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Computing, the bootstrap and economics

Russell Davidson Department of Economics and CIREQ, McGill
University; AMSE–GREQAM

Abstract. A major contention in this paper is that scientific models can be viewed as
virtual realities, implemented, or rendered, by mathematical equations or by computer
simulations. Their purpose is to help us understand the external reality that they model.
In economics, particularly in econometrics, models make use of random elements, so
as to provide quantitatively for phenomena that we cannot or do not wish to model
explicitly. By varying the realizations of the random elements in a simulation, it is possible
to study counterfactual outcomes, which are necessary for any discussion of causality. The
bootstrap is virtual reality within an outer reality. The principle of the bootstrap is that,
if its virtual reality mimics as closely as possible the reality that contains it, it can be used
to study aspects of that outer reality. The idea of bootstrap iteration is explored, and a
discrete model discussed that allows investigators to perform iteration to any desired level.

Résumé. Informatique, techniques de bootstrap, et sciences économiques. Une affirma-
tion importante de ce texte est que les modèles scientifiques peuvent être considérés
comme des réalités virtuelles, mises en œuvre ou traduites dans des équations mathémati-
ques ou dans des simulations par ordinateur. Leur objectif est d’aider à comprendre la
réalité externe qu’on modélise. En sciences économiques, et en particulier en économétrie,
les modèles font usage d’éléments aléatoires pour prendre en compte quantitativement
des phénomènes qu’on ne peut pas ou qu’on ne veut pas modéliser explicitement. En
modifiant l’empreinte des facteurs aléatoires dans une simulation, il est possible d’étudier
des résultats alternatifs qui sont nécessaires pour toute discussion de causalité. Les tech-
niques de bootstrap produisent une réalité virtuelle à l’intérieur d’une réalité englobante.
Le principe est que, si la réalité virtuelle approxime le plus près possible la réalité qui la
contient, elle peut être utilisée pour étudier certains aspects de la réalité englobante. L’idée
d’une itération de bootstrap est explorée, et un modèle discret est discuté qui permet aux
chercheurs de procéder par itération jusqu’au niveau désiré.
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1. Introduction

The use of models, explicit or implicit, is universal in scientific disciplines. It is 
by studying models that science helps us to understand the world, or, if we are 
more ambitious, the universe. Scientific theories are embodied in models, and the 
structure of theoretical models is such that they yield explanations of that aspect 
of the world or universe that they model. In this paper, I develop the idea that 
models, of all sorts, can be viewed as virtual realities that mimic, as best they can, 
those properties of the external reality of the world that are the domain of the 
theory.

Explanation usually takes the form of laying out the causal relations among 
observed events. I discuss the nature of causality, distinguishing necessary and 
sufficient causality, and pointing out that, in econometrics, it is only sufficient 
causality that is a useful concept. It is not possible to give meaning to the idea that 
something causes something else without being able to consider what might have 
happened if things were different, that is, by considering counterfactual scenarios. 
The role of a model in discussions of causality is to define precisely what these 
counterfactual scenarios are in any particular context, and to delimit the extent 
to which they may diverge from observed reality.

My major research preoccupation, now and for the past nearly 20 years, is the 
bootstrap, and its applications to econometrics. The bootstrap can be viewed as 
virtual reality. As with models more generally, its purpose is to mimic an enclosing 
reality, which may be either another virtual reality or external reality itself. For 
the purposes of statistics, the virtual reality of the bootstrap can be thought of as 
an estimate of the enclosing reality, and used to obtain estimates of interesting 
properties of it.

Since virtual realities can exist within other virtual realities, one can conceive 
of bootstrapping the bootstrap, that is, mimicking what the bootstrap does in 
mimicking its containing reality. Although it is a known fact that thinking about 
this sort of thing can make one’s head spin, it is quite possible to define formally 
what is meant by bootstrap iteration, as I do in this paper. I believe that this 
concept is potentially enormously useful in econometrics, and in statistics more 
generally.

In the section, I develop the idea of models as virtual reality, with particular 
discussion of economic models. Section 3 explores how models interact with no-
tions of causality, and discusses how counterfactual situations can be defined and 
used in econometric analyses. Section 4 provides a short discussion of parallel 
computing, and points out analogies with the parallel universes that are postu-
lated in some versions of modern quantum theory. Then, in section 5, I discuss 
the bootstrap, beginning with a formal statement of the bootstrap principle. The 
so-called golden rules of bootstrapping, for the purposes of statistical inference, 
are then enunciated, and this leads to the definition of bootstrap iteration. Some 
recent work of mine is outlined in section 6. This work exploits the fact, men-
tioned in section 2, that digital computers treat everything as discrete, by making

2



use of a discrete, and finite, setup in which it is possible to study bootstrap itera-
tion without running into the insuperable computational difficulties encountered
in previous work on the topic.

2. Scientific models as virtual reality

The capacities of modern computers have made virtual reality something that
we can experience in new ways, enabled by new technology. We hear of flight
simulators, and the younger generation seems to spend a lot of time in the virtual
reality of computer games. But people have been inventing virtual realities for as
long as there have been scientists.

In most scientific disciplines, models play an essential role. Scientific models are
often mathematical, but they need not be so. A mathematical model does, how-
ever, make clear the sense in which a model is a sort of virtual reality. Mathematics
is nothing if not an abstract discipline; so much so that some have claimed that
mathematics, pure mathematics anyway, has no meaning or substantive content.
What is true, though, is that we can give mathematical constructions interpreta-
tions that imply much substantive content. This is just as true in economics as it
is in physics.

Why is this? The aim of science is not only to acquire knowledge of the world,
although the etymology of the word “science”—from the Latin scire, to know—
implies knowledge only, but also to understand the world. Science provides such
understanding by explaining our experiences. Science advances when it provides
better explanations. What constitutes an explanation? Well, a theory. That’s just
terminology, and so the question has merely been reformulated as: What consti-
tutes a theory?

A theory is embodied in a model, and the model constitutes a virtual real-
ity. But not all models count as theories, as I will explain later. However, we
can conclude at present that virtual realities can give us understanding of the
world, through the explanations that they may embody. Of course, some models
mimic external reality, as we observe it, better than others, and so they provide
better explanations. Scientific controversies are about which explanations are
better.

What is there about a theory that provides an explanation? Think, if you
will, of Keynes’s celebrated General Theory. The theory implies a model of the
macroeconomy, the macroeconomy in virtual reality, and within this model, there
are relationships among the macroeconomic variables—relations that can be ex-
pressed mathematically, and are justified by the arguments that Keynes makes,
showing that these relations mimic what we observe of the macroeconomy. When
we observe that interest rates fall, the Keynesian model explains the economic
mechanisms that led to this fall.

Not every economist is convinced by Keynesian explanations! The opponents
of Keynes’s model—or his view of the world—if we are to pay any attention to
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them, must construct rival virtual realities and argue that the relations that these 
entail better describe external reality than the Keynesian ones.

The fact that virtual reality is possible is an important fact about the fabric of reality. 
It is the basis of not only computation, but of human imagination and external
experience, science and mathematics, art and fiction.

— David Deutsch, The fabric of reality

The heart of a virtual-reality generator is its computer.
— ibid

I don’t think Keynes ever had anything to do with a digital computer, although
it seems likely that, on account of his friendship with Alan Turing, he was ac-
quainted with analogue computers. If I am wrong, since Keynes died in 1946, it
would have had to be a very early sort of computer, nothing at all like what we
mean by the word nowadays. As an aside, while the Manhattan project was being
pursued at Los Alamos during World War II, a “computer” was a person, not a
machine, as indeed was a “typewriter’.”1 As another aside, when Claude Shan-
non, the founder of modern information theory, was asked whether machines
could think, his answer was yes because, as he said, “We are machines and we
think, don’t we?” (Quoted in Moses 2005.)

Deutsch is making a different point about virtual reality, namely the physical
possibility of rendering it, and so I won’t go on with his idea of it. Mathematics
can constitute virtual reality as well as computers can. But, as our computers
have become more powerful, so our models depend more and more on computer
implementations. There are deep philosophical questions concerning whether we,
as humans, can really understand something produced by computation rather
than logical and mathematical reasoning, especially if one looks forward to what
quantum computers may one day be able to do, and can do in principle, according
to the physical theories we have today.

But one thing we can easily say about models implemented on the com-
puter is that everything must be digital, and so also discrete. That this is no
real problem for practical things is evident from the extent we use digital sound
recording, digital cameras and so on, and especially digital typography—one of
the greatest boons for anyone writing books or papers like this one. I call it a
“paper,” although it need never be printed on paper at all. What exists in the
real world is an implementation in virtual reality of a hardcopy paper. Simi-
larly, we all speak of the “slides” for a presentation, although they are just as
virtual.

There is in fact no consensus at the present time among theoretical physicists
whether space-time is continuous—as I think it’s safe to say is assumed by most
current physical models—or rather discrete, quantized, like everything else in
quantum mechanics. I take from this that there is no harm in letting our virtual
realities be discrete—whether or not they are digital—and, as I hope to show
later on, there may be considerable benefits.

1 I am indebted to Samuel Hollander for the information about the typewriter.
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Models in economics
Just as in physics, many economic models assume that space and time are con-
tinuous, although in econometrics, for obvious reasons, time, at least, is usually
treated as a discrete variable. Unlike many physical models, however, econometric
models invariably incorporate random elements.

There is a considerable philosophical difficulty that arises when we wish to
impart any substantive meaning to the mathematics of probability and random
variables, if we also wish to adhere to a deterministic world view. This is so
because, in conventional interpretations of probability, events that have occurred,
are occurring or will (certainly) occur have a probability of one, and events that
never occur have a probability of zero. If, as follows from a deterministic view,
any event at all either does occur or does not, the mathematics of probability
becomes trivial.

But we use probabilistic notions all the time, and not trivial ones either. What
in the external world is it that we want to mimic by using randomness? We can all
agree that many things in our lives appear to us to be random, but there are many
philosophers who, while granting this appearance of randomness, still think that
at some fundamental level the world is deterministic. This leads to a somewhat
deeper question. Why are there such seemingly random events? To that question,
I think the best answer is that we model such events as realizations of random
variables because we do not and cannot know everything. Even more to the point,
we cannot explain everything. Whenever we cannot, or do not wish to, explain
events that have an impact on the main objects of interest in our models, we
model them as realizations of random variables. That at least is my view of what
we do as econometricians, although I suspect that many other econometricians
would either disagree or else express things quite differently.

It is not enough to wave our hands and say that we use random elements in
our models. We need more than that if we want to consider a model as a virtual
reality, probably one to be rendered by the computer. I think the best way to
formulate this is to define a model as a set of data-generating processes, or DGPs,
each of which constitutes a unique virtual reality. I would like to go further and
specify that a DGP is something that can be simulated on the computer, or that
provides a unique recipe for simulation. In this way, I am tying the virtual realities
of economic models more closely to the computer, just as Deutsch would have it.

What has been missing and now must be introduced is the distribution of the
random elements. Computers have random-number generators, or RNGs, and
what they generate are sequences of independent realizations from the uniform
distribution on the interval [0, 1]. (Or nearly so—I’m not going to talk about that;
see Knuth (1997), volume 2, chapter 3, for an authoritative discussion.) These
random numbers can be transformed into realizations from other distributions
we may want to specify; see Devroye (1986). Thus, we can indeed incorporate
any desired form of randomness that we can specify into the DGPs of a model.

Another feature of economic models is that they involve parameters. A model
normally does not specify the numerical values of these parameters; indeed a
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purely parametric model is a set rather than a singleton because the DGPs that 
it contains may differ in the values of their parameters. Models that are not 
purely parametric allow the DGPs that they contain to differ also in the stochastic 
specification, that is, the distribution of the random elements.

3. Causal explanations

Suppose that we have a model of an economic phenomenon that we wish to study. 
Suppose, too, that it seems to correspond well to what we observe in external 
reality. Does that mean that we have explanations, complete or partial, of what 
we are studying? Not necessarily. Some models are purely descriptive. A statistical 
model, for instance, might specify the probabilistic properties of a set of variables, 
and nothing more. But that may be enough for us to do forecasting, even if our 
forecasts are not based on any profound understanding. Half a century ago, most 
physicists thought of quantum mechanics that way, as a mathematical recipe that 
could be used to predict experimental results. The “interpretations” of quantum 
mechanics that were then current were very counterintuitive, and today physicists 
still argue not only about what interpretation is to be preferred but also about 
whether any interpretation meaningful to the human brain is possible.

However, the positivist approach that has held sway in physics for so long is 
finally giving way to a thirst for explanations. Perhaps theoretical physics does 
give better agreement with experimental data than any other discipline, but some 
physicists are now asking, Does it constitute a true theory? A theory must explain 
by proposing a mechanism, or in other words a causal chain.

What is a cause?
This subsection draws heavily on the insights in chapter 3 of Dennett (2003). 
Consider two events, A and B. An intuitive definition of the proposition that A 
causes B is:

(i) A and B are real, or true;
(ii) if A is not real or true, then neither is B; and
(iii) A precedes B in time.

This definition raises a number of issues. What do we mean by an “event”?
There are several admissible answers: an action, a fact of nature, among others.
A fact is true or not, and action is performed (it is real) or not. Our tentative
definition is general enough to allow for various different possibilities.

In order to steer clear of some trivial cases, we want to suppose that the events
A and B are logically independent. Thus we don’t want to say that the conclusion
of a mathematical theorem is caused by the premisses of the theorem.

It is important to distinguish between causal necessity and causal sufficiency.
Necessity means that:

Not A (written as ¬A) implies ¬B.
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In words, without A, there can be no B. Logically, the condition is equivalent
to the condition that B implies A; that is, A is a necessary condition for B. This
is our condition (ii).

Sufficiency means that: A implies B, or ¬B implies ¬A.

In words, every time that A holds, unavoidably B holds as well; that is, A is
a sufficient condition for B. Sufficiency is logically quite distinct from necessity.
Necessity leaves open the possibility that A holds without B. Sufficiency leaves
open the possibility that B holds without A.

It is easy enough to see how we might study these two types of causality when
the events A and B are repeated, as with coin tosses or the roulette wheel, where
we don’t a priori expect to find any causality at all, or when an experiment is
undertaken in which both A and ¬A can occur, and possibly also B and ¬B.

But if A and B are unique, not repeated, events, what sense can we make of
the assertion that A caused B? I suppose here that condition (i) is satisfied, so
that A and B both occurred. In order to make any sense of the statement about
causality, we have to admit to our discussion imaginary worlds or even universes.
We call such worlds or universes counterfactual. Without considering them, it is
impossible to know what might have occurred if A or if B did not occur.

But this remark gives rise to as many problems as answers. What is the set of
universes that these counterfactual universes inhabit? How can we delimit this
set? Let’s denote the set by X . Then we have a number of reasonable choices:

(a) X is the set of logically possible universes, that is, all universes that are not
logically self-contradictory;

(b) X is the set of universes compatible with the laws of physics, as we know
them;

(c) X is the set of logically and physically admissible universes that are sufficiently
similar or close to the real world.

The last choice is no doubt the best, but in order to implement it, what topology
can we use to define a neighbourhood of the real world?

Causality in econometrics
In all scientific disciplines, progress comes from the result of an experiment, or
an observation, that leads us to reject a hypothesis. It is therefore important to
be able to demonstrate non-causality, that is, the absence of any relation of cause
and effect between two events, or types of events.

In econometrics, most of the time we deal with continuous variables, which
means that the event B (the effect) must be replaced by a quantitative measure
of one or more variables. Similarly for the cause, A. This makes it simpler to
define what we mean by non-causality. We say that a variable X does not cause
another variable Y if the earlier values of X have no influence on the later values
of Y . This sort of causality is called Granger causality, having been introduced
by Granger (1969). A similar related approach is due to Sims (1972).
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The random elements, shocks, disturbances, in an econometric model al-
low us to introduce the required neighbourhood of circumstances (worlds, uni-
verses) that surround the observed trajectories of X and Y . We no longer need 
to invent imaginary trajectories that might have existed in the real world. It 
is enough to vary the realizations of the random elements in order to create, 
within a virtual reality, all the relevant circumstances needed to reject causal 
sufficiency.

Why not causal necessity? We said that A is a necessary cause of B if B implies 
A. In propositional logic:

B ⇒A ⇔ A∨¬B,

of which the negation is:

¬(A∨¬B) ⇔ ¬A∧B.

Causal necessity is rejected if B occurs in the absence of A. If we translate this into
econometric terminology, it would mean that the variable Y (associated with the
event B) varies without any variation of X (associated with A). But normally Y
has several determinants, which implies that Y can perfectly well vary with no
change in the value of X . This is enough to reject causal necessity.

This seems too easy. In economic theory, we often say ceteris paribus, other
things being equal, toutes choses égales par ailleurs. In virtual reality, we can
arrange things so that all the other variables, and also the realizations of the
random elements, do not vary. This is a way to restrict the set of circumstances
we consider for the purpose of establishing the existence or the non-existence of
a causal link. However, if nothing but the two variables X and Y can move, then
there is a deterministic functional relation between the two variables. In that case,
we would never be able to reject causal necessity. Conclusion: causal necessity is
not a useful concept in econometrics.

Causal sufficiency is the proposition that A implies B. Propositional logic tells
us that the negation of this proposition is ¬B ∧ A. Translating this, we see that
this means that X varies without producing the effect of a variation of Y . Once
again, then, we can reject causal sufficiency if, ceteris paribus, Y takes on the same
value whatever the value of X . This would mean that the deterministic relation
between the two variables introduced by the ceteris paribus assumption admits
one and only one value for Y .

This has finally led us to a testable proposition. The null hypothesis specifies a
no doubt complicated relation among the full set of variables considered relevant
for the model, along with a set of random elements. This specification has the
property that, for any configuration of the variables other than X and Y , and for
any realization of the random elements, the value of Y is uniquely determined,
whatever the value of X . The alternative hypothesis allows the value of X to have
an influence on that of Y .

In econometrics, causality is most frequently studied in the context of VAR
models, where “VAR” stands for “vector autoregression.” In a model of this type,

8



the current values of a set of endogenous variables are determined by the lagged
values of the same set of variables and by the realizations of a set of random
elements. In the current state of the art, one almost always postulates a linear
relation among the variables. Here is an illustrative example that makes use of
the household consumption function:

ct =®1 +¯11ct−1 +¯12yt−1 +ut1,

yt =®2 +¯21ct−1 +¯22yt−1 +ut2.

The two variables are c, household consumption, or, more likely, the logarithm of
household consumption, and y, disposable income of households, or its log. This
is a macroeconomic relation. The variables c and y are aggregate variables, and
they represent flows. The time index t refers to a period of some given duration,
typically a year, a quarter, or a month. The random elements ut1 and ut2 are
realizations of a bivariate distribution with zero expectation. We may wish to
suppose that the pair (ut1, ut2) is independent of all other pairs (us1, us2), with
s �= t. The quantities denoted by ®i , ¯ij , i, j = 1, 2, are the model parameters,
which are treated as deterministic constants.

If the parameter values are known, along with the bivariate distribution of the
random elements, we can undertake a stochastic simulation—virtual reality—if
we have the initial condition (c1, y1). This amounts to specifying a DGP, a unique
recipe for simulation, and that is enough for us to be able to study all the statistical
properties of the variables that the DGP can generate.

According to elementary macroeconomic theory, disposable income causes
consumption. Normally, except for some sophisticated models, we do not imagine
that consumption causes income. This hypothesis corresponds formally to the
hypothesis that ¯21 = 0, and we have several ways in which we could test this
hypothesis. We would refer to this hypothesis as that of Granger non-causality.

Although the concept of Granger causality and its implementation by means
of VAR models allows us to formulate hypotheses of non-causality, and possibly
to reject them, it does not, or not always, satisfy our desire for understanding and
explaining economic mechanisms by means of causal chains. For that, it is nec-
essary to base the models used for estimation and inference on economic theory.
Granger’s approach has come in for very little criticism on this ground, however,
because Granger always maintained that the goal of his methodology is to help
economic forecasting. To the extent that this goal is attained, the methodology
must be justifiable on some level.

But econometricians have always had a preference for structural models, in
which the relation between the formal model and the underlying economic theory
is clear. This preference led to the seminal work of the Cowles Commission.
Historically, this work led to models that were often thoroughly incompatible with
the data, and the realization of this led to a great many advances in econometric
theory. In particular, since statistical models with little or no explanatory power
often gave much better fits than models supposedly based on economic theory,
econometricians became more concerned with testing the statistical reliability of
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their models, and less concerned with the relation of these models to economic 
theory.

But it is probably fair to say that structural models returned as the main focus 
of interest of many econometricians with the advent of the 21st century. Problems 
associated with the identification of such models and of their parameters assumed 
considerable importance and stimulated much work intended to elucidate the 
nature of these problems, and ways of solving them. However, whether a model 
is structural or not makes little difference to how we can perform inference about 
causal sufficiency. The essential element is to be able to set up counterfactual 
situations by means of the model.

Counterfactual econometrics
In biostatistics and medicine, emphasis is often put on randomized trials, in which 
two groups of subjects are treated differently. One usually speaks of a control 
group, the members of which are not treated, and a treatment group, for which 
a particular treatment is prescribed. After some definite period, the members of 
both groups are examined for some particular property, which is thought of as 
the effect of being treated or not. Clearly, the idea is to be able to see whether the 
treatment causes the effect and, perhaps, to reject the hypothesis that it does so. 
Here, if one can select the members of the two groups quite randomly, in a way 
totally unrelated to the treatment or the effect, then the distribution of effects 
within each group serves as the counterfactual distribution for the other.

Even in medicine, a truly randomized trial can be difficult to achieve, for both 
practical and ethical reasons. In econometrics, it is even more difficult, although 
not completely impossible. However, “natural experiments” can arise for which 
an econometrician may be able to identify two groups that are “treated” differ-
ently, perhaps by being subject to some government program, and to measure 
some effect, such as wages, that might be affected by the treatment. This can be 
fruitful, but, naturally enough, it requires the use of sophisticated statistical and 
econometric techniques.

In a polemical essay, Heckman maintains that econometrics has suffered as a 
result of too great an application of the methodology of mathematical statistics. 
He says:

Statistics is strong in producing sampling theorems and in devising ways to describe
data. But the field is not rooted in science, or in formal causal models of phenomena,
and models of behavior of the sort that are central to economics are not a part of
that field and are alien to most statisticians. (Heckman 2001, p. 3)

This is a strong statement of what I have called the preference of econometri-
cians for structural models.

Whether or not they go along completely with Heckman on this point (and I
believe that I do), econometricians, even sometimes in company with statisticians,
have developed techniques for getting indirectly at information about counter-
factual worlds. Of these, the method called difference-in-differences is probably
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the best known and the most used; an early example in the econometrics lit-
erature is Ashenfelter and Card (1985). Since counterfactual worlds are never
realized, some assumptions must always be made in order to invent a virtual
reality in which they can be rendered. Often, an assumption is made implying
constancy in time of some relations; other times the assumption might be, as
with randomized trials, that two or more groups are homogeneous. To say that
we always need some assumption(s) is to say that there must always be a model,
rich enough in its explanatory power to render credible counterfactual, and so
virtual, realities.

One development of this sort is found in Athey and Imbens (2006). They
extend the idea behind the difference-in-differences method to a method called
change-in-changes. The name does not make clear what I regard as the chief virtue
of their method, namely that, instead of limiting attention to average treatment
effects, it considers the entire distribution of these effects. Average effects may be
enough for biostatisticians; not for econometricians.

4. Parallel computing, parallel universes

We will all have heard that the future of computing lies in parallel computing—
now that Moore’s Law is reaching the end of its useful life, as computer chips come
up against the quantum nature of the physical world. With parallel computing, a
computer program makes use of several CPUs, or cores, simultaneously. This is
what we call concurrent programming, which lets computers perform concurrent
processing.

Is there a counterpart in the external world to parallel or concurrent pro-
cessing in the virtual reality of computers? That depends on which physicist
you talk to! Some, like David Deutsch (1997), believe that the quantum the-
ory implies the existence of what he calls “parallel universes,” which together
make up the “multiverse.” Others find it unnecessary to suppose anything of
the sort, but then they are obliged to abandon a deterministic world view, and
assume that there really is some irreducible randomness in nature. If I under-
stand him correctly, Deutsch maintains a deterministic world view, but only at
the level of the whole multiverse, not in any universe that we might live in and
observe.

Recall that (mathematical) probability originated in human thought as an
idealization of the notion of the frequency with which a repeated action or exper-
iment yields the different results of which it is capable. Another aside: Jakob (or
Jacques, or James) Bernoulli lived from 1655 to 1705, Thomas Bayes from 1701
to 1761, and anyway he wasn’t a Bayesian!

Deutsch’s view is that, in quantum mechanics at least, the probability of the
different results that an observation may yield is indeed a frequency, or, more
precisely, the proportion of universes in the multiverse in which that result is
found. And this corresponds exactly with what happens in a computer simulation
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that makes use of random numbers. Whether the program that implements the 
simulation is run sequentially or concurrently, the same code is run many times 
with different random inputs, and, at the end of the simulation, we estimate the 
theoretical probabilities that are defined in our virtual reality by the frequencies, 
or proportions, of the repetitions that gave the various outcomes.

If we adopt my point of view about why there are random elements in eco-
nomic models, then we see why it is of interest to perform simulations with ran-
dom numbers. Yes, the goal of our models is to understand through explanation, 
and calling things random explains nothing, but, even so, models with random 
elements can help us understand economic phenomena by giving partial expla-
nations of economic mechanisms. Another conclusion from this reasoning is that 
some virtual realities may be quite imperfect renderings of the real world. Maybe 
flight simulators are pretty good these days, but they weren’t always, and video 
games don’t even try to mimic the real world.

5. The bootstrap

A virtual reality may be contained in, or contain, other virtual realities. The 
bootstrap is an example of this. Within the context of a model (the outside virtual 
reality), for which we do not know the specific DGP that may have generated 
the data we wish to analyze, we create another virtual reality, often called the 
“bootstrap world,” in order to test hypotheses or construct confidence sets. The 
bootstrap has other uses, but I won’t discuss them here; see, for instance, Davison 
and Hinkley (1997).

The bootstrap makes no use of asymptotic considerations, but, as with much 
econometric theory, current bootstrap theory relies heavily on asymptotics. This 
is an undesirable state of affairs, if for no other reason than that the choice of an 
asymptotic construction is inevitably somewhat arbitrary.

Asymptotic arguments rely on sequences of random variables that converge, in 
probability or in distribution, to some desirable limit. Since bootstrap inference is 
exact only in rare instances, any justification of it must also rely on some sequence 
of random variables with a desirable limit.

The approach I outline here involves the convergence or otherwise of a se-
quence of bootstrap P values obtained by iterating the bootstrap. The first iterate, 
called the double bootstrap, is in many cases feasible; when it is, it is presumed 
that it can provide more reliable statistical inference than either conventional 
asymptotics or the single uniterated bootstrap.

It is certainly tempting to suppose that the only barrier to still more reliable 
inference via bootstrap iteration is computational infeasibility. Here I discuss 
some preliminary work that shows that bootstrap iteration can indeed improve 
reliability of inference. In order to do so, a procedure of discretization is used, by 
means of which the model under test is described by a finite three-dimensional 
array of probabilities.
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Definitions and notations
Recall that what I mean by a model is a collection of DGPs. Let M denote a
model. Then M may also represent a hypothesis, namely that the true DGP,
¹ say, belongs to M. I denote by M0 the set of DGPs that represent a null
hypothesis we wish to test, using a test statistic ¿. It is conventional to suppose
that ¿ is defined as a random variable on some suitable probability space, on
which a different probability measure is defined for each different DGP. Rather
than using this approach, I define a probability space (Ä, F , P), with just one
probability measure, P. Then the test statistic ¿ is treated as a stochastic process
the index set of which is the set M. We have:

¿ : M×Ä→R. (1)

Since we are in virtual reality, the probability space can be taken to be that of a
random number generator. A realization of the test statistic is therefore written
as ¿(¹, !), for some ¹∈M and ! ∈Ä.

This approach, rather than the conventional one, corresponds precisely to
what we do in a simulation experiment. The random elements of the simulation
all come, directly or indirectly, from the random number generator, and the DGP
takes the form of a part of the computer program, in which data are generated by
deterministic transformations of the random numbers and the parameters that
correspond to that DGP. It is sometimes possible, and sometimes essential, to
use the same random numbers in combination with different specifications of the
DGP, and this is captured quite precisely by the notation defined in (1).

For notational convenience, we suppose that the range of ¿ is the [0, 1] interval
rather than the whole real line and that the statistic takes the form of an approx-
imate P value, which thus leads to rejection when the statistic is too small. Let
R0 : [0, 1] → [0, 1] be the cumulative distribution function (CDF) of ¿ under any
DGP ¹∈M:

R0(®, ¹)=P{! ∈Ä|¿(¹, !)�®}.

For ¹∈M0, the random variable R0(¿(¹, !), ¹) follows the uniform distribution
U(0,1) if its distribution is continuous on [0, 1]. This property is what allows
the Monte Carlo tests of Dwass (1957) to give exact inference when ¿ is pivotal
with respect to M0, by which is meant that the random variable ¿(¹, !) has the
same distribution for all ¹ ∈ M0. See also Dufour and Khalaf (2001) for more
information on Monte Carlo tests.

Bootstrap principle
The principle of the bootstrap is that when we want to use some function or
functional of an unknown DGP ¹, we use an estimate ¹̂ in place of ¹. The
DGP ¹ could be either external reality or an outer virtual reality. The estimate
¹̂, which is called the bootstrap DGP, is a virtual reality embedded in whatever
reality contains ¹.
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Suppose that we have a statistic computed from a data set that may or may 
not have been generated by a DGP ¹ ∈M0. Denote this statistic by t. We define 
the DGP-valued process:

¯ : M×Ä→M0.

The bootstrap DGP that serves as the estimate of ¹ is b = ̄ (¹, !), where ! is 
the same realization as in t = ¿(¹, !), since both t and b are computed using the 
same data set. Then, following the bootstrap principle, we define the bootstrap P 
value, expected to follow the U(0,1) distribution approximately, to be  R0(t, b) = 
R0(¿(¹, !), ̄ (¹, !)).

The bootstrap is a very general statistical technique. The properties of the 
true unknown DGP that one wants to study are estimated as the corresponding 
properties of the bootstrap DGP. In practice, although not in principle, these 
properties have to be studied by means of a simulation experiment.

The golden rules of bootstrapping
My “golden rules” for bootstrapping, extensions and reformulations of “guide-
lines” for bootstrap hypothesis testing found in Hall and Wilson (1991), are these:

Golden Rule 1
The bootstrap DGP b must belong to the model M0 that represents the null
hypothesis.

This is because what we want for a test is an estimate of the distribution
of the test statistic under the null hypothesis. The power of a test is related to
how different the distribution of the statistic is under the null and alternative
hypotheses. One expects serious loss of power if the realized statistic is compared
to distribution under the alternative.

Golden Rule 2
Unless the test statistic is pivotal for the null model M0, the bootstrap DGP should
be as good an estimate of the true DGP as possible, under the assumption that the
true DGP belongs to M0.

Although some econometricians still have doubts about the last part of the
statement of this rule, fearing that it may lead to loss of power, it makes sense
to exploit the fact that imposing the restrictions of a true null leads to greater
efficiency of estimation. Further, under local alternatives, it is shown in Davidson
and MacKinnon (2006) that there is no power loss by estimating the bootstrap
DGP imposing the restrictions of the null.

Inference
If ¿ is not pivotal, exact inference is no longer possible, because the true DGP ¹ is
unknown. The bootstrap principle tells us to replace it by an estimate, namely the
bootstrap DGP b, and obtain the bootstrap P value R0(t, b). In order to estimate
it by simulation, we make the definition:
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R̂0(®, ¹)= 1
B

B∑

j=1
I(¿(¹, !Å

j ) < ®),

where the !Å
j are independent. Each !Å

j can be thought of as a set of those ran-
dom numbers needed to generate a realization of the statistic. Then, as B →∞,
R̂0(®, ¹) tends almost surely to R0(®, ¹). Accordingly, we estimate the bootstrap
P value by R̂0(t, b), for some suitable choice of B, the number of bootstrap repe-
titions.

Bootstrap iteration
The bootstrap P value R0(t, b) is a realization of a random variable p1(¹, !),
where the new function p1 : M×Ä→ [0, 1] is defined as follows:

p1(¹, !)≡R0(¿(¹, !), ¯(¹, !)).

We denote the CDF of p1(¹, !) by R1(·, ¹). The random variable R1(p1(¹, !), ¹)
is, by construction, distributed as U(0,1). But this fact is not enough to allow
exact inference, because the actual ¹ that generates the data is unknown outside
the context of a simulation experiment.

However, the bootstrap principle can again be applied, and the unknown ¹

replaced by the estimate b. This leads to the double bootstrap, of which the P
value, for realizations t and b, can be written as:

R1(R0(t, b), b),

where R1 can be estimated just like R0, but by means of a much costlier simulation
experiment.

Under the assumption that ¹∈M0, the double bootstrap P value is the proba-
bility mass in the distribution of the single bootstrap statistic to the left of R0(t, b).
Expressed as a random variable, it is:

p2(¹, !)≡R1(R0(¿(¹, !), ¯(¹, !)), ¯(¹, !)).

If we write the right-hand side above as R1(p1(¹, !), ¯(¹, !)), we see that the
double bootstrap effectively bootstraps the single bootstrap P value.

From that observation, it is clear that we can define iterated bootstraps as
follows. For r =0, 1, 2,…, we define:

Rr(®, ¹)=P{! ∈Ä|pr(¹, !)�®},

pr+1(¹, !)=Rr(pr(¹, !), ¯(¹, !)),

where we initialize the recurrence by the definition p0(¹, !) = ¿(¹, !). Thus
pr+1(¹, !) is the bootstrap P value obtained by bootstrapping the rth order P
value pr(¹, !). It estimates the probability mass in the distribution of the rth

order P value to the left of its realization.
In order for bootstrap iteration to be useful, it is necessary for the sequence

{pr(¹, !)} of iterated bootstrap P values to converge as r →∞, and the limit of
the sequence to be distributed as U(0,1) for all ¹ ∈ M0. Note that it is possible
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to have convergence to a distribution quite different from U(0,1). Indeed, this is 
necessary for test power when ¹ �∈M0.

With a resampling bootstrap, since with high probability each resample does 
not contain some of the observations of the original sample, repeated iteration 
leads to iterated bootstrap DGPs that have only one observation out of the orig-
inal sample, repeated as many times as the original sample has observations. 
That is one reason for which our notation has so far implicitly assumed that all 
distributions are absolutely continuous.

6. Discrete bootstrap iteration

This section attempts to summarize some very recent work, as yet available only as 
a working paper, Davidson (2015), on bootstrap iteration. My aim is not so much 
to be able to handle conventional resampling bootstraps but to find a setup in 
which I can overcome the immense computational cost of iterating the bootstrap 
past the first few iterations. It was the idea that everything is necessarily discrete 
when a virtual reality is rendered by a computer that made me consider going the 
whole way, and starting from a discrete and finite representation of the bootstrap.

I assume that the statistic, in approximate P value form, can take on only the 
values i=n, i = 0, 1,…, n. Further, I assume that there are only m possible DGPs 
in the null model. Thus I can let the outcome space Ä consist of just m(n + 1) 
points, labelled by two coordinates (i, j), i = 0, 1,…, n, j = 1,…, m. Golden Rule 
1 requires the bootstrap DGP to satisfy the null hypothesis, and so any DGP ¹ 
we consider is represented by k, say, with k = 1,…, m.

We can then write:

¿(k, (i, j))= i=n, ¯(k, (i, j))= j,

where the DGP ¹ is represented by k, and the outcome ! by (i, j). In this way,
the model is completely characterized by the probabilities pkij , k, j = 1,…, m,
i =0, 1,…, n, where:

pkij =P[¿(k, (i, j))= i=n and ¯(k, (i, j))= j].

We have, for all k =1,…, m, that:
n∑

i=0

m∑

j=1
pkij =1,

and we make the definitions:

akij =
i−1∑

l=0
pklj and Aki =

m∑

j=1
akij i =0,…, n+1.

Then akij is the probability under DGP k that ¿ is less than i=n and that b = j,
while Aki is the marginal probability under k that ¿ < i=n. Thus we may write:

R0(®, k)=Ak,�®n�+1.
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Note that ak0j =Ak0 =0 for all k, j =1,…, m. Further, Ak(n+1) =1 and ak(n+1)j is
the marginal probability under k that ¯ = j, for all k =1,…, m.

With this setup, it can be shown that the pattern of bootstrap iteration is
follows. Things are initialized by:

p0(k, (i, j))=A0
ji = i=n; q0

j (®)=�n®� independent of j.

It turns out that Aji is the bootstrap P value for the realization (i, j). In the
context of bootstrap iteration, it is now denoted as A1

ji . The subsequent steps of
the iteration are as follows. At step r, we have:

pr
(
k, (i, j)

)=Ar
ji ,

qr
k(®)= max

i=1,…,n
{i|Ar

ki �®},

qr
k(Ar

ki)= i and

Rr(®, k)=
m∑

j=1
akqr

j (®)j .

(2)

The recurrence is then implemented by a trip across the plane defined by k:

Ar+1
ki =

m∑

j=1
akqr

j (Ar
ki )j

=Rr(Ar
ki , k).

The bootstrap discrepancy is defined, for a given DGP ¹ and a given significance
level ®, as the difference between the rejection probability of the bootstrap test
for DGP ¹ and level ® and ® itself. It is therefore equal to R1(®, ¹) − ®, in the
notation used for the continuous case. For iterated bootstraps, the definition is
the same: at level r, the order-r discrepancy is Rr(®, ¹)−®.

Suppose that the recurrence (2) converges, in the sense that, for given k and i:

qr+1
j (Ar+1

ki )=qr
j (Ar

ki) for all j =1,…, m.

Then Ar+s
ki = Ar

ki and qr+s
j (Ar+s

ki ) = qr
j (Ar

ki) for all j and for all positive integers
s. Since Rr(Ar

ki , k)=Ar+1
ki =Ar

ki , it follows that the bootstrap discrepancy is zero
for significance level Ar

ki if k is the DGP and ¿ = i=n. If there is convergence for
all i =0, 1,…, n, the bootstrap discrepancy is zero unconditionally for DGP k for
levels Ar

ki .

Discussion

The most important advantage of this discrete approach is that it eliminates
conventional bootstrapping based on a simulation experiment. In exchange, it is
necessary to conduct the probably costly simulation experiment needed in order to
estimate the pkij . However, once that experiment is carried out, it serves as a fixed
overhead for arbitrary levels of bootstrap iteration. And, as we would expect, the
experiment lends itself ideally to concurrent processing. It thus becomes feasible
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to examine the convergence or otherwise of the sequence of iterated bootstrap P 
values.

In the discrete case, convergence of the sequence of iterated bootstraps is 
probably guaranteed. It remains to be seen whether this can be proved, and, if 
so, under what regularity conditions. However, this need not imply that exact 
inference is possible at any chosen level because there is only a finite set of levels 
for which the bootstrap discrepancy is necessarily zero after convergence. It can 
turn out that these levels are all equal or close to zero or one.

If we abstract from the simulation noise in the estimation of the pkij , the discrete 
model is quite non-random. We are, in effect, working simultaneously with every 
point in the outcome space. Convergence, therefore, is to be understood in the 
ordinary sense of convergence of a sequence of real numbers. In the continuous 
case, of course, we have to speak of stochastic convergence, which may perhaps 
be almost sure, or in probability.

If this discrete approach were to be used with real data, it would be necessary 
to use these data to compute realizations of the quantity being bootstrapped 
and of the bootstrap DGP, and then to discretize them according to the plan 
of discretization in use. If the realized quantity is indexed by i and the realized 
bootstrap DGP by j, then, for the r-tuple bootstrap, the bootstrap P value is Ar

ji .
It would be immensely useful to find ways of discretizing the set of bootstrap 

DGPs used in situations that are not purely parametric. While it is easy enough to 
replace the use of a discrete empirical distribution for resampling by a continuous 
version, thus avoiding the problem inherent in iterating a conventional resampling 
bootstrap, it is not obvious how to make discrete the set of bootstrap DGPs 
that would be obtained in this way. I conjecture that when bootstrapping an 
approximately pivotal statistic, it may be possible to cover the set of bootstrap 
DGPs rather coarsely and still achieve satisfactory results. How best to do so 
remains to be seen.

The double bootstrap was introduced by Beran (1987, 1988). He refers to 
“pre-pivoting,” meaning making some quantity more close to being pivotal for 
a model by bootstrapping it, and then bootstrapping the result. This interpre-
tation clearly applies to higher orders of bootstrap iteration. In some sense, the 
iterative procedure serves to project the original statistic into a space of pivotal 
statistics. It would be desirable to formalize this intuition. It is also necessary to 
see to what extent this “projection” may adversely affect the power of a test. Of 
course, power is not uniquely defined when a non-pivotal statistic is used; see 
Horowitz and Savin (2000) and Davidson and MacKinnon (2006). But if an iter-
ated bootstrap P value follows the uniform U(0, 1) distribution, it is by definition 
a pivot.

In discussing bootstrap “validity,” it is conventional to make use of an 
appropriate asymptotic construction in order to show that the limiting distri-
bution of the quantity considered is the same as the limiting distribution of its 
bootstrap counterpart. This is of course a very weak requirement. A somewhat 
better justification for the bootstrap comes from any refinements that can be
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demonstrated by an asymptotic argument, as in Hall (1992), where he uses Edge-
worth expansion—still an asymptotic technique, of course.

It seems to me that convergence of the sequence of iterated bootstrap P values
to the uniform distribution is a much richer and more satisfactory means of
justifying or validating the bootstrap. No asymptotic argument is involved, so
that the potential arbitrariness of the choice of an asymptotic construction is
avoided. To the extent that the approach outlined here can be made operational
for problems of interest, the approach carries its validity along with it.

Further, the new proposed criterion for validity is by no means equivalent to
asymptotic validity. An example of this is when a regression model, the distur-
bances of which are not necessarily Gaussian, is bootstrapped using a bootstrap
DGP that imposes Gaussianity. Under very weak conditions on the asymptotic
construction, this bootstrap is asymptotically valid. But it certainly is not, by
the criterion of convergence of iterated P values to U(0, 1), for any DGPs in the
model the disturbances of which are in fact not Gaussian.

7. Concluding remarks

This paper has journeyed from some vaguely philosophical notions concerning
scientific modelling, virtual reality, computation with digital computers, discrete-
ness, simulation and the nature of randomness to a discussion of the bootstrap
and bootstrap iteration. It is argued that viewing much scientific endeavour as
involving virtual reality or realities can be very fruitful. The bootstrap can readily
be interpreted as a form of virtual reality, and this interpretation leads naturally
to the idea of bootstrap iteration. It is my hope that the discrete model I propose
for the study of bootstrap iteration will lead to significant advances in both the
theory and the practice of the bootstrap.
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