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Benôıt Bonnet, Francesco Rossi ∗
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Abstract: Cooperative systems are systems in which the forces among agents are non-repulsive.
The free evolution of such systems can tend to the formation of patterns, such as consensus or
clustering, depending on the properties and intensity of the interaction forces between agents.
The kinetic cooperative systems are obtained as the mean field limits of these systems when
the number of agents goes to infinity. These limit dynamics are described by transport partial
differential equations involving non-local terms.
In this article, we design a simple and robust control strategy steering any kinetic cooperative
system to approximate alignment. The computation of the control at each instant will only
require knowledge of the size of the support of the crowd in the phase space and of the Lipschitz
constant of the interaction forces. Besides, the control we apply to our system is sparse, in the
sense that it acts only on a small portion of the total population at each time. It also presents
the features of being obtained through a constructive procedure and to be independent on the
number of agents, making it convenient for applications.
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1. INTRODUCTION

The study of collective behaviour in systems of interacting
agents has been the focus of a growing interest from
several scientific communities during the past decades,
e.g. in robotics (coordination of robots or drone swarms),
in biology (crowds of animals), in sociology (information
formation process) or in civil engineering (dynamical study
of crowds of pedestrians, see e.g. Cristiani et al. (2014)).
In particular, it is well known that simple interaction
rules between agents can promote the formation of global
patterns. This phenomenom is usually referred to as self-
organization.
However, the emergence of such patterns may be condi-
tional to a certain number of hypotheses. For instance,
a crowd with weak interactions will admit initial config-
urations for which no global self-organization can hope
to arise. It is then natural to study whether it may be
possible for an external action (e.g. a regulator) to enforce
the formation of a pattern even in an unfavorable situation.
This is the problem of control of crowds, which we shall
address here in the particular case of kinetic cooperative
systems.

We recall the mathematical definition of cooperative mod-
els in the finite-dimensional case, a well-known family
of models used to describe crowds of interacting agents
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(see, e.g., Angeli and Sontag (2003); Smith (1995)). Let
us consider a set of N ∈ N∗ interacting agents. In our
case, the agents are supposed to be all identical and the
dynamics of the i-th agent is given by

ẋi = vi , v̇i =
1

N

N∑
j=1

ψ (xj − xi, vj − vi) , (1)

where ψ : Rd ×Rd → Rd is supposed to be non-negatively
collinear to the velocity, namely

∀(x, v) ∈ Rd × Rd , ψ(x, v) = ξ(x, v)v , ξ(·, ·) ≥ 0. (2)

We also assume that

ψ(·, ·) is L-Lipschitz. (3)

In this article, we are interested in designing a control
strategy for kinetic cooperative systems. These systems are
obtained as the mean field limits of the finite-dimensional
cooperative systems of the form (1) when the number N
of agents goes to infinity. In this formalism, the crowd is
represented at each time t by its density (x, v) 7→ µ(t, x, v).
The time evolution of µ is described by the following
transport Partial Differential Equation (PDE) with non-
local terms

∂tµ+ v · ∇xµ+∇v · (Ψ[µ](x, v)µ) = 0, (4)

where Ψ[µ] : (x, v) 7→
∫
Rd×Rd ψ(y − x,w − v)dµ(y, w).

This limit dynamics leads naturally to the design of con-
trol strategies that are independent on the number N of
agents. In practice these strategies can be applied for ap-
proximate control a finite-dimensional system containing
a large number of agents, with an error that can easily be
estimated as a function of N .



In the kinetic approach, the density µ of the crowd is
modeled as a probability measure. We introduce in this
scope the definition of the functional spaces Pc(Rn) and
P ac

c (Rn), that are the natural setting to study our control
problem (see e.g. Evans and Gariepy (1992)).

Definition 1. The space Pc(Rn) is the set of all probability
measures on Rn with compact support, endowed with the
weak topology of measures.
The space P ac

c (Rn) is the subset of Pc(Rn) of all proba-
bility measures absolutely continuous with respect to the
Lebesgue measure, i.e. the set of probability measures
µ ∈ Pc(Rn) for which there exists a Lebesgue-integrable
function f such that µ = fdx where dx is the Lebesgue
measure on Rn. The function f is called the density of µ
with respect to the Lebesgue measure.

The definition of solutions for equations of the form (4) is
then stated in terms of time-dependent curves in the space
of probability measures.

Definition 2. A solution t 7→ µ(t) of (4) with initial datum
µ0 ∈ Pc(Rn) is a curve in the space Pc(Rn) continuous with
respect to time, satisfying (4) in the weak sense and such
that µ(0) = µ0.

A natural idea to control (1) is to add a control term ui
to the dynamics of the vi’s for all i (see Caponigro et al.
(2014)). Yet, for the mean field limit, all the agents of
the crowd are supposed to be identical, thus, one cannot
impose a control localized specifically on one or several of
these agents.
We are then compelled to introduce a space-dependent
control of the form χω(·)u(·, ·, ·) supported on a time-
varying control set ω(·). The controlled version of (4)
then writes

∂tµ+v ·∇xµ+∇v ·([Ψ[µ](x, v)+χω(t)u(t, x, v)]µ) = 0, (5)

where χω(t)u(t, ·, ·) defines a Lipschitz vector field at all
times t ≥ 0. Furthermore, we impose our control to be
sparse and bounded, i.e. that it can only act on a small
portion of the crowd with limited amplitude at all times.
These constraints write

� Population sparsity constraint∫
ω(t)

dµ(t)(x, v) ≤ c ∀t ≥ 0; (6)

� Boundedness constraint

‖ u(t, ·, ·) ‖L∞(Rd×Rd)≤ 1 ∀t ≥ 0. (7)

In the sequel, we will be interested in the notion of
approximate alignment, which is defined as follows.

Definition 3. A solution µ ∈ C([0,+∞), Pc(Rd × Rd)) to
(4) or (5) is said to be ε-approximately aligned around
v∗ ∈ Rd starting from time T if supp(µ(t)) ⊂ Rd×B(v∗, ε)
for any t ≥ T .

Our goal in this framework is to prove the following result.

Theorem 1. Let µ0 ∈ P ac
c (Rd × Rd) be a given initial

data for (5). For any constant c > 0, limit velocity
v∗ ∈ Rd and precision ε > 0, there exists a time T and
a Lipschitz-in-space control χωu satisfying the constraints
(6) and (7) such that the corresponding solution µ ∈
C([0,+∞), P ac

c (Rd ×Rd)) of (5) is approximately aligned
around v∗ with precision ε starting from time T .

The structure of the paper is the following. We present in
Section 2 general notions concerning transport PDEs with

non-local terms. We then prove Theorem 1 in Section 3
as follows: we introduce in Section 3.1 the fundamental
step of our control strategy and show in Section 3.2
how its iteration steers the dynamics (5) to approximate
alignment.

2. KINETIC COOPERATIVE SYSTEMS

2.1 Transport PDEs with non-local velocities

In this section we briefly introduce some notions and
results concerning transport PDEs with non-local inter-
actions of the form (4) and (5). We first recall the defi-
nition of pushforward of a measure by a Borel map and
Wasserstein distance (see more details in Villani (2003)).

Definition 4. Given a Borel map f : Rn → Rn, the
pushforward of a probability measure µ defined on Rn
through f is the measure f#µ satisfying:

f#µ(B) = µ(f−1(B)) (8)

for any measurable subset B ⊂ Rn.

Definition 5. A transference plan π between two proba-
bility measures µ, ν ∈ Pc(Rn) is a probability measure
in Pc(R2n) which first and second marginals are respec-
tively µ and ν, namely, ∀f, g ∈ C∞c (Rn),

∫
R2n [f(x) +

g(y)]dπ(x, y) =
∫
Rn f(x)dµ(x) +

∫
Rn g(y)dν(y). We denote

by Π(µ, ν) the set of all transference plans between µ and
ν. The Wasserstein distance of order p ≥ 1 between µ and
ν is then defined by

Wp(µ, ν) = inf
π∈Π(µ,ν)

{(∫
R2n |x− y|pdπ(x, y)

) 1
p

}
.

Due to its high convenience for computations and its nu-
merous properties, the Wasserstein distance is a canonical
object to study dynamics of probability measures. The
fundamental result of existence and uniqueness for the
general transport PDE with non-local terms

∂tµ+∇ · (Φ[µ, t]µ) = 0, (9)

is stated in terms of the Wasserstein distance (see Ambro-
sio and Gangbo (2008),Piccoli and Rossi (2013)).

Theorem 2. Assume that Φ : R×Pc(Rn)→ C1(Rn,Rn)∩
L∞(Rn,Rn) satisfies the following properties:

• Φ[µ, t](·) is uniformly Lipschitz and with sublinear
growth, i.e. there exist L,M not depending on µ and t such
that |Φ[µ, t](y) − Φ[µ, t](x)| ≤ L|y − x| and |Φ[µ, t](x)| ≤
M(1 + |x|) for any x, y ∈ Rn.
• Φ[µ, t] is a Lipschitz function with respect to µ, i.e. there
exists K such that ‖ Φ[µ, t] − Φ[ν, t] ‖C0≤ KWp(µ, ν) for
any µ, ν ∈ ×P ac

c (Rn).
• Φ[µ, t] is measurable with respect to t.

Then for any µ0 ∈ Pc(Rn), there exists a unique solution
µ(·) ∈ C(R, Pc(Rn)) of (9). Furthermore, the solutions of
(9) depend continuously on their initial datum.
Let (T (t, ·))t≥0 be the flow of diffeomorphisms of Rn
generated by the time-dependent vector field Φ[µ, t](·),
defined as the unique solution of the Cauchy problem
∂tT (t, x) = Φ[µ(t), t](T (t, x)) , T (0, x) = x. Then, the
solution µ(·) of (9) with initial datum µ0 writes µ(t) =
T (t, ·)#µ0 for any t ≥ 0.
In particular, µ0 ∈ P ac

c (Rn) implies that µ(t) ∈ P ac
c (Rn)

for all times t ≥ 0.



Remark 1. Theorem 2 implies that (T (t, ·))t≥0 describes
the evoultion of the support of the measure supp(µ(·)).
Indeed, for all times t ≥ 0, any point (xt, vt) ∈ supp(µ(t))
is the image of a corresponding point (x0, v0) ∈ supp(µ0)
by the diffeomorphism T (t, ·).

In (4), the vector field Φ[µ, t] is (x, v) 7→ (v,Ψ[µ])T . It
can be easily checked that this vector field satisfies the
hypotheses of Theorem 2, see e.g. Ha and Liu (2009).
For this reason, we will define ω(·) and u(·, ·, ·) such that
our control χωu in (5) defines a Lipschitz vector field at
all times, which ensures that the vector field (x, v) 7→
(v,Ψ[µ] + χωu)T satisfies the hypotheses of Theorem 2.

We end this section by the statement of an estimate on
the time evolution of the L∞-norm of the density of a
probability measure following the dynamics (5).

Proposition 3. Let µ ∈ C(R, P ac
c (Rd × Rd)) be a solution

of (5) with initial datum µ0 ∈ P ac
c (Rd×Rd) and f(·) be its

density with respect to the Lebesgue measure. Then there
holds for any times t ≥ 0:

d

dt
‖ f(t) ‖L∞≤‖ f(t) ‖L∞ × [ ‖ ∇v · (u(t)χω(t)) ‖L∞

+ ‖ ∇v · (Ψ[µ(t)]) ‖L∞(supp(f(t)) ] .
(10)

Proof: See (Piccoli et al., 2015, Section 4.2). �

2.2 Invariance properties of kinetic cooperative systems

We recall in this section the invariance properties of kinetic
cooperative systems. One of the fundamental properties
of (1) is its invariance with respect to translations. Such
properties are inherited by (4) and are stated as follows.

Proposition 4. Let µ(·) be a solution of (4) with initial
datum µ0, and (y, w) ∈ Rd × Rd a vector representing a
translation. Define the curve µ̃(t, x, v) = µ(t, x+y+tw, v+
w). Then µ̃(·) is the unique solution of (4) with initial
datum µ̃0, image of µ0 by the translation along (y, w)T .

Moreover, the attractivity of the interaction forces of (1)
allows us to establish an easy estimate of the evolution
through time of the support of a solution of (4).

Proposition 5. Let µ(·) be a solution of (4) with initial
datum µ0 ∈ P ac

c (Rd×Rd). Then one has the following sup-

port invariance property: if supp(µ0) ⊂
∏d
i=1([Xi, Xi] ×

[Vi, V i]) then supp(µ(t)) ⊂
∏d
i=1([Xi + tVi, Xi + tV i] ×

[Vi, V i]) for any t ≥ 0.

Proof: This invariance is a direct consequence of Remark 1
and of the fact that (x, v) 7→ (v,Ψ[µ](x, v))T always points
inward R× [Vi, V i] along v, for each i ∈ {1, .., N}. �

We assume from now on that supp(µ0) in contained

within the box
∏d
i=1([Xi, Xi] × [Vi, V i]). The invariance

properties given in Proposition 4 allow us to restrict the
proof of Theorem 1 to the case where v∗ = 0, Xi = 0,
Xi > 0 and Vi = 0, V i > 0 for any i, without loss of
generality. Indeed, one can always achieve approximate
alignment in the sense of Definition 3 in dimension j with
Vj < 0 < V j by applying the following strategy.

(1) Define µ̃(t, x, v) = µ(t, x − tVjej , v − Vjej) (where
ej stands for the j-th unitary vector of Rd) and notice

that it follows the dynamics (4) by Proposition 4. Perform
approximate alignment around 0 with precison −Vj + ε√

d
.

The velocity support of the orignal system in dimension j
is now [Vj , ε√

d
).

(2) Define µ̂(t, x, v) = µ(t,−x − t ε√
d
ej ,−v − ε√

d
ej) and

notice that it satisfies the dynamics (4) with ψ′(x, v) =
−ψ(−x,−v). Perform approximate alignment around 0
with precision 2ε√

d
. The velocity support for the initial mea-

sure is included in (− ε√
d
, ε√

d
) and approximate alignment

is achevied for the j-th component.

3. PROOF OF THEOREM 1

In this section we prove our main result Theorem 1,
using a constructive algorithmic approach, in the spirit of
Piccoli et al. (2015) and Piccoli et al. (2016). We assume
henceforth that the dynamics (5) is unidimensional, i.e.
d = 1. The case d > 1 can be treated with a very similar
technique, see e.g. (Piccoli et al., 2015, Section 4.4). We
define in Section 3.1 the fundamental step of our control
strategy, and then show in Section 3.2 how its iteration
steers the dynamics to approximate alignment in the sense
of Definition 3.

3.1 Fundamental step in 1D

Assume that supp(µ0) ⊂ [0, X0]× [0, V0]. Our aim in this
section is to build a Lipschitz control χω(·)u

0(·, ·, ·) and a
time T0 such that the control satisfies the constraints (6)
and (7) at all times in [0, T0] and such that it reduces the
size of supp(µ(T0)) along the velocity component.
To this end, we define a partition of our initial domain
[0, X0] × [0, V0] into n = d 2

c e rectangles (Ω0
[i])1≤i≤n =

([x[i−1], x[i]] × [0, V0])0≤i≤n. The points (x[i])1≤i≤n−1 are
defined recursively to be the minimal values such that
µ0
(
[x[i−1], x[i]]× [0, V0]

)
= c

2 starting from x[0] = 0. We
also define x[n] = X0.

Note that µ0
(
[x[n−1], x[n]]× [0, V0]

)
≤ c

2 and that the

points x[i] are well defined, since µ0 ∈ P ac
c (R×R), ensuring

that x 7→ µ0([x[i−1], x] × [0, V0]) is a continuous function.
We further define the parameter δ0 as the biggest real
number such that

µ0([x[i−1] − 3δ0, x[i] + 3δ0]× R) ≤ c ∀i ∈ {1, .., n}. (11)

We fix a parameter η0 ∈ (0, V0) and a time T0 ∈
(

0, δ0V0

]
,

which precise choices shall be detailed in Section 3.2. We
define the control sets (ω0

[i])1≤i≤n by

ω0
[i] = [x[i−1] − 2δ0, x[i] + 2δ0]× [0, V0 + η0]. (12)

We introduce the corresponding controls (u[i](·, ·, ·))1≤i≤n
defined by u[i] : (t, x, v) 7→ −ζ[i](t, x, v) with ζ[i](·, ·, ·)
given by

ζ[i](t, x, v) =


1 on [x[i−1] − δ0, x[i] + δ0]× [η0, V0],

linearly decreasing to 0 on

ω0
[i]\([x[i−1] − δ0, x[i] + δ0]× [η0, V0]),

0 on (R× R)\ω0
[i].

(13)

A picture of this domain decomposition along with the
definition of ζ[i](·, ·, ·) for a given i is given in Figure 1.
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Fig. 1. Construction of a control set ω0
[i]

and of the corresponding

Ω0
[i]

and ζ[i](·, ·, ·) for a given i ∈ {1, .., n}

We consider the time partition [0, T0] =
⋃n−1
i=0

[
iT0

n ,
(i+1)T0

n

]
and apply each control u[i](·, ·, ·) on the set ω0

[i] for t ∈[
iT0

n ,
(i+1)T0

n

)
. This control design ensures the following

properties.

(1) The control is Lipschitz and satisfies (7) at all times
by definition of the functions (ζ[i](·, ·, ·))1≤i≤n.

(2) By Proposition 5, one can easily check that supp(µ(t)) ⊂
[0, X0 + tV0]× [0, V0] for all times t ∈ [0, T0], yielding

supp(µ(t)) ⊂ [0, X0 + T0V0]× [0, V0] (14)

for all times t ∈ [0, T0]. Moreover, choosing T0 ≤ δ0/V0, we
have by Remark 1 that all points in supp(µ0) will locally
undergo a displacement of amplitude at most equal to δ0
in the variable x.

(3) The population constraint (6) is respected at all times.
Indeed, for any i ∈ {1, .., n} one has∫

ω0
[i]

dµ(t)(x, v) ≤
∫ x[i]+3δ0

x[i−1]−3δ0

∫ V0

0

dµ0(x, v) = c. (15)

After having defined a proper control satisfying our con-
straints, we are interested in building estimates for the
size of supp(µ(T0)). To do so, we monitor the evolution
through time of the points (x, v) such that v realizes the
maximum of velocity in Ω[i](t) (similar estimates were
given in Piccoli et al. (2016)). Here for i ∈ {1, .., n} and
t ≥ 0, we define Ω[i](t) as the image of Ω0

[i] through the

flow Tu,ω(t, ·) generated by (x, v) 7→ (v,Ψ[µ] + χωu)T as
described in Theorem 2.
We define the functions bi(t) = sup

{
v s.t. (x, v) ∈ Ω[i](t)

}
.

They satisfy the following properties.

� If bi(t) ≥ η0 for all t ∈ [0, T0], then using (5), Remark
1 and the Lipschitzianity of ψ(·, ·) one has that

ḃi(t) = Ψ[µ(t)](xi(t), bi(t)) + χω0
[i]
u[i](t, xi(t), bi(t))

≤ L
∫

R×R
(w − bi(t))dµ(t)(y, w) + χω0

[i]
u[i](t, xi(t), bi(t))

≤ (V0 − bi(t)) + χω0
[i]
u[i](t, xi(t), bi(t)).

Applying Gronwall lemma to bi(·) − V0, noticing that
bi(0)− V0 ≤ 0 and taking t = T0, we have

bi(T0) ≤ V0 + e−LT0

∫ T0

0

χω0
[i]
u[i](t, xi(t), bi(t))dt. (16)

By construction of the set ω0
[i] and of the control

u[i](·, ·, ·), the fact that bi(·) ≥ η0 on [0, T0] implies that

u[i](·, xi(·), bi(·)) is equal to (-1) on [ iT0

n ,
(i+1)T0

n ) and to 0

on [0, (i−1)T0

n ) ∪ [ (i+1)T0

n , T0], leading to

bi(T0) ≤ V0 −
e−LT0T0

n
. (17)

� If bi(t) < η0 for some t ∈ [0, T0] , define t̄ to be the
biggest time for which bi(·) ≤ η0. Notice then that v −
bi(s) ≤ V0 − η0 for all v ∈ [0, V0] and s ≥ t̄. By a similar
argument as in the previous point, one gets

bi(T0) ≤ η0(1− LT0) + LV0T0. (18)

This holds in particular if t̄ = T0, i.e. if bi(·) ≤ η0.

Since (Ω[i](t))1≤i≤n defines a covering of supp(µ(t)) for
all t ≥ 0, these estimates together with (14) yield
supp(µ(T0)) ⊂ [0, X1]× [0, V1] with V1 = max { V0 −

e−LT0T0

n
, η0(1− LT0) + LT0V0 } ,

X1 = X0 + T0V0.
(19)

3.2 Proof of Theorem 1 in 1D

In this section, we show how a sequence of fundamental
steps as defined in Section 3.1 (namely a sequence of
choices of η, T ) steers the system to approximate align-
ment.

To this end, we will apply the following algorithm.

Initialization :
Let ε > 0, c > 0 be given.

Step k : Given the size (Xk, Vk) of supp(µk)
If Vk < ε :

Approximate alignment is already achieved.
Else:

Choose Tk and ηk as in (21)
End If

End : Iterate while Vk ≥ ε

Fix ε > 0. We define for any k ∈ N the measure

µk+1 = µ
(∑k

l=0 Tl

)
. The estimate (19) shows us that

supp(µk+1) ∈ [0, Xk+1]× [0, Vk+1] where:Vk+1 = max

{
Vk −

e−LTkTk
n

, ηk(1− LTk) + LTkVk

}
,

Xk+1 = Xk + VkTk.
(20)

We build the corresponding partition (Ωk[i])1≤i≤n of

[0, Xk] × [0, Vk] and define the corresponding δk as in
(11). We also define the sets (ωk[i])1≤i≤n, along with the

corresponding controls (uk[i])1≤i≤n as in Section 3.1. We

set α = 1 + 3
nLε and choose

Tk = min
{
δk
Vk

, 1
αL

}
, ηk = 1

2

(
Vk − e−LTkTk

n(1−LTk)

)
. (21)



We now want to show that the sequence (Vk)k∈N defined
above becomes smaller than ε within a finite number
of iterations of our fundamental step. To do so, we prove
the slightly stronger result that (Vk)k∈N converges to a
limit V∗ < ε/2. This implies that there exists K ∈ N such
that Vk < ε for all k ≥ K, hence that our algorithm stops.

We first prove the following useful estimate.

Lemma 6. Let fk be the density of µk with respect to the
Lebesgue measure for a given k ∈ N. Then, it holds

12 ‖ fk ‖L∞(Rd×Rd) δkVk ≥ c. (22)

where Vk is the size of the support of µk along the velocity
component and δk is defined as in (11).

Proof: The proof follows from a simple geometric argu-
ment. Consider a given positive number r. Since the mass
inside a set of the form [xk[i−1], x

k
[i]] × [0, Vk] is less or

equal to c
2 for any i ∈ {1, .., n} and k ∈ N, then the

mass contained in [xk[i−1] − r, x
k
[i] + r]× [0, Vk] is less than

c
2 + 2rVk ‖ fk ‖L∞ . Besides, the mass of one of the sets

[xk[i−1]− 3δk, x
k
[i] + 3δk]× [0, Vk] is equal to c, by definition

of δk. Taking r = 3δk yields the desired estimate. �

We observe the following properties of our algorithm.

(1) Choosing Tk ≤ 1
αL with α = 1 + 3

nLε ensures that ηk
is strictly positive as long as Vk ≥ ε/2.

(2) Choosing Tk and ηk as in (21) ensures that

ηk =
1

2

(
Vk −

e−LTkTk
n(1− LTk)

)
≤ Vk −

e−LTkTk
n(1− LTk)

=⇒ (1− LTk)ηk + LTkVk ≤ Vk −
e−LTkTk

n
,

hence proving that Vk+1 = Vk − e−LTkTk
n as long as

Vk ≥ ε/2. This implies in particular that (Vk)k∈N strictly
decreases as long as Vk ≥ ε/2.

(3) Since Tk ≤ 1
αL , then Vk − Vk+1 = e−LTkTk

n ≥ e−
1
α Tk
n

for any k ∈ N such that Vk ≥ ε/2. This implies that for
any K such that VK ≥ ε/2 one has

V0 ≥
e−

1
α

n

K∑
k=0

Tk. (23)

We now prove that our algorithm terminates in a
finite number of iterations.

We prove it by contradiction. Assume that Vk ≥ ε/2 for all
k ∈ N. Then (Vk)k∈N is strictly decreasing, bounded from
below, and thus converges to a limit V∗ ≥ ε/2.
This implies by (23) that Tk −→

k→+∞
0. Hence ηk −→

k→+∞
V∗/2 > 0 by (21). Thus we infer that there exists a
constant η̄ > 0 such that ηk ≥ η̄ for any k ∈ N.

By definition of uk(·, ·, ·) one has for any i ∈ {1, .., n} :

‖ ∇v · (uk[i](t)) ‖L∞(ω0
[i]

)≤
1

ηk
≤ 1

η̄
.

Moreover, one has for any (x, v) ∈ Rd × Rd :

|∇v · (Ψ[µ(t)])(x, v)| =

| −
d∑
k=1

[∫
Rd×Rd

∂vkψ(y − x,w − v)dµ(t)(y, w)

]
| ≤ Ld,

by Lipschitzianity of (x, v) 7→ ψ(x, v). This leads to the
following estimate for all t ≥ 0:

‖ ∇v · (u(t)χω(t)) ‖L∞ + ‖ ∇v · (Ψ[µ(t)]) ‖L∞≤ F̄ , (24)

where F̄ = (Ld+ 1/η̄) > 0.

Recall that T̄ =
∑∞
k=0 Tk is finite as a consequence of (23).

Then, combining (24) with (10) one has

‖ fk ‖L∞(Rd×Rd)≤‖ f0 ‖L∞(Rd×Rd) e
F̄ T̄ ∀k ∈ N.

This, together with (22) yields

δk ≥
ce−F̄ T̄

12 ‖ f0 ‖L∞(Rd×Rd) V0
= δ̄ > 0 ∀k ∈ N.

Finally, one has

Tk = min

{
δk
Vk

,
1

αL

}
≥ min

{
δ̄

V0
,

1

αL

}
> 0 (25)

for all k ∈ N. This implies that T̄ =
∑+∞
k=0 Tk diverges

to infinity, since (Tk)k∈N is uniformly bounded from below
by a positive constant. This contradicts (23). Hence, one
concludes that V∗ < ε/2. Since the sequence (Vk)k∈N is
decreasing, we conclude that there exists K ∈ N such that
Vk < ε for all k ≥ K. Thus, the algorithm stops. We
have proved that our control strategy steers the system
to ε-approximate alignment around 0 starting from time

T̄ =
∑K
k=0 Tk ≤ e

1
α d 2

c eV0 for any given precision ε > 0.
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