. dieBold [2007] extended the classical
HAR-RV framework by taking into account the lagged effect of jumps. The HAR-RV-J model 
(where J stands for jumps) is formally defined as follows:

RV RV RV RV J Jt t t t t t
w

t t
m

t t t t+ − − − −+ + + + +1, 0 1 , 1 2 , 1 3 , 1 1 , 1 2 ,= α α α α γ γ −− − ++ +1 3 , 1 1
w

t t
m

tJγ ε  (12)

where J I RV BVt t t t t t t, 1 , 1 , 1= ( )− − −× −  is a random variable that is nonzero for the intervals 
in which jumps occur and zero otherwise, BV  is the daily realized bipower variation BaRn-
doRFF-nielsen, o. e., and n. sHePHaRd [2004b] which is defined as: 

BV r rt
l

m

t l t l= | || |1
2

= 2
, , 1µ−

−∑ , (13)

with µ π1 = (2 / ) 0.79788≈ , and I I Zt t≡ ( )> 0.999Φ , where Zt  is defined as: 

Z
m RV BV RV

max TQt
t t t t t t

t t
=

( )

[( 2 5) {1,

2
, 1 , 1 , 1

1

1
4

1
2

,

− − −
−

− −
−

−

+ −µ µ 11 , 1
2 1/ 2( ) }]m BVt t−

− (14)
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with TQt t, 1−  the tri-power quarticity, a robust estimator of the integrated variance, and Φ0.999
the 99.9% quantile of the standard normal distribution.18

The MCS procedure is now applied on 18 models, namely the eight MIDAS models with 
regressors sampled between 1-min and one day, the six MIDAS specifications with 1- and 
5-minute regressors adjusted for intraday diurnal pattern, jumps and/or microstructure noise,
and the four competing variance models (HAR-RV, HAR-RV-J, Student GAS, GARCH).
The results are summarized in taBle IV. The broad conclusion is that the MIDAS models
provide (at least for these two assets) comparable, or even better, variance forecasts than the
other competing models. In terms of the loss function, the models are dominated during the
calm period by the MIDAS models, except for the daily Microsoft forecasts. During the calm
period, we find that the forecasts provided by different MIDAS specifications are statistically
comparable to those from the HAR-RV and HAR-RV-J models. The GAS model provides
comparable forecasts only in the case of the S&P 500 for a forecasting horizon of two weeks.
During the crisis, the best forecasts are generally provided by the MIDAS models with 1- or
5-minute filtered predictors, and the cluster of superior forecasting models no longer includes
the HAR-RV and HAR-RV-J models. For longer horizons, the GAS and the GARCH provide
similar results to those obtained with the MIDAS model. These findings confirm the intuition
that high-frequency data can be used to successfully forecast variance, provided that these data
are filtered for intraday pattern and jumps. For these two assets, MIDAS models outperform
in many cases standard variance models such as the GARCH model, or even the HAR-RV,
HAR-RV-J or GAS models.

IV.4.3. Logarithmic Framework

The most frequent criticism on both MIDAS and HAR-RV models concerns the absence of 
some constraints ensuring the positivity of the variance process. A straightforward solution 
consists in predicting the logarithm of the variance proxy, i.e., 

Log-MIDAS: 

log log ( )( ) = ( ) ( ),
( )

, , ,
1/

, 1/
2

1 1 1
1

1

1RV L Xt H t
m

H m H m H m
m

t t m
m

+ −+µ φ Ω ++ εt . (15)

Log-HAR-RV:

log log log log( ) = ( ) ( ) (, 0 1 , 1 2 , 1 3 ,RV RV RV RVt H t t t t t
w

t t+ − −+ + +α α α α −− ++1 1)m
tε . (16)

Log-HAR-RV-J: 

log log log log( ) = ( ) ( ) (, 0 1 , 1 2 , 1 3 ,RV RV RV RVt H t t t t t
w

t t+ − −+ + +α α α α −−1)m  (17)

+ + + + + + +− − − +γ γ γ ε1 , 1 2 , 1 3 , 1 1( 1) ( 1) ( 1)log log logJ J Jt t t t
w

t t
m

t .

To forecast the logarithm of the realized measure of variance, we follow exactly the same 
procedure as for the level of variance. Next, in order to compare the log-variance forecasts 
with the level of variance proxy, the following transformation is required andeRsen, t. G., 
t. BolleRsleV, F. x. dieBold, and P. laBys [2003]:

18. TQ m r r rt t lt
m

t l t l≡ −
= − −∑µ4 3

3
3

4 3
1

4 3
2

4 3
/ ,

/
,

/
,

/
, where µ4 3

2 3 12 7 6 1 2/
/ ( / ) ( / )≡ −Γ Γ .
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Table iV. – Comparing competing variance models

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2423 0.1617 0.2161 0.0103 0.2203 0.1444 0.0971 0.1726 0.2357 0.1830 0.1083 0.0046

1min 
Per.Adj

0.2320 0.1617 0.1521 0.0704 0.2078 0.6375 0.0993 0.1285 0.2228 0.6896 0.1104 0.0039

1min 
Jumps.

Adj

0.2141 0.9961 0.1631 0.0103 0.1823 1.0000 0.1105 0.0059 0.2053 0.9262 0.1196 0.0031

1min 
Jumps.
Adj_
Preav

0.2155 0.1617 0.1560 0.0103 0.1900 0.7983 0.1000 0.0059 0.4243 0.1830 0.1054 0.0039

5min 0.2152 0.9773 0.1369 0.7738 0.1904 0.7983 0.0823 0.9888 0.2061 0.9262 0.0861 0.2702

5min 
Per.Adj 

0.2138 1.0000 0.1399 0.7738 0.1884 0.8186 0.0831 0.9888 0.2063 0.9262 0.0873 0.2702

5min 
Jumps.

Adj

0.2152 0.9773 0.1380 0.7738 0.1850 0.8186 0.0830 0.9888 0.2029 0.9320 0.0888 0.2702

5min 
Jumps.
Adj_
Preav

0.2149 0.9961 0.1560 0.0213 0.1899 0.7983 0.1001 0.0059 0.4286 0.1830 0.1052 0.0039

10min 0.2203 0.1617 0.1412 0.7738 0.1968 0.6375 0.0878 0.5281 0.2013 1.0000 0.0950 0.2100

15min 0.2265 0.1617 0.1447 0.3101 0.2060 0.1444 0.0881 0.5148 0.2245 0.3046 0.0948 0.1429

30min 0.2152 0.9961 0.1407 0.7738 0.1920 0.8186 0.0833 0.9888 0.2140 0.8471 0.0874 0.2702

1h05 0.2254 0.1617 0.1447 0.6354 0.2017 0.7171 0.0933 0.5148 0.2187 0.6896 0.0930 0.2702

3h15 0.2713 0.0630 0.1449 0.7738 0.2471 0.1444 0.0815 1.0000 0.2518 0.1830 0.0732 1.0000

1day 0.2672 0.1617 0.1627 0.3101 0.2359 0.1444 0.0971 0.5148 0.2529 0.1830 0.0943 0.2702

HAR-
RV 

0.2176 0.1617 0.1345 1.0000 0.1941 0.7726 0.0868 0.5148 0.2172 0.6896 0.0943 0.2100

HAR-RV 
jumps 

0.2187 0.1617 0.1359 0.7738 0.1973 0.7171 0.0883 0.5148 0.2226 0.4406 0.0960 0.1429

GARCH 0.3240 0.0630 0.2208 0.0027 0.2849 0.1444 0.1677 0.0002 0.2935 0.1830 0.1747 >0.0001

GAS 0.3161 0.0630 0.1884 0.0103 0.2669 0.1444 0.1292 0.0059 0.2688 0.3046 0.1296 0.0046

Continued on next page
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Table iV. – Comparing competing variance models (Continued)

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2185 0.0304 0.8640 0.0265 0.2337 0.0539 0.7399 0.0121 0.5308 0.0315 0.2231 0.0883

1min 
Per.Adj 

0.2112 0.0698 0.1635 0.1823 0.2227 0.4921 0.1465 0.1455 0.2975 0.1162 0.1679 1.0000

1min 
Jumps.

Adj

0.2042 0.0698 0.1587 1.0000 0.2026 0.6140 0.1362 1.0000 0.3172 0.1162 0.1758 0.6477

1min 
Jumps.
Adj_
Preav

0.2430 0.0304 0.1698 0.1823 0.2596 0.0258 0.1725 0.0322 0.3517 0.1162 0.1918 0.4436

5min 0.2033 0.0698 0.2891 0.0265 0.2182 0.4921 0.7152 0.0121 0.4144 0.1162 0.1914 0.3105

5min 
Per.Adj 

0.2008 0.0698 0.1673 0.1339 0.2142 0.6140 0.1534 0.1455 0.2737 0.3766 0.4426 0.0207

5min 
Jumps.

Adj

0.1842 1.0000 0.1598 0.8786 0.1956 1.0000 0.1528 0.1455 0.3073 0.1162 0.1735 0.6477

5min 
Jumps.
Adj_
Preav

0.2418 0.0304 0.1780 0.0271 0.2627 0.0258 0.1757 0.0239 0.3502 0.1162 0.1943 0.3105

10min 0.2166 0.0304 0.1848 0.0265 0.2340 0.0539 0.6791 0.0121 0.3245 0.1162 0.2839 0.0207

15min 0.2172 0.0698 0.1960 0.0271 0.2306 0.0539 0.1820 0.0322 0.3146 0.1162 0.9670 0.0207

30min 0.2317 0.0304 0.7694 0.0265 0.2662 0.0258 0.2397 0.0121 0.3408 0.1162 0.2670 0.0207

1h05 0.2428 0.0304 0.2566 0.0265 0.3081 0.0258 0.2958 0.0121 0.3850 0.0315 0.5070 0.0207

3h15 0.2468 0.0304 0.2612 0.0265 0.3437 0.0058 0.2485 0.0153 0.4352 0.0315 0.2213 0.3105

1day 0.3305 0.0304 0.2539 0.0265 0.3190 0.0162 0.2719 0.0121 0.3911 0.0318 0.2419 0.0359

HAR-
RV 

0.2102 0.0698 0.1781 0.0271 0.2449 0.0539 0.1754 0.0153 0.3563 0.0318 0.2346 0.0207

HAR-RV 
jumps

0.2148 0.0698 0.1719 0.1339 0.2472 0.0539 0.1669 0.0717 0.3569 0.0315 0.2205 0.0359

GARCH 0.2291 0.0698 0.2205 0.0265 0.2282 0.4921 0.2041 0.0153 0.2723 0.2778 0.2208 0.3105

GAS 0.2363 0.0304 0.2447 0.0265 0.2173 0.6140 0.2142 0.0153 0.2348 1.0000 0.2226 0.3105

Note: This table presents the MCS test results obtained for two assets (the S&P 500 and Microsoft) during both calm and crisis periods. The 
results are reported for three forecasting horizons, namely one day ( )H = 1 , one week ( )H = 5  and two weeks ( )H = 10 . For each we present 
the average value of the QLIKE loss function along with the corresponding p -value resulting from the MCS test. The confidence level for the 
MCS test is set to α = 25%  and 10,000 bootstrap resamples are used, with block length of five observations, to obtain the distribution under the 
null of equal predictive accuracy. The set of the competing variance models includes eight MIDAS specifications with regressors sampled at a 
frequency ranging from one minute to one day, six MIDAS models with 1- and 5-minute regressors adjusted for intraday diurnal pattern, intraday 
pattern and jumps, and intraday pattern, jumps and microstructure noise, the HAR-RV, HAR-RV-J, GARCH and GAS models.
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where log( ),RV t H t + is the forecast of the log of the realized variance and Var et H t( ),+  is the
variance of the forecasting errors.

The results of the MCS-based comparison procedure are reported in taBle V. Once again, 
during the calm period, the standard models are generally dominated by the log-MIDAS 
models. For shorter forecasting horizons (one day and one week), the cluster also includes 
the log-HAR-RV-J model. Only in the case of the S&P 500, does the GAS model provide 
statistically comparable forecasts for a horizon of one and two weeks. During the crisis, the 
daily log-MIDAS-RV with 5-minute regressors pre-filtered for intraday diurnal pattern, jumps 
and microstructure noise has the smallest QLIKE. For the one-week forecasting horizon the 
best forecast fit is given by the log-HAR-RV-J model for both Microsoft and the S&P 500. 
The subset of superior forecasting models (as identified by the MCS) encompasses a smaller 
number of log-MIDAS specifications than in the calm period, the log-HAR-RV-J model (for 
one day and one week forecasting horizons) and the Student GAS model (for one and two 
week-ahead S&P 500 forecasts).

Another robustness check exercise consists in changing the measure of variance to be 
predicted. It is well-documented that the realized variance estimator may become biased 
and inconsistent in the presence of market microstructure noise. A large number of alter-
native proxies of variance (e.g., realized bipower variation, realized kernel, etc.) that deal 
with issues such as jumps and other market microstructure noise, have consequently been 
introduced by BaRndoRFF-nielsen, o. e., and n. sHePHaRd [2004a], ZHanG, l. [2006], BaRn-
doRFF-nielsen, o. e., P. R. Hansen, a. lunde, and n. sHePHaRd [2008], Hansen, P. R., and 
G. HoRel [2009], inter alia. To assess the robustness of our results, we also consider the
realized kernel BaRndoRFF-nielsen, o. e., P. R. Hansen, a. lunde, and n. sHePHaRd [2008]
as the dependent variable in our specifications and obtain similar results (Appendix F). Our
results are also robust to the choice of the predictors of variance (e.g., intradaily bipower
variation instead of squared intradaily returns). For a synthesis of all these extra findings see
Appendix G.

V. Conclusion

This paper analyses the forecasting performance of MIDAS-RV models in which future vari-
ances are directly related to past intraday log-returns. These predictors are usually constructed 
from tick-by-tick data and, consequently, the econometrician needs to choose a sampling 
frequency. The question we raise is whether high frequency data is needed to forecast longer 
horizon variances.

The main findings of our study are the following. First, we show in a Monte Carlo simula-
tion study that, to a world without jumps, intraday diurnal pattern in variance and microstructure 
noise, there is an advantage in using the highest available frequency for the predictors. The 
information content of very high-frequency data significantly improves the quality of the 
MIDAS forecasts. Second, when considering two highly liquid assets (namely Microsoft and 
the S&P 500) contaminated with typical market microstructure noise and intraday diurnal 
pattern, we find that the use of very high-frequency predictors may become problematic. In 
particular, we show that there may exist a “high-frequency wall’’, i.e., a frequency limit above 
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Table V. – Log version - MCS Test

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2406 0.3927 0.1553 0.0793 0.2299 0.4631 0.0998 0.0862 0.2454 0.0472 0.1136 0.0186

1min 
Per.Adj

0.2350 0.8643 0.1546 0.0793 0.2294 0.4631 0.0997 0.3683 0.2057 1.0000 0.1253 0.0069

1min 
Jumps.

Adj

0.2395 0.3927 0.1660 0.0793 0.2118 0.7967 0.1262 0.0034 0.2152 0.9008 0.1263 0.0011

1min 
Jumps.
Adj_
Preav

0.2295 0.6360 0.1656 0.0793 0.2174 0.4805 0.1126 0.0618 1.0253 0.0014 0.1145 0.0186

5min 0.2251 0.8643 0.1403 0.9546 0.1987 0.7967 0.0862 0.8161 0.2149 0.9219 0.0915 0.6301

5min 
Per.Adj

0.2252 0.8643 0.1419 0.9142 0.2051 0.7967 0.0913 0.6182 0.2178 0.9008 0.0924 0.6301

5min 
Jumps.

Adj

0.2246 0.8643 0.1409 0.9546 0.2097 0.7571 0.0902 0.6182 0.2079 0.9820 0.0948 0.5343

5min 
Jumps.
Adj_
Preav

0.2105 1.0000 0.1517 0.0793 0.1931 1.0000 0.1022 0.0862 0.2305 0.9008 0.1056 0.0246

10min 0.2252 0.8643 0.1432 0.9142 0.2116 0.4805 0.0902 0.6182 0.2294 0.0472 0.0905 0.6301

15min 0.2324 0.4502 0.1451 0.6697 0.2180 0.4631 0.0893 0.5495 0.2289 0.6145 0.0906 0.5343

30min 0.2198 0.8643 0.1369 1.0000 0.2158 0.6218 0.0811 0.8161 0.2118 0.9820 0.0834 0.8619

1h05 0.2348 0.5145 0.1420 0.9546 0.2193 0.4805 0.0837 0.8161 0.2104 0.9820 0.0800 0.8792

3h15 0.2644 0.0592 0.1508 0.6697 0.2498 0.2145 0.0773 1.0000 0.2523 0.0472 0.0785 1.0000

1day 0.2973 0.0592 0.1805 0.0793 0.2385 0.3504 0.1069 0.4387 0.2287 0.9008 0.0880 0.8619

HAR-
RV 

0.2444 0.1056 0.1528 0.0793 0.2622 0.0124 0.1179 0.0014 0.3308 0.0014 0.1425 0.0007

HAR-RV 
jumps 

0.2205 0.8643 0.1386 0.9546 0.2161 0.4805 0.0922 0.5495 0.2615 0.0375 0.1056 0.0186

GARCH 0.3240 0.0592 0.2208 0.0697 0.2849 0.3504 0.1677 0.0014 0.2935 0.0472 0.1747 0.0011

GAS 0.3161 0.0592 0.1884 0.0793 0.2669 0.3504 0.1292 0.0862 0.2688 0.0472 0.1296 0.0186

Continued on next page
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Table V. – Log version - MCS Test (Continued)

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.3628 0.0001 0.1881 0.0953 0.5074 0.0024 0.2244 0.0182 0.6579 0.0011 0.3851 0.0047

1min 
Per.Adj 

0.3553 0.0001 0.2575 0.0139 0.5223 0.0024 0.2093 0.0182 0.4240 0.1263 0.4045 0.0039

1min 
Jumps.

Adj

0.3369 0.0001 0.2407 0.0276 0.4799 0.0115 0.3244 0.0182 0.6406 0.0024 0.4123 0.0047

1min 
Jumps.
Adj_
Preav

0.2926 0.0048 0.2369 0.0139 0.4875 0.0115 0.3434 0.0182 0.6936 0.0024 0.4136 0.0047

5min 0.2530 0.0048 0.2085 0.0832 0.3928 0.0115 0.2029 0.0182 0.5136 0.0024 0.1682 1.0000

5min 
Per.Adj

0.2544 0.0048 0.1712 0.0953 0.4154 0.0115 0.2683 0.0182 0.5072 0.0024 0.1737 0.3670

5min 
Jumps.

Adj

0.2083 0.0295 0.2011 0.0953 0.3872 0.0115 0.1986 0.0182 0.5550 0.0024 0.3325 0.0047

5min 
Jumps.
Adj_
Preav

0.1514 1.0000 0.1471 1.0000 0.2404 0.5737 0.2175 0.0182 0.3625 0.1263 0.2851 0.1848

10min 0.2323 0.0295 0.1699 0.0953 0.2952 0.0115 0.1624 0.0634 0.4903 0.0024 0.3197 0.0047

15min 0.1930 0.0295 0.1591 0.3878 0.2065 0.9076 0.1946 0.0182 0.4679 0.0580 0.1820 0.2582

30min 0.1926 0.0295 0.1725 0.0953 0.2992 0.0115 0.2407 0.0182 0.2814 0.3369 0.2797 0.1362

1h05 0.1857 0.0295 0.2122 0.0276 0.2854 0.1576 0.2594 0.0182 0.3575 0.1263 0.2628 0.1029

3h15 0.1993 0.0295 0.2173 0.0495 0.2552 0.0115 0.2300 0.0182 0.3809 0.1060 0.2717 0.1810

1day 0.2765 0.0001 0.2273 0.0139 0.2544 0.0645 0.2042 0.0182 0.3243 0.1263 0.2302 0.1848

HAR-
RV

0.1748 0.1520 0.1662 0.0953 0.2649 0.0115 0.1821 0.0182 0.4382 0.0024 0.2644 0.0047

HAR-RV 
jumps 

0.1667 0.2427 0.1497 0.8194 0.2039 1.0000 0.1426 1.0000 0.3294 0.1263 0.1965 0.1848

GARCH 0.2291 0.0048 0.2205 0.0953 0.2282 0.5737 0.2041 0.0182 0.2723 0.2280 0.2208 0.1848

GAS 0.2363 0.0295 0.2447 0.0276 0.2173 0.9076 0.2142 0.0182 0.2348 1.0000 0.2226 0.1848

Note: This table presents the MCS test results obtained for the two assets under analysis (the S&P 500 and Microsoft) during both calm and 
crisis periods. The results are reported for three forecasting horizons, namely one day ( )H = 1 , one week ( )H = 5  and two weeks ( )H = 10 .  
For each we present the average value of the QLIKE loss function along with the corresponding p -value resulting from the MCS test. The 
confidence level for the MCS test is set to α = 25%  and 10,000 bootstrap resamples are used, with block length of five observations, to obtain 
the distribution under the null of equal predictive accuracy. The set of the competing variance models includes eight log-MIDAS specifications 
with regressors sampled at a frequency ranging from one minute to one day, six log-MIDAS models with 1- and 5-minute regressors adjusted 
for intraday diurnal pattern, intraday pattern and jumps, and intraday pattern, jumps and microstructure noise, the log-HAR-RV, log-HAR-RV-J, 
GARCH and GAS models.
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which the MIDAS forecasts may be less accurate, or stop improving. This result clearly illus-
trates the influence of the jumps and the intraday diurnal pattern on the prediction  of variance, 
and not only on its measurement. Third, we discuss the potential solutions to combine the 
gains issued from high-frequency predictors and the negative impact of microstructure noise. 
A first solution consists in augmenting the MIDAS model by modifying the weighting scheme 
in order to limit the influence of the contaminated observations. A second solution consists in 
applying the MIDAS regression model on filtered data. Here we adopt the latter solution and 
show that estimating MIDAS-RV models on filtered log-returns leads to significantly better 
out-of-sample forecasts. Finally, we compare the MIDAS model to other competing variance 
models including the GARCH, GAS, HAR-RV and HAR-RV-J models. The results suggest 
that, for both assets, MIDAS models yield better forecasts in most cases, and, importantly, 
never yield inferior forecasts, provided they are applied on filtered data.

A future research direction would be to compare the approach taken in this paper, where 
realized variance is directly related to past intraday data, as in GHysels, e., P. santa-claRa, 
and R. ValkanoV [2006], with that of GHysels, e., P. santa-claRa, and R. ValkanoV [2006] 
or GHysels, e., and a. sinko [2011], where daily realized measures (that are potentially robust 
to microstructure noise and jumps) are introduced in a MIDAS-RV model.
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Appendix

A. Model Confidence Set

Let us consider rt  the logarithmic return process where a unit of time corresponds to a 
trading day, and t  the information set at time t . We can then define the conditional mean, 
µt t tE r= ( | )1 − , and the conditional variance, σt t tVar r2

1( | )≡ − . We denote by M0  the
set of K  models used to forecast variance, and σt k,

2 , k K= 1,..., , the jth  variance forecast
series. The objective of the model confidence set (MCS) of Hansen, P. R., a. lunde, and 
J. M. nason [2011] is to identify the cluster of “best’’ forecasting models, in this case variance
models, under a specified loss function, L t t k( , )2

,
2σ σ .

The relative performance of each pair of forecasts is measured by d L Lt k j t t k t t j, ,
2

,
2 2

,
2= ( , ) ( , )σ σ σ σ− 

d L Lt k j t t k t t j, ,
2

,
2 2

,
2= ( , ) ( , )σ σ σ σ− , for all k j M, 0∈  with k j≠ . Under the assumption that dt k j, ,

is stationary, the null hypothesis of equal predictive ability takes the form 

H E d k j Mt k j0 , , 0: [ ] = 0 ,∀ ∈ . (A.1)

If the null of equal predictive ability is rejected at a given confidence level α , then the 
worst performing model is eliminated from M0 . The iterative testing procedure ends when the 
first non rejection occurs, or, obviously, if all models but one have been recursively eliminated. 
The confidence level α  is held at each iteration, thus allowing us to construct a (1 )− α -confi-
dence set, M k M E dt k j

*
0 , ,{ : ( ) 0≡ ∈ ≤  ∀ ∈j M0} , for the best model(s) in M0 . Finally,

the MCS p-value is equal to p p p ii i= ( , ( ))1max − , i K= 1,..., , where pi  is the p-value of the 
test under the null hypothesis H Mi0: , i.e., at the ith  step of the iteration process. By convention
the p-value when there is only one surviving model is pK = 1 .

The main advantages of the MCS test are that it does not require that a benchmark be spec-
ified and it relies on simple hypotheses making it possible to compute standard asymptotics. 
However, when K  is large the test statistics have a non-standard distribution, the reason for 
which a bootstrap scheme is employed to obtain the distribution under the null hypothesis.
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B. Pre-Averaging Methodology

Let us consider a vector of log-prices pt  and t  the information set available at time t . 
Standard no-arbitrage conditions suggest that log-prices are semi-martingales. However, in 
practice, market microstructure noise (including bid-ask bounces, gradual response of prices 
to a block trade, price discreteness, differences in trade sizes or informational content of price 
changes, strategic inventory control effects, component of the order flow, etc.) create spurious 
variations in asset prices, thus distorting the efficient price. As a result, we observe at time-
points i n/ , i n= 1,..., , a price process p  which is distorted by noise, such that: 

p pt t t= + ε , (B.1)

where εt  is an i i d. .  process, stochastically independent from p .
PodolskiJ, M., M. VetteR, et al. [2009] and cHRistensen, k., s. kinneBRock, and 

M. PodolskiJ [2010] and argue that, under zero mean i i d. .  microstructure noise, the impact
of the noise could be reduced by smoothing the observed log-price Xp . Therefore, they
 approximate pt  by an average of observations of p  in the neighborhood of t , the noise being 
thus averaged away.

The steps to pursue in order to conduct the pre-averaging are the following:

Step 1. Consider a sequence of integers, kn , and a number θ ∈ ∞(0, ) , such that: 

k
n

o nn = ( )1/ 4θ + − . (B.2)

Step 2. Choose a continuous function f  on [0,1] , piecewise continuously differen-
tiable with a piecewise Lipschitz derivative ′f , and which satisfies f f(0) = (1) = 0  and 

0

1 2 ( ) > 0∫ f s ds .19

Step 3. Compute the noisy high-frequency returns, ∆i
n p , and the pre-averaged returns,

pi
n , using f  as a weight function for the latter:

∆i
n

i
n

i
n

p p p for i n� = , = 1,2,...,1− − (B.7)

 p g j
k

p for i n ki
n

j

k

n
i j
n

n

n

= , = 0,..., 1
=1

1−

+∑ 





− +∆ . (B.8)

As shown above, kn  represents the pre-averaging window length and depends on the 
parameter θ . Considering k nn = [ ]θ , we can show that p O ni

n
p= ( )1/ 4− , the method thus

delivering the best rate of convergence. In our simulation and empirical analysis, we use 

19. The following functions and numbers are associated with ∫ :

φ1
1

( ) ( ) ( )s f u f u s du
s

= ′ ′ −∫ (B.3)

φ2
1

( ) ( ) ( )s f u f u s du
s

= −∫ (B.4)

ψ φ1 1 0= ( ) , ψ φ2 2 0= ( ) , (B.5)

φ φ11 1
2

0

1
= ∫ ( )s ds , φ φ φ12 10

1
2= ∫ ( ) ( )s s ds , φ φ22 2

2
0

1
= ∫ ( )s ds (B.6)
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the same weight function as PodolskiJ, M., M. VetteR, et al. [2009] and cHRistensen, k., 
s. kinneBRock, and M. PodolskiJ [2010], namely:

f x min x x( ) = ( ,1 )− . (B.9)

We take: 
k

n
o nn

1/ 2 = ( 1 / 4 / 2)+ + − +δ θ δ (B.10)

for some 0 < < 1 / 2δ  and set δ = 0.1  and θ = 1  based on the results of PodolskiJ, M., 
M. VetteR, et al. [2009] and cHRistensen, k., s. kinneBRock, and M. PodolskiJ [2010].

C. Pre-Averaged MIDAS Regressors – S&P 500

Calm period (2007) Crisis period (2008) 

MIDAS Periodicity-Adjusted MIDAS Jumps-Adjusted MIDAS Pre-averaged MIDAS
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Figure C.1. – S&P 500 average QLIKE

Note: The S&P 500 - This figure displays the average QLIKE for the MIDAS-RV forecasts for various sampling frequencies ( )m1  of the predic-
tors, and the three forecasting horizons.The left panel corresponds to the calm period (2007) and the right panel to the crisis period (2008). The 
solid blue line corresponds to the MIDAS-RV model with raw data sampled at frequencies 1-min to 3h15. The green, red and blue dotted lines 
correspond respectively to the MIDAS-RV models on intraday diurnal pattern, jumps and intraday pattern, and jumps, intraday pattern and noise 
filtered log-returns, sampled at frequencies between 1-min and 5-min.
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D. Pre-Averaged MIDAS Regressors – Microsoft
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Figure D.1. – Microsoft average QLIKE

Note: See FiGuRe C.1.

E. HAR-RV versus MIDAS

In this appendix, we show that the HAR-RV model proposed by coRsi, F. [2009] can be written 
as a weight-constrained form of the MIDAS model with regressors sampled at a frequency m2 .
The HAR-RV model is defined as:

RV RV RV RVt t
m

t t
m

t t
m w

t t
m m

+ − − −+ + +1,
( )

0 1 , 1
( )

2 , 1
( )

3 , 1
( )2 2 2 2= α α α α ++ +εt 1 , (E.1)

where RVt t+1,  is the daily realized variance given by: 

RV I L rt t
m

m
m

t t m
m

+ + + −1,
( ) 1/

1, 1 1/
( )2

2
2

2

2 2= ( ) , (E.2)
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with I L Lm
m

j
m j m

2
2 2 2( ) =1/

=0
1 /−∑ , and m2  the sampling frequency of the squared returns used

to compute the realized variance. By convention 

RV RVt t
m w

i
t i t i
m

, 1
( )

=0

4

, 1
( )2 2= 1

5− − − −∑ , (E.3)

and

RV RVt t
m m

i
t i t i
m

, 1
( )

=0

21

, 1
( )2 2= 1

22− − − −∑ . (E.4)

To complete the explanation, we include Eq. (31), Eq. (32) and Eq. (33) into the definition 
of the model and obtain:
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Finally, the HAR-RV model takes the form of a daily MIDAS-RV model with squared 
return regressors sampled at a frequency m2 :
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F. MIDAS-RK Specification

Table F.1. – MIDAS-RK specification

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2488 0.1361 0.2008 0.1436 0.2165 0.2038 0.1096 0.0519 0.2306 0.1975 0.1132 0.1338

1min 
Per.Adj 

0.2403 0.1361 0.2029 0.0985 0.2039 0.5292 0.1115 0.0519 0.2199 0.2987 0.1142 0.1944

1min 
Jumps.

Adj

0.2211 0.9069 0.2164 0.0169 0.1738 1.0000 0.1244 0.0034 0.1960 0.7304 0.1302 0.2673

1min 
Jumps.
Adj_
Preav

0.2209 0.1361 0.1993 0.1436 0.1792 0.6843 0.1087 0.0519 0.4065 0.1975 0.1086 0.2243

5min 0.2204 0.9069 0.1841 0.5802 0.1836 0.6843 0.0914 0.9359 0.2044 0.4371 0.0903 0.3099

5min 
Per.Adj

0.2192 1.0000 0.1886 0.3606 0.1810 0.6843 0.0929 0.9359 0.1998 0.6074 0.0900 0.3534

5min 
Jumps.

Adj

0.2231 0.1361 0.1870 0.3606 0.1771 0.7382 0.0929 0.9359 0.1944 1.0000 0.0921 0.5883

5min 
Jumps.
Adj_
Preav

0.2200 0.9375 0.1993 0.1436 0.1787 0.7382 0.1090 0.0455 0.4063 0.1975 0.1084 0.1260

10min 0.2254 0.1361 0.1888 0.3606 0.1905 0.5292 0.0993 0.4303 0.2127 0.1975 0.0980 0.2278

15min 0.2313 0.1361 0.1899 0.3606 0.1988 0.2045 0.0967 0.6397 0.2194 0.2987 0.0953 0.2709

30min 0.2228 0.1361 0.1852 0.3606 0.1866 0.6843 0.0928 0.9359 0.2079 0.6074 0.0912 0.4657

1h05 0.2339 0.1361 0.1900 0.3606 0.1946 0.5724 0.1027 0.4303 0.2115 0.4371 0.0963 0.3038

3h15 0.2766 0.0837 0.1857 0.3606 0.2366 0.2038 0.0883 1.0000 0.2417 0.1975 0.0762 0.3093

1day 0.2683 0.1361 0.2042 0.3606 0.2278 0.2045 0.1051 0.4303 0.2439 0.1975 0.0991 0.1999

HAR-
RV 

0.2242 0.1361 0.1809 1.0000 0.1916 0.5597 0.0979 0.5051 0.2127 0.2987 0.0982 0.2659

HAR-RV 
jumps

0.2292 0.1361 0.1837 0.3606 0.1953 0.5292 0.1007 0.1194 0.2178 0.1975 0.1030 0.0312

GARCH 0.3195 0.0837 0.2203 0.0985 0.2663 0.2038 0.1265 0.0519 0.2708 0.1975 0.1236 0.0090

GAS 0.3102 0.0837 0.2026 0.3606 0.2466 0.2038 0.1043 0.6397 0.2451 0.1975 0.0954 0.2823

Continued on next page
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Table F.1. – MIDAS-RK specification (Continued)

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2342 0.0130 0.3377 0.0497 0.2458 0.0906 1.1943 0.0035 0.3280 0.0787 0.3076 0.0036

1min 
Per.Adj

0.2255 0.0269 0.4581 0.0497 0.2353 0.5226 0.5386 0.0227 0.3120 0.0897 0.4533 0.0036

1min 
Jumps.

Adj

0.2119 0.0269 0.1886 0.8972 0.2155 0.5555 0.1502 1.0000 0.3344 0.0897 0.1797 1.0000

1min 
Jumps.
Adj_
Preav

0.3830 0.0094 0.1976 0.2843 0.2973 0.0021 0.1858 0.0656 0.4030 0.0787 0.1991 0.4496

5min 0.2193 0.0269 0.1976 0.0973 0.2301 0.5226 0.1963 0.0656 0.2995 0.0897 0.9667 0.0034

5min 
Per.Adj 

0.2150 0.0269 0.1932 0.2843 0.2280 0.5555 0.1646 0.1629 0.2873 0.3441 0.4717 0.0036

5min 
Jumps.

Adj

0.1805 1.0000 0.1878 1.0000 0.2065 1.0000 0.1649 0.1433 0.3243 0.0897 0.1805 0.9300

5min 
Jumps.
Adj_
Preav

0.2587 0.0094 0.2083 0.0497 0.3011 0.0019 0.1880 0.0518 0.4033 0.0787 0.2012 0.3384

10min 0.2306 0.0130 0.2083 0.0497 0.2423 0.0906 0.3447 0.0035 0.3428 0.0787 0.3525 0.0034

15min 0.2319 0.0130 0.3678 0.0497 0.2448 0.0906 0.7383 0.0035 0.3320 0.0787 0.5074 0.0034

30min 0.2491 0.0094 0.2585 0.0497 0.2887 0.0197 0.2169 0.0227 0.3600 0.0787 0.2417 0.0259

1h05 0.2606 0.0094 0.2300 0.0497 0.3137 0.0368 0.6801 0.0035 0.4043 0.0787 0.3155 0.0034

3h15 0.2635 0.0130 0.2847 0.0497 0.3670 0.0019 0.2551 0.0227 0.4520 0.0351 0.2275 0.3384

1day 0.3943 0.0094 0.2848 0.0497 0.3481 0.0021 0.2806 0.0227 0.4085 0.0787 0.2490 0.1867

HAR-RV 0.2355 0.0269 0.2022 0.0973 0.2735 0.0906 0.1890 0.0518 0.3950 0.0383 0.2519 0.0036

HAR-RV 
jumps

0.2418 0.0130 0.1968 0.2843 0.2742 0.0884 0.1818 0.0656 0.3943 0.0351 0.2397 0.0036

GARCH 0.2445 0.0269 0.2285 0.0497 0.2385 0.5226 0.1907 0.1433 0.2772 0.3441 0.1976 0.7651

GAS 0.2533 0.0130 0.2589 0.0497 0.2293 0.5555 0.2112 0.0518 0.2426 1.0000 0.2126 0.3384

Note: This table presents the MCS test results obtained for the S&P 500 and Microsoft during both calm and crisis periods. The results are 
reported for three forecasting horizons, namely one day ( )H = 1 , one week ( )H = 5  and two weeks ( )H = 10 . For each we present the 
average value of the QLIKE loss function along with the corresponding p -value resulting from the MCS test. The confidence level for the MCS 
test is set to α = 25%  and 10,000 bootstrap resamples are used, with block length of five observations, to obtain the distribution under the null 
of equal predictive accuracy. The set of the competing variance models includes eight MIDAS-RK specifications with regressors (squared return) 
sampled at a frequency ranging from one minute to one day, six MIDAS-RK models with 1- and 5-minute regressors adjusted for intraday diurnal 
pattern, intraday pattern and jumps, and intraday pattern, jumps and microstructure noise, the HAR-RV, HAR-RV-J, GARCH and GAS models.
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G. MIDAS with Bipower Variation Return Regressors

Table g.1. – MIDAS with bipower variation return regressors

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2506 0.1766 0.2468 0.0173 0.2298 0.1358 0.0972 0.0728 0.2417 0.2714 0.1089 0.0073

1min 
Per.Adj 

0.2391 0.2366 0.1534 0.0507 0.2158 0.6589 0.0994 0.0728 0.2307 0.4804 0.1112 0.0073

1min 
Jumps.

Adj

0.2127 0.9454 0.1589 0.0173 0.1816 1.0000 0.1047 0.0180 0.2062 1.0000 0.1149 0.0016

1min 
Jumps.
Adj_
Preav

0.2155 0.2366 0.1560 0.0173 0.1900 0.8142 0.1000 0.0180 0.4248 0.2714 0.1053 0.0073

5min 0.2089 1.0000 0.1363 0.7362 0.1890 0.8142 0.0803 0.7513 0.2095 0.9505 0.0860 0.5805

5min 
Per.Adj 

0.2097 0.9454 0.1379 0.7362 0.1887 0.8142 0.0796 1.0000 0.2086 0.9505 0.0849 0.5805

5min 
Jumps.

Adj

0.2145 0.8360 0.1386 0.7362 0.1885 0.8142 0.0815 0.7513 0.2085 0.9505 0.0881 0.3249

5min 
Jumps.
Adj_
Preav

0.2137 0.9454 0.1566 0.0173 0.1891 0.8142 0.1003 0.0507 0.4424 0.2575 0.1046 0.0191

10min 0.2171 0.2366 0.1397 0.7362 0.1987 0.7734 0.0888 0.1794 0.2161 0.6993 0.0934 0.3249

15min 0.2212 0.2366 0.1507 0.0764 0.2016 0.7734 0.0928 0.0728 0.2230 0.6387 0.0969 0.0191

30min 0.2200 0.2366 0.1499 0.2474 0.1970 0.8142 0.0916 0.0728 0.2302 0.4804 0.0957 0.1700

1h05 0.2625 0.2366 0.1456 0.5887 0.2101 0.6589 0.0964 0.0728 0.2229 0.6993 0.1037 0.0191

3h15 0.3410 0.0160 0.1502 0.3013 0.3065 0.1358 0.0833 0.7513 0.2993 0.2714 0.0766 1.0000

1day 0.3642 0.1766 0.1737 0.0507 0.2769 0.6447 0.1063 0.0728 0.4990 0.0720 0.1032 0.3249

HAR-
RV 

0.2176 0.2366 0.1345 1.0000 0.1941 0.8142 0.0868 0.0740 0.2172 0.7722 0.0943 0.1349

HAR-RV 
jumps

0.2187 0.2366 0.1359 0.7362 0.1973 0.7734 0.0883 0.0728 0.2226 0.4804 0.0960 0.0191

GARCH 0.3240 0.1527 0.2208 0.0173 0.2849 0.1358 0.1677 0.0011 0.2935 0.2714 0.1747 0.0002

GAS 0.3161 0.1385 0.1884 0.0173 0.2669 0.1358 0.1292 0.0180 0.2688 0.2714 0.1296 0.0160

Continued on next page
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Table g.1. – MIDAS with bipower variation return regressors (Continued)

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2261 0.0318 0.8523 0.0034 0.2428 0.0132 0.7263 0.0029 0.3122 0.1570 1.2599 0.0066

1min 
Per.Adj

0.2200 0.0318 0.1990 0.1032 0.2330 0.0472 0.5763 0.0205 0.3000 0.4979 0.1664 1.0000

1min 
Jumps.

Adj

0.2095 0.0318 0.1605 1.0000 0.2031 0.5605 0.1343 1.0000 0.3207 0.4979 0.1748 0.5802

1min 
Jumps.
Adj_
Preav

0.2431 0.0318 0.1717 0.2419 0.2609 0.0132 0.1741 0.0205 0.3524 0.1570 0.1927 0.3513

5min 0.4821 0.0318 0.1722 0.1032 0.2314 0.4355 0.1586 0.0577 0.8549 0.0389 0.2625 0.0204

5min 
Per.Adj 

0.1858 0.0318 0.1663 0.2419 0.2025 0.5605 0.1508 0.1618 0.2866 0.4979 0.1702 0.6597

5min 
Jumps.

Adj

0.1747 1.0000 0.1620 0.8316 0.1937 1.0000 0.1519 0.1170 0.3097 0.4979 0.1721 0.6200

5min 
Jumps.
Adj_
Preav

0.2465 0.0318 0.1927 0.1032 0.2712 0.0132 0.1848 0.0205 0.3625 0.1570 0.2002 0.1029

10min 0.2233 0.0318 0.2059 0.0034 0.2293 0.1082 0.3507 0.0029 0.3277 0.1570 0.6099 0.0139

15min 0.2139 0.0318 0.1743 0.1032 0.2249 0.1082 0.2972 0.0205 0.5412 0.0389 0.3097 0.0139

30min 0.1937 0.0318 0.2547 0.0034 0.2454 0.0132 0.2603 0.0163 0.8991 0.0389 0.2655 0.0142

1h05 0.2339 0.0318 0.2638 0.0034 0.2985 0.0132 0.3464 0.0029 0.3637 0.1570 1.0577 0.0126

3h15 0.2937 0.0318 0.2880 0.0034 0.2843 0.0132 0.2497 0.0088 0.9281 0.0389 0.2327 0.0204

1day 0.3798 0.0215 0.3876 0.0034 0.4460 0.0132 0.3400 0.0088 0.4760 0.0389 0.3069 0.0142

HAR-
RV 

0.2102 0.0318 0.1781 0.1032 0.2449 0.0472 0.1754 0.0205 0.3563 0.0389 0.2346 0.0142

HAR-RV 
jumps

0.2148 0.0318 0.1719 0.2419 0.2472 0.0132 0.1669 0.0525 0.3569 0.0389 0.2205 0.0204

GARCH 0.2291 0.0318 0.2205 0.1032 0.2282 0.4355 0.2041 0.0205 0.2723 0.4979 0.2208 0.1029

GAS 0.2363 0.0318 0.2447 0.1032 0.2173 0.5605 0.2142 0.0205 0.2348 1.0000 0.2226 0.1029

Note: This table presents the MCS test results obtained for the S&P 500 and Microsoft during both calm and crisis periods. The results are 
reported for three forecasting horizons, namely one day ( )H = 1 , one week ( )H = 5  and two weeks ( )H = 10 . For each we present the 
average value of the QLIKE loss function along with the corresponding p -value resulting from the MCS test. The confidence level for the MCS 
test is set to α = 25% d10,000 bootstrap resamples are used, with block length of five observations, to obtain the distribution under the null of 
equal predictive accuracy. The set of the competing variance models includes eight MIDAS specifications with regressors (bipower variation) 
sampled at a frequency ranging from one minute to one day, six MIDAS models with 1- and 5-minute regressors adjusted for intraday diurnal 
pattern, intraday pattern and jumps, and intraday pattern, jumps and microstructure noise, the HAR-RV, HAR-RV-J, GARCH and GAS models.
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