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Abstract As exome sequencing gives way to genome sequencing, the need to interpret  
the function of regulatory DNA becomes increasingly important. To test whether evolutionary 
conservation of cis-regulatory modules (CRMs) gives insight into human gene regulation, we 
determined transcription factor (TF) binding locations of four liver-essential TFs in liver tissue 
from human, macaque, mouse, rat, and dog. Approximately, two thirds of the TF-bound regions 
fell into CRMs. Less than half of the human CRMs were found as a CRM in the orthologous region  
of a second species. Shared CRMs were associated with liver pathways and disease loci identified 
by genome-wide association studies. Recurrent rare human disease causing mutations at the 
promoters of several blood coagulation and lipid metabolism genes were also identified within 
CRMs shared in multiple species. This suggests that multi-species analyses of experimentally 
determined combinatorial TF binding will help identify genomic regions critical for tissue-
specific gene control.
DOI: 10.7554/eLife.02626.001

Introduction
The combinatorial binding of transcription factors to DNA define the gene regulatory regions that are 
essential for achieving spatial and temporal gene expression (Zinzen et al., 2009; Gerstein et al., 2012; 
Hardison and Taylor, 2012). The rapid increase in empirically determined TF bound motifs (Badis 
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et al., 2009; Jolma et al., 2013; Weirauch et al., 2013), sequenced genomes (Goode et al., 2010; 
Lindblad-Toh et al., 2011; 1000 Genomes Project Consortium et al., 2012), and genome-wide 
profiling of DNA–protein interactions has given us unprecedented insight into the location of gene 
regulatory regions in multiple tissue and cell types.

In particular, experimental results obtained by chromatin immunoprecipitation (ChIP), FAIRE, and 
DNase I footprinting assays in combination with high-throughput sequencing have unmasked what 
was previously a hidden landscape of active DNA regions (Rhee and Pugh, 2011; Furey, 2012; Neph 
et al., 2012). The compendium of ChIP-seq determined DNA-binding for 119 different proteins in 
72 cell experiments produced by the Encyclopedia of DNA Elements (ENCODE) consortium alone has 
revealed that the number of TF binding events greatly exceeds the number of genes in the genome 
and that over 8% of the genome can be bound by at least one TF (ENCODE Project Consortium, 
2012). The large number of TF bound genomic regions highlights the growing need for rational strate-
gies for distilling these protein–DNA interactions into functional and non-functional categories. It has 
recently been shown that unlike TF binding events with high TF occupancy levels (measured by ChIP 
signal), genomic regions with low TF occupancy levels are not responsible for patterned reporter gene 
expression in Drosophila (Fisher et al., 2012). It remains to be seen how TF occupancy levels relate to 
functional gene expression in other species.

Comparing DNA between species has long been employed to identify transcription factor (TF) 
binding sites that comprise gene regulatory regions (e.g., Tagle et al., 1988; Lindblad-Toh et al., 
2011). Indeed, functional reporter gene expression assays have shown that many highly conserved 

eLife digest Stretches of DNA called cis-regulatory modules (or CRMs for short) could help 
researchers to identify the regions of DNA that are most important for controlling genes. CRMs are 
regions where multiple transcription factors—proteins that control when and how genes are 
expressed—bind to DNA. As important biological pathways are often regulated by more than one 
transcription factor, CRMs are therefore a good target when looking for DNA regions that, if mutated, 
are likely to cause disease.

If a stretch of DNA performs an important role, it is often conserved throughout evolution. This 
is often observed for genes that make proteins. Indeed, DNA regions that specify critical amino 
acids that make up proteins are often conserved across distantly related species. However, unlike 
the changes made to the amino acid encoding parts of genes, it is currently a challenge to predict 
which changes in the rest of the genome will affect gene expression.

One reason for this challenge is that transcription factor binding sites are rapidly evolving. This 
rapid evolution means that strictly comparing DNA sequences between species may fail to identify 
where transcription factors like to bind in the genome. Numerous experimental efforts have 
therefore been made to map these sites. These have revealed that there are a huge number of 
regions in the human genome that can bind transcription factors: hundreds of thousands of sites, 
far more than there are genes. For this reason, there is a great interest in revealing which of these 
regulatory regions are critical for maintaining normal levels and timings of gene expression.

Ballester et al. compared the binding sites of four transcription factors responsible for regulating 
liver function in humans, macaques, mice, rats, and dogs. About two-thirds of these binding sites 
were found in CRMs. Less than half of the CRMs in humans were also CRMs in another species—
but Ballester et al. found that these shared CRMs are predominantly in charge of regulating the 
essential biological pathways that allow the liver to function correctly. In addition, Ballester et al. 
identified several examples of disease-causing DNA mutations in shared CRMs that affected the 
expression of genes that make up pathways such as the blood clotting cascade. Genome-wide 
association studies also uncovered common variants for liver-related traits that were enriched for 
the CRMs found in more than one species, further supporting their importance.

As transcription factors work in different ways in different tissues, further studies are now 
required to expand these observations to organs other than the liver. Future work is also needed  
to investigate the function of thousands of conserved CRMs whose role in liver gene regulation 
remains unknown.
DOI: 10.7554/eLife.02626.002
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mammalian non-coding regions serve as developmental limb and nervous system enhancers 
(Pennacchio et al., 2006). In contrast, other tissues including the heart (Blow et al., 2010; May et al., 
2012), liver (Kim et al., 2011), and adult brain (Visel et al., 2013) possess many functional enhancers 
that do not show such deep phylogenetic preservation at the DNA level. An increasingly used way to 
identify tissue and species-specific gene regulatory regions is to compare experimentally determined 
TF–DNA interactions or histone modifications between species (Kunarso et al., 2010; Mikkelsen 
et al., 2010; Schmidt et al., 2010, 2012; Xiao et al., 2012; Cotney et al., 2013; Paris et al., 2013). 
For example, we previously established that the target genes of CEBPA and HNF4A, as identified from 
gene expression studies of conditional liver TF knockout mice, were enriched for TF binding shared in 
multiple species (Schmidt et al., 2010). Similarly, functional Drosophila enhancers are more likely to 
be found in regions with conserved TF binding events detected by ChIP (Paris et al., 2013).

Associating common genetic variation with complex traits is another powerful way to identify func-
tional regulatory DNA in the human genome. Over 80% of the most significant single nucleotide poly-
morphisms (SNPs) associated with human phenotypes and disease occur within non-coding regions of 
the genome (Hindorff et al., 2009). Recent integrative analyses have shown that open chromatin 
regions obtained for a specific cell type (e.g., DNase I hypersensitivity sites in T-cells) are enriched for 
reported GWAS SNPs. Importantly, this GWAS enrichment appeared most significant when the DNAse 
data was ascertained in a cell type relevant to the phenotype studied (Maurano et al., 2012; Reddy 
et al., 2012; Schaub et al., 2012). Examples of regulatory DNA mutations that explain differences in 
disease gene function are increasingly being discovered (e.g., Musunuru et al., 2010) and there is 
tremendous interest in methods that can predict which non-coding variants are of functional conse-
quence (Schaub et al., 2012; Ward and Kellis, 2012a, 2012b).

To test whether evolutionary conservation of cis-regulatory modules (CRMs) gives insight into 
human gene regulatory function, we determined transcription factor (TF) binding locations of four 
liver-enriched TFs in liver tissue from: two primates (human and macaque) estimated to have diverged 
29 million years ago; two rodents (mouse and rat) estimated to have diverged 25 million years ago; 
and dog which diverged during the mammalian radiation along with primate and rodent lineages 
(Hedges et al., 2006).

The liver is a suitable tissue for studying vertebrate gene regulation. It is a relatively homogenous 
tissue with approximately 75% of the nuclei in the liver coming from hepatocytes (Marcos et al., 
2006). Both the relative homogeneity and the large cell numbers that can be isolated from diverse 
organisms under physiologically optimal conditions lend itself well to comparative studies. We focus 
on four TFs required for liver cell specification and gene function (HNF4A, CEBPA, ONECUT1, and 
FOXA1) (Kyrmizi et al., 2006). Together, several studies have demonstrated that these four TFs work 
together directly and indirectly to drive liver-specific function (Plumb-Rudewiez et al., 2004). Using 
liver as a model tissue, we demonstrate how a combinatorial analysis of TF occupancy across multiple 
species can highlight conserved and species-specific biological processes, as well as potential mecha-
nistic actions of disease variants.

Results
Determining combinatorial binding in multiple mammalian species
The genome-wide occupancy of four transcription factors (HNF4A, CEBPA, ONECUT1, and FOXA1) 
was determined in primary liver in five species (Homo sapiens [Hsap], Macaca mulatta [Mmul], 
Canis familiaris [Cfam], Mus musculus [Mmus], and Rattus norvegicus [Rnor]) using chromatin immuno-
precipitation followed by high-throughput sequencing (ChIP-seq) (Figure 1, Figure 1—figure 
supplement 1A, Figure 1—source data 1). The antibodies used for the four TFs have been raised 
against conserved epitopes and have previously been validated in ChIP experiments in mouse and 
human ChIP studies (Figure 1—source data 1D). As expected from previous multi-species ChIP 
study of CEBPA and HNF4A (Schmidt et al., 2010), the known binding motifs for the four TFs was 
virtually identical between species and occurred close to the ChIP-seq binding summit (Figure 1—
figure supplement 1B,C).

Similar to what was observed for previous CEBPA and HNF4A ChIP-seq experiments, only a minority 
of ONECUT1 and FOXA1 bound regions overlapped orthologous, TF-bound regions in a second spe-
cies, a relationship we refer to here as “shared” TF binding (see Figure 1A,B, Figure 1—figure 
supplement 2A). The rapid evolution of TF binding is further supported by comparisons within 
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primate and rodent orders that are separated by less than 25 million years (Springer et al., 2003). 
For example, on average, between 21 and 37% of TF binding events in human are found in the 
orthologous location in macaque and 21–31% between mouse and rat for each of the TFs assayed 
(Figure 1—figure supplement 2A).

Figure 1. Overview of ChIP-seq, CRM construction, and multiple-species comparisons. ChIP-seq peaks were determined for four liver TFs in five 
mammals. (A) CRMs were constructed by merging ChIP-seq peaks whose summits occurred within 300 bp and consisted of at least two distinct TFs. 
Remaining peaks were designated as singletons. (B) Whole genome 9-way EPO multiple sequence alignments (MSA) were used to project CRMs/
Singletons across the five species. A CRM was considered shared if its position in the EPO MSA overlapped a CRM in a second species by a minimum of 
10 bp. Neither the content nor order of TFs within the CRM was required to be classified as a ‘Shared’ CRM. A singleton in one species was considered 
‘Shared’ if it overlapped the same TF in a second species. (C) Relative to human, the average % of shared CRMs is shown. Human CRMs (comprised of 
any two TFs) that overlap a CRM from a second species are shown with empty circles. Human CRMs containing at least one of each TF (all 4 TFs) were 
compared to all identified CRMs in a second species (purple circles). (D) The percentage of human CRMs and singletons in different phylogenetic 
categories that can be found aligned within the EPO MSAs for each of the five species is shown.
DOI: 10.7554/eLife.02626.003
The following source data and figure supplements are available for figure 1:

Source data 1. Quality control for ChIP-seq, CRM construction, and multi-species comparisons. 
DOI: 10.7554/eLife.02626.004
Figure supplement 1. Summary of ChIP-seq peak number and TF motif enrichment. 
DOI: 10.7554/eLife.02626.005

Figure supplement 2. Pairwise analysis of individual TFs using EPO multiple sequence alignment.
DOI: 10.7554/eLife.02626.006

Figure supplement 3. A majority of the four liver-enriched TFs cluster into CRMs. 
DOI: 10.7554/eLife.02626.007

http://dx.doi.org/10.7554/eLife.02626
http://dx.doi.org/10.7554/eLife.02626.003
http://dx.doi.org/10.7554/eLife.02626.004
http://dx.doi.org/10.7554/eLife.02626.005
http://dx.doi.org/10.7554/eLife.02626.006
http://dx.doi.org/10.7554/eLife.02626.007


Genomics and evolutionary biology | Human biology and medicine

Ballester et al. eLife 2014;3:e02626. DOI: 10.7554/eLife.02626 5 of 29

Research article

Tissue-specific TFs are known to bind in close proximity to form cis regulatory modules (CRMs). 
Similar to what has been done for multi-TF binding analyses in Drosophila (Zinzen et al., 2009) and 
mouse (Stefflova et al., 2013), we defined CRMs by clustering at least two proximal heterotypic TF 
binding events (Figure 1A). The number of liver TFs forming clusters falls off sharply when the distance 
between them is greater than 150 bp, which is less than the average width of the TF bound regions we 
detected by ChIP-seq (Figure 1—figure supplement 3). We built CRMs by merging TF binding events 
whose summits were within 300 bp of each other (Figure 1). Using this summit-based clustering, 
we found that approximately two thirds of the human liver TF binding events were incorporated into 
CRMs (Figure 1—figure supplement 1A). We found that the shared CRM categories were robust to 
using a more permissive peak caller or calling peaks on individual biological replicates (Figure 1—
source data 1E).

As we found for individual TFs, the location of CRMs appears to have evolved rapidly (Figure 1C). 
For example, we found that only ∼35% of human CRMs had a CRM in the orthologous macaque 
genomic region. Similarly, ∼32% of mouse CRMs were found as CRMs in the orthologous location 
in the rat genome (Figure 1—figure supplement 2C). This divergence of CRM occupancy was 
consistent between different lineages separated by the similar evolutionary distances (Figure 1—
source data 1F), robust to the multiple sequence alignments (MSA) used to detect orthologous 
CRMs, and also robust to different overlap methods chosen to infer CRM conservation between 
species (Figure 1—source data 1G). Figure 1D shows that most (>93%) of human CRMs and sin-
gletons we detect are found in the EPO MSA (Paten et al., 2008) with macaque, which suggests 
that the rapid turnover observed between human and macaque CRMs is not due to characteristics 
of the multiple alignment.

CRMs containing all four TFs are on average more highly shared with a CRM from a second 
species (e.g., 53% of human CRMs with all four TFs are shared with a macaque CRM), indicating 
increased selection pressure on higher order combinatorial TF binding (Figure 1C, Figure 1—figure 
supplement 2C). TF binding events shared in multiple species are more likely to be found within 
CRMs (72% of shared human TF binding events are in CRMs vs 27% that are classified as single-
tons; hypergeometric test, p = 8.48 × 10−238). For example, 32 of the 35 CEBPA binding events 
previously found to be bound in orthologous regions in five vertebrate species (Schmidt et al., 
2010) fell within CRMs identified in this study.

Comparative genomic analysis of combinatorial TF binding creates 
biologically meaningful categories from in vivo ChIP-seq data
To test how combinatorial binding and TF binding conservation relate to liver gene function, we clas-
sified our set of human CRMs (n = 31,765) and singletons (n = 43,824) into phylogenetic categories 
(Figure 2, Figure 2—source data 1). CRMs were categorized as one of the following: shared only 
in human and macaque (Primates only, n = 4672); shared in human plus at least one non-primate 
(Beyond primates, n = 7631); and shared in at least three species (Deeply shared n = 5046) (Figure 2). 
The 43,824 singletons not residing in CRMs (44%) were categorized in the same manner (Figure 2).

TF binding events contained in CRMs were enriched for their respective TF's DNA binding motif, 
in addition to other liver TF binding motifs, including those profiled in this study (Supplementary 
file 1). Supporting this observation, we find that both Deeply shared and human only CRMs overlap 
significantly with relevant ENCODE genome-wide experimental data sets, including ChIP peaks for 
HNF4A, FOXA1, and CEBPB in the liver cancer cell line HepG2 (e.g., p < 10−149 and p < 10−212 for 
HNF4 respectively; Supplementary file 1). The fold enrichment was higher for Deeply shared 
CRMs than for human only CRMs (e.g., 20.5 vs 11.8 for HNF4A). We also found significant overlap 
with TFs not tested in our study. For example, 51% of the Deeply shared CRMs and 20% of the 
human only CRMs overlap binding peaks for SP1 in HepG2 cells (p < 10−149 and p < 10−212 respectively; 
Supplementary file 1). Again the enrichment for these additional TFs was higher in the Deeply 
shared CRM category than the human only category (e.g., 17.6 vs 8.4-fold). SP1 and HNF4A have 
previously been shown to cooperatively regulate gene expression in HepG2 cells (Sugawara et al., 
2007). In this manner, Deeply shared CRMs can be used to enrich for additional TFs that might 
play global combinatorial roles in liver gene regulation when used in conjunction with other data 
sets from related cell types.

A comparison of shared CRMs to human-specific CRMs reveals an increase in the number of liver-
related biological pathways, diseases, and known target genes of liver enriched TFs (Figure 3). We used 
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Figure 2. Annotation of human regulatory regions using interspecies combinatorial transcription factor binding.  
(A) Human liver ChIP-seq data from ONECUT1, HNF4A, FOXA1, and CEBPA were assembled into CRMs consisting 
of at least 2 of the 4 TFs. The CRMs or single TFs were then broken down into categories based on their overlap 
Figure 2. Continued on next page
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the enrichment tool GREAT (McLean et al., 2010) to perform functional enrichments. GREAT's default 
setting assigns TF binding events to a basal region around every gene (5 kb upstream, 1 kb downstream). 
ChIP-seq peaks that fall within the basal regulatory region of each gene, as well as the genomic sequence 
that spans between the basal region of that gene and the nearest gene's basal region (within a maximum 
of 1 Mb) are used to generate functional enrichments. The most significant enrichments that were unique 
to the shared liver CRMs include: liver disease (Binomial FDR q-value = 4.53 × 10−130) from the Disease 
Ontology database and metabolism of lipids and lipoproteins (q = 2.96 × 10−73) from MSigDB Pathway 
(Figure 3A,B, Figure 3—source data 1A).

The most significant liver-related enrichments obtained using human only CRMs were for biological 
oxidations (q = 1.95 × 10−39; in MSigDB Pathway). These enrichments were driven by genes involved 
in the metabolism of xenobiotics by the cytochrome P450 gene family (q = 2.24 × 10−19; HGNC gene 
family database) (Figure 3A). Given the liver's major contribution to the detoxification of xenobiotics 
and the well established species-specificity of the proteins involved in the process (Gonzalez and 
Nebert, 1990), these results suggest that evolutionary filtering of CRMs has the potential to enrich for 
both conserved and species-specific biological pathways.

Singleton TF binding events were predominantly enriched for their respective motif, but were 
not enriched for the motifs from the other three TFs profiled in this study (Supplementary file 1). 
Supporting this, comparisons against all ENCODE TF binding data show that for HNF4A, CEBPA, and 
FOXA1 singletons, the top ChIP-seq peak association in HepG2 cells corresponded to the TF assayed. 
HNF4A singletons were enriched for FOX family motifs, albeit not the same FOXA1 motif obtained 
from CRMs and singleton FOXA1 peaks. Comparing normalized sequence read counts in the HNF4A 
singletons, and HNF4A-containing CRMs lacking FOXA1 peaks, it is clear that pervasive weak FOXA1 
ChIP-seq signal occur at HNF4A binding sites (Figure 4A). Further supporting this hypothesis is the 
similarity of FOXA1 to a portion of the HNF4A motif (Figure 4B), and a recent study that showed 
a close association of HNF4A with FOXA1 motifs (Guo et al., 2012).

We asked whether CRMs or singletons differ with regards to the quality of their TF binding motifs. 
Peaks for each TF were scanned using the RSAT tool matrix-scan with the best position weight matri-
ces (PWM) for each TF. We set three p-value threshold cut offs (stringent:10−4, moderate:10−3 and 
lenient 10−2) based on the comparison between the theoretical and empirical PWM weight score 
distribution observed for each peak collection as previously described (Medina-Rivera et al., 2011). 
As expected, motifs were identified in the vast majority of their corresponding peak set using the 
lenient motif threshold. Similarly, for both singletons and CRMs, the moderate and stringent motif 
searches returned the highest fraction motifs in their corresponding peak set. Interestingly, for 
both the moderate and stringent motif searches, the singleton TF binding sites had a significantly 
greater fraction of high quality motifs than they did for CRMs (e.g., 56% for singletons vs 33% for 
CRMs for the stringent cutoff). This trend was observed for all four TFs in this study (Figure 4—
figure supplement 1, Figure 4—source data 1). Our results in primary liver tissue are supported by 
an integrative analysis of ENCODE cell lines, which showed that active chromatin states are depleted 
of regulatory motif instances relative to all regions bound by a given TF (Ernst and Kellis, 2013).

After collapsing the four TFs into CRMs, there were still over 40,000 singleton TF binding 
events. We asked if shared singletons show any distinct genomic properties. Shared singleton TF 
binding events show high DNA constraint (Figure 3G), and a larger fraction are found close to the 
transcription start site of annotated genes compared to the CRMs shared in the equivalent number 
of species (Figure 3H). Unlike the equivalently shared CRMs, shared singleton TF binding events gave 

with ChIP-seq data in macaque, dog, mouse, and rat. Singletons and CRMs were considered shared if they over-
lapped at least 10 bp with another TF bound region in the EPO multiple sequence alignment (MSA). (B) Experimentally 
determined combinatorial binding at the blood coagulation F7 locus. Raw sequencing reads from ChIP-seq 
experiments: CEBPA (red), HNF4a (green), ONECUT1 (yellow), and FOXA1 (green) are overlaid and called peaks 
are displayed for each species. ChIP-seq determined TF binding events were assembled into CRMs (black bars) 
underneath the enriched regions (peaks). Grey lines are drawn to illustrate shared CRMs using the EPO-MSA.
DOI: 10.7554/eLife.02626.008
The following source data is available for figure 2:

Source data 1. Table of CRMs and singletons along with the phylogenetic categories they were assigned. 
DOI: 10.7554/eLife.02626.009

Figure 2. Continued
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Figure 3. Phylogenetic filtering of experimentally determined liver TF binding events yield distinct functional enrichments. Results were obtained using 
the programming interface for the online enrichment tool GREAT version 2.02 (McLean et al., 2010) and plotted with custom R scripts. Up to five of the 
most significant enrichments obtained for each of the six analyses are listed on the left. The −log10 of binomial Q values for Disease ontology, HGNC 
gene family, and MSigDB are shown along the x-axis. Bars with a black asterisk indicate significant enrichments using GREAT default parameters 
(binomial and hypergeometric FDR Q-value significance at P ≤ 0.05 with at least twofold region enrichment). The size of the asterisk is proportional to 
the fold enrichment obtained for the given database. See Figure 3—source data 1 for complete list of Q-values, fold enrichments, genes giving the 
enrichments along with results from additional databases. (A) Enrichment analysis of any CRM shared in human plus at least one additional species is 
shown on the left and human only CRMs are shown on the right (Figure 3—source data 1A). (B) Human CRMs (left panel) shared in human and at least 
one non-primate (Beyond Primates) is shown vs Human CRMs (right panel) shared in human and macaque but no other species (Primate only) (Figure 3— 
source data 1B). (C) Enrichment analysis of shared CEBPA CRMs and singletons (Figure 3—source data 1C). (D) Enrichment analysis of shared HNF4A 
Figure 3. Continued on next page
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fewer and less significant enrichments that than the equivalently shared CRMs (Figure 3C–F). Relative 
to CRMs, the enrichments unique to shared singletons, did not appear to be overtly liver specific. 
For example, no significant liver disease ontology enrichments were found for shared singleton 
CEBPA binding events; however, several cancer disease enrichments from various tissues, such as 
in situ carcinoma (q = 1.91 × 10−5), were obtained (Figure 3C).

One consideration about comparing singletons to CRMs is that singleton TF binding events are 
likely to become CRMs as more factors are tested and more peaks are called (see Figure 1—source 
data 1E for a comparison of the stability singleton and CRM categories). Nonetheless, by focusing on 
the singletons that remain singletons in orthologous regions in two or more species, we have been 
able to detect distinct genomic properties that warrant future study.

Shared combinatorial TF binding associates with highly expressed 
liver-specific genes
To compare the functional properties of shared and species-specific CRMs/singletons, we then looked 
at how combinatorial binding and evolutionary constraint correlated with gene expression (Figure 5). 
Human TF binding events in CRMs and singletons were categorized by the number of species they 
were shared in and then associated with the nearest gene. Human liver mRNA expression level of the 
nearest gene was determined by RNA-seq (Kutter et al., 2011). Genes nearest to human-specific 
singletons and CRMs were not significantly different in their expression levels (p = 0.221). In contrast, 
gene expression levels near TFs in shared CRMs were significantly higher than those near shared sin-
gleton-associated genes (p = 2.4 × 10−16) (Figure 5A). This striking p-value is due to several CRMs 
being found close to highly expressed liver genes including albumin, fibrinogen (FGA, FGB, FGG), and 
several acute phase response genes (e.g., CRP, SAA1 etc). We therefore broke down each CRM and 
singleton by transcription factor, which still revealed a significant difference between genes close to 
Deeply shared CRMs relative to singletons (p < 1 × 10−3; Figure 5—figure supplement 1). Using a 
reference transcription data set that comprises RNA-seq data for liver and 15 additional human tissue 
types (E-MTAB-513), we confirmed the above observation and found that the gene expression associ-
ation with liver CRMs, and to a lesser extent singletons, was tissue-specific (Figure 5B). In sum, Deeply 
shared CRMs are associated with genes that are highly expressed in a distinctly liver-specific manner.

Shared CRMs are enriched for tissue-specific biological function
The number of reproducibly bound human regions obtained by ChIP-seq often exceeds the number 
of genes in the genome and so may require prioritization before experimental validation. Ranking 
ChIP-seq peak regions based on peak enrichment scores is one logical way to prioritize ChIP-seq 
peaks (Fisher et al., 2012). We compared the pathway enrichments for all shared CRMs containing 
a specific TF (e.g., the 6278 HNF4A-containing CRMs shared between human and at least one non-
primate) vs the equivalent number of CRMs ranked by the best ChIP-seq peak enrichment score of 
that specific TF (e.g., the top 6278 HNF4A CRMs ranked by HNF4A peak score).

As expected, the HNF4A CRMs ranked by peak intensity showed higher read counts than the shared 
set of CRMs and both CRM sets showed strong, centralized motif enrichments (Figure 6A). However, by 
using overlap of CRMs in the EPO multiple sequence alignment as a filter, we found that shared CRMs give 
an increased number of significant enrichments using the ChIP-seq enrichment analysis tool, GREAT (Figure 
3—source data 1). As observed for our collection of shared CRMs, the most significant enrichments for the 
shared CRMs are related to liver metabolic processes and disease (Figure 6B). Similar results were obtained 
by performing this comparison from the perspective of the other three TFs (Figure 6B).

CRMs and singletons (Figure 3—source data 1D). (E) Enrichment analysis of shared FOXA1 CRMs and singletons (Figure 3—source data 1E). 
(F). Enrichment analysis of shared ONECUT1 CRMs and singletons (Figure 3—source data 1F). (G) Human TFs in CRMs and Singletons were catego-
rized by the number of species in which they are shared with. Profiles of constrained elements (sequence conservation) in a 1-kb window around 
CRMs or singletons were calculated using GERP scores from the 29-way multiple sequence alignments. (H) Genomic location of CRMs and Singletons. 
Proportion of single TFs located near transcription start sites (TSS) increases to >50%, but remains stable for CRMs at ∼20%.
DOI: 10.7554/eLife.02626.010
The following source data are available for figure 3:

Source data 1. Functional enrichment results obtained for CRMs and singletons using GREAT. 
DOI: 10.7554/eLife.02626.011

Figure 3. Continued
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Figure 4. Comparison of TF occupied regions classified as CRMs and singletons. (A) Regions of ±5 kb are represented around the center of CRMs  
or singletons. Reads centered on the summit of each TF are counts subtracted by input reads in 100 bp bins plus and minus 5 kb from the summit. Colored 
boxes indicate CRMs or singletons where a peak was called for a given factor: CEBPA (red), HNF4A (blue), ONECUT1 (orange), and FOXA1 (green). 
Figure 4. Continued on next page
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Lead SNPs from liver-related GWAS overlap Deeply shared CRMs
In order to determine whether shared CRMs associate with human diseases and phenotypes, we 
asked: (1) if the phenotype-associated single nucleotide polymorphisms (SNPs) in a curated collection 
of GWAS (described here as ‘lead SNPs’; Hindorff et al., 2009) overlap our CRMs/singletons in a liver-
related manner; and (2) whether curated collections of these SNPs were enriched for shared CRMs 
(Figure 7, Figure 7—figure supplement 1).

Using hypergeometric testing, we found that liver-related GWAS lead SNPs were enriched for 
nearby (±2.5 kb from a SNP) Deeply shared CRMs. For example, we found lead GWAS SNPs related 
to liver (p = 8.38 × 10−6; 3.7-fold enriched), blood lipid (p = 9.68 × 10−5; 3.3-fold enriched), and drug 
response (p = 1.43 × 10−4; 5.1-fold enriched) categories were all enriched for shared CRMs (Figure 7, 
Figure 7—source data 1A). Repeating this analysis using linkage disequilibrium (LD) measures (r2 ≥ 0.8) 
to define the boundaries of each GWAS SNP gave similar results. For example, liver-related GWAS 
SNPs were enriched for Deeply shared CRMs when LD was taken into consideration (p = 3.20 × 10−9; 
2.4-fold enriched; Figure 7—figure supplement 1, Figure 7—source data 1B). These enrichments 
were not found when using two distinct null models (Figure 7—source data 1C,D).

We then asked if any specific disease traits, as written in the NHGRI GWAS catalog, were 
enriched for shared CRMs. We found that for the 2.5 kb window analysis, only LDL cholesterol 
significantly enriched for Deeply shared CRMs (p = 0.037; 4.54-fold enriched; Figure 7—source 
data 1E), whereas the LD window analysis revealed 11 disease traits that were enriched for Deeply 
shared CRMs (see Table 1; Figure 7—source data 1F). For example, enrichments driven by lead 
SNPs for LDL cholesterol (blood lipid category, p = 4.84 × 10−5; 3.7-fold enriched) involved several 
loci including TRIB1, ABCG8, APOB, SORT1, TOMM40, APOA5 and HNF1A. Lead SNPs for fibrinogen 
(liver category, p = 3.40 × 10−3; 3.4-fold enriched) occurred in LD with the fibrinogen locus. 
C-reactive protein (liver category, p = 1.17 × 10−4; 4.0-fold enriched) enriched for Deeply shared 
CRMs near CRP itself in addition to RORA, MLXIPL, HNF1A, BAZ1B, and IRF1 loci (Table 1; Figure 7—
source data 1G).

In order to explore the functional relevance of these findings, we looked for annotated regulatory 
SNPs in the RegulomeDB database (Boyle et al., 2012) within the 1020 CRM or single TF regions 
we found to be within 2.5 kb of a lead GWAS SNP. Of these 1020 regions, 753 contained at least 
one variant, 90% of which showed evidence of regulatory potential in RegulomeDB (Supplementary 
file 2). In particular, 317 of these 753 regions had TF binding in orthologous regions in additional spe-
cies, making them rational candidates for future functional exploration.

We also asked whether the collection of recently identified ‘super-enhancers’ (Hnisz et al., 
2013), which were enriched for disease loci in a tissue-specific manner, would also enrich for liver-
related lead GWAS SNPs. Our analysis supported the association between super-enhancers and 
immune system related GWAS SNPs reported by Hnisz et al. (with the highest enrichment for  
immune cell GWAS lead SNPs found in ‘super-enhancers’ in cell line CD20, p = 3.24 × 10−6). 
However, unlike what we found for shared CRMs in liver, super-enhancers obtained from the liver 
cancer cell line HepG2 were not enriched by the liver-related lead GWAS SNPs (Figure 7—figure 
supplement 2). This observation may be related to biological differences between primary liver 
tissue and HepG2.

Looking at read counts for all four factors reveal that many of the HNF4A singleton in fact have weak FOXA1 signal. (B) Alignment of FOXA1 de novo 
ChIP-seq motif to the HNF4A motif. Motif comparison (alignment) was performed using compare-matrices from RSAT. The program calculates the 
correlation between two matrices shifting positions; the correlation is normalized based on the width of the alignment to avoid high correlation based 
on few flanking positions.
DOI: 10.7554/eLife.02626.012
The following source data and figure supplement are available for figure 4:

Source data 1. Comparison of motif matches between CRMs and singletons. Chi-square test for differences between the number of peaks associated 
with CRMs and singletons, for each TF, that contained at least one predicted motif using three different p-value thresholds for motif scanning: stringent 
(10−4), moderate (10−3) and lenient (10−2). Blue shadows highlight siginficnat p-values. 

DOI: 10.7554/eLife.02626.013

Figure supplement 1. Comparison of stringent motif matches between CRMs and singletons. 

DOI: 10.7554/eLife.02626.014

Figure 4. Continued
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Figure 5. TFs in Deeply shared CRMs are near genes highly expressed in a tissue-specific manner. (A) Association 
of shared TFs in CRMs and Singletons with human gene expression obtained by RNA-seq in human liver 
(Kutter et al., 2011; E-MTAB-424). TFs in CRMs or Singletons were assigned to the nearest gene, and the FPKM 
Figure 5. Continued on next page
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Shared CRMs are disrupted in known liver-related diseases affecting 
blood coagulation and lipid regulation
To further investigate the functional role of shared CRMs and to test the hypothesis that disruption of 
conserved combinatorial binding can lead to human disease, we overlapped our CRMs and singletons 
data with manually curated regulatory mutations directly linked to human disease (Human Genome 
Mutation Database Professional version; HGMD) (Stenson et al., 2012). This database contains the 
most comprehensive set of curated and functionally validated mutations that have occurred in human 
regulatory DNA regions and have led to a change in disease gene expression. A total of 157 genes 
associated with regulatory mutations overlapped our human ChIP-seq data, 106 of which were in our 
CRMs (Table 2; Supplementary file 3). The Deeply shared CRMs overlapped a set of 47 genes asso-
ciated with regulatory mutations. These 47 genes were clearly enriched for two liver-related biological 
pathways: coagulation and complement factors (p = 9.34 × 10−6; 24-fold enrichment) and lipid 
homeostasis (p = 6.93 × 10−5, 36-fold enrichment) (Figure 8—source data 1A,B). We found multiple 
disease-causing regulatory mutations overlapping our CRMs at promoters of seven critical genes 
in the coagulation pathway (FGA, FGB, F7, F9, F10, F11, F12; Figure 8, Figure 8—source data 1). 
While many of these mutations have been individually known for decades, this is the first time they 
have been put in context of a regulatory network consisting of these liver-enriched TFs. Furthermore, 
repeated observation of rare mutations in the promoter regions of several of the blood coagulation 
proteins correspond to critical positions in predicted DNA binding motifs for the liver-enriched TFs. 
For example,
 
1. Mutations leading to Factor VII deficiency and severe bleeding disorders occur in a promoter region 

harboring a CRM shared in all five species (Figure 8—figure supplement 1A). Several mutations 
(including SNP variant rs561241) within a conserved HNF4A motif have been shown to perturb F7 
transcription leading to hemophilia (Zheng et al., 2011).

2. A critical highly conserved CRM localizes to the F9 promoter (Figure 8—figure supplement 1B). 
Multiple mutations within this region are associated with defective expression of F9 and clinical 
hemophilia (Giannelli et al., 1998). Several of these mutations have previously been shown to 
disrupt the binding of CEBPA and HNF4A (Crossley and Brownlee, 1990; Crossley et al., 1992; 
Reijnen et al., 1993; Giannelli et al., 1998). We recently demonstrated that ONECUT1 binds to 
the −6 site of F9 in human and mouse (Funnell et al., 2013). Inspection of the multiple species 
alignment suggests the same arrangement and spacing of CEBPA, HNF4A, and ONECUT1 motifs 
in the human and macaque CRMs, whereas the mouse and rat ONECUT1 motifs are predicted to 
begin three base pairs upstream.

 
In this analysis of known functional and disease causing regulatory mutations from the HGMD data-

base, it is worth noting that most of the examples we found overlapping Deeply shared liver CRMs 
resided close to the TSS. As most TF binding of the factors we profiled occur outside of proximal 
promoters, it is likely that many more human mutations that regulate genes through long-range inter-
actions remain to be found. Just as gene sequencing has uncovered a diverse array of mutations for 
most disease genes, we expect that disruption of conserved TF bound regions will be found to have 
pathological consequences.

(Fragments Per Kilobase of exon per Million reads) was recorded. In contrast to Singletons, TFs in Deeply CRMs are 
associated with highly expressed genes (adjusted p-values shown). The numbers of target gene associations for the 
singletons and CRMs in categories 1 to 5 are: 19354(S), 32706(CRM); 6325(S), 14669(CRM); 1935(S), 5755(CRM); 
1005(S), 3292(CRM); and 459(S), 2530(CRM). (B) Comparison with CRMs and Singletons to a reference mRNA-seq 
data from 16 human tissues (E-MTAB-513) further shows that relative to singletons, liver-specific CRMs are highly 
expressed in liver, and that each TF contributes to this specificity. The number of gene associations for each 
category in the liver data is shown in white text within the heat map.
DOI: 10.7554/eLife.02626.015
The following figure supplement is available for figure 5:

Figure supplement 1. Association of shared TFs in CRMs and Singletons with human gene expression obtained 
by RNA-seq in human liver (Kutter et al., 2011; E-MTAB-424) broken down by the transcription factor in the 
CRM: (A) HNFA; (B) CEBPA; (C) FOXA1 and (D) ONECUT1. 
DOI: 10.7554/eLife.02626.016

Figure 5. Continued
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Figure 6. Shared HNF4A CRMs unravel more liver related functional classes than do the equivalent number of CRMs with the best peak enrichment 
scores. CRMs containing each TF were analyzed separately. (A) Read count and motif binding weight scores were calculated for: (1) all CRMs (All);  
(2) CRMs shared in human and at least one additional non-primate (Beyond primates); (2) human CRMs shared in macaque only (Primates); and  
Figure 6. Continued on next page
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Discussion
There is a great interest in identifying and mechanistically characterizing regulatory SNPs. Such 
approaches require limiting the genomic search space, finding the function of identified mutations, 
associating the mutation with target gene(s) and addressing the tissue-specificity inherent in transcrip-
tional regulation. To limit the search space, the genome must be distilled to the active functional 
regions where mutations are likely to be pathological. To determine the function of mutations in gene 
control regions, the trans-acting molecules (e.g., transcription factors) whose regulation of a particular 

(3) the equivalent number of CRMs (equal to the number of Beyond primate CRMs) ranked by the SWEMBL peak intensity score for the TF in question 
(Top). (B) Functional enrichments were performed using GREAT comparing the Beyond primate category to the top ranked category. The top five 
enrichments for all comparisons performed were collected and the enrichments, if available are plotted. Databases used for GREAT enrichment analyses 
are indicated by color and are ranked according to the −log10 binomial FDR q-values plotted on the x-axis. Significant enrichments are labelled with an 
asterisk which is sized according to fold enrichment of the given database category.
DOI: 10.7554/eLife.02626.017

Figure 6. Continued

Figure 7. Using a window of ±2.5 kb, lead SNPs obtained by GWAS were enriched for shared CRMs in a tissue/
disease specific manner. Heatmap representation of the −log10 of Bonferroni corrected p-values from hypergeo-
metric testing for enrichment of CRMs or single TFs (broken down into categories related to their degree of 
conservation) by lead GWAS SNPs obtained from the NHGRI catalog (Hindorff et al., 2009). The NHGRI catalog 
disease traits were summarized into 25 categories prior to enrichment. Each GWAS lead SNP was given a ±2.5-kb 
window prior to identifying overlapping CRMs/singletons.
DOI: 10.7554/eLife.02626.018
The following source data and figure supplements are available for figure 7:

Source data 1. Full tables of 2.5 kb and LD GWAS enrichments performed in Figure 7 and Table 1. 
DOI: 10.7554/eLife.02626.019
Figure supplement 1. Using linkage disequilibrium (r2 ≥ 0.8), GWAS lead SNPs were enriched for shared CRMs  
in a tissue/disease specific manner. 
DOI: 10.7554/eLife.02626.020

Figure supplement 2. Super-enhancer enrichments obtained by GWAS lead SNPs. 
DOI: 10.7554/eLife.02626.021
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locus is disrupted need to be identified. Finally, because transcriptional regulatory networks are highly 
tissue-specific, regulatory regions can only be accurately done within the tissue concerned.

In this study, we demonstrated that genomic regions harboring shared combinatorial TF binding 
were enriched in a tissue-specific manner for essential biological pathways, common DNA variants 
associated with complex traits, and regulatory DNA mutations associated with rare diseases. In addi-
tion to the requisite measures of ChIP-seq data quality and reproducibility, it could be argued that 
combinatorial binding of transcription factors, relevant to the cell type of interest, increases the likeli-
hood that the region identified is biologically important. However, more than half of the human liver 
TF binding sites detected in our study are in CRMs. In many cases, this makes CRM clustering on its 
own an insufficient filter for prioritizing TF binding sites for further study. Given the rapid turnover of 
TF binding within a mammalian lineage (Stefflova et al., 2013), requiring combinatorial binding to be 
shared in multiple mammals is a strict filter that provides evidence that these biochemical interactions 
are under selection, even if the percent identity in the sequence alignments themselves is not excep-
tional. Supporting this idea, we found the percentage of CRMs shared between human and macaque 
(∼35%) and mouse and rat (∼34%) is considerably lower than the average human-rhesus sequence 
identity of ∼90% (Rhesus Macaque Genome Sequencing and Analysis Consortium et al., 2007)  
or the mouse-rat identity of ∼93% (Gibbs et al., 2004).

Although insightful, the costs and challenges of performing comparative combinatorial TF binding 
in multiple species, tissues, developmental stages, and environmental conditions limits its widespread 
use as a method for finding enhancers. Computational strategies that forgo strict DNA constraint for 
more flexible criteria, such as shared clusters of motifs, show great promise (Gordân et al., 2010). For 
example, a recent computational strategy that relied upon conservation of clusters of motifs, rather 
than conserved DNA sequence, was able to fine map regulatory SNPs in select GWAS loci (Claussnitzer 
et al., 2014). The results and the strong functional enrichments, we observe with shared combinatorial 
binding further support such approaches.

Table 1. Table of GWAS Disease Traits that significantly enriched for Deeply shared CRMs

Disease trait  
(NHGRI)

Category  
(this study)

Number of Deeply  
shared CRMs

Deeply shared  
CRM enrichment  
(adjusted p-value) Fold enrichment Closest genes

Other metabolic traits other measurement 11 4.42E-05 6.42 CRP, HNF1A, PANK1

LDL cholesterol blood lipid 20 4.84E-05 3.71 TRIB1, ABCG8 PSRC1, DOCK7, 
APOB, HNF1A, LDLR, TOMM40, 
HNF1A, APOA5

C-reactive protein liver 17 1.17E-04 3.97 MLXIPL, RORA, CRP, HNF1A, 
TOMM40, BAZ1B, IRF1

D-dimer levels liver 11 6.87E-04 4.99 NME7, FGG, EDEM2, FGA

Fibrinogen liver 15 3.40E-03 3.40 FGB, FGA, FGG

Lung cancer cancer 14 4.39E-03 3.46 C2, CRP, HSPA1A, TP63

Mean corpuscular 
hemoglobin

blood 8 8.57E-03 5.02 GCDH, USP49, RCL1, SLC17A1, 
TFRC, MPST

Protein quantitative  
trait loci

other measurement 14 2.49E-02 2.93 CRP, IFT81, BCO2

Serum markers of  
iron status

other measurement 13 2.67E-02 3.03 TCP1, MRPL18 , TF, SLC17A1, 
HIST1H4C, MPST, GHR

Triglycerides blood lipid 12 2.84E-02 3.16 TRIB1, MLXIPL, DOCK7, BAZ1B, 
GALNT2, TRIB1, APOA5

Select biomarker traits other measurement 8 3.89E-02 4.08 CRP, OR10J5

Lead GWAS SNPs and their associated Disease Traits were obtained directly from the NHGRI catalog (Hindorff et al., 2009). An LD window (r2 ≥ 0.8) 
around each SNP was obtained and regions with identical Disease Traits were collapsed into a single interval. These Disease-Trait–associated intervals 
were then intersected with all CRMs and Singleton categories as in Figure 7. This table shows Disease Traits that were significantly enriched for Deeply 
shared CRMs. The summarized disease category used in Figure 7, the number of Deeply shared associated CRMs, the Bonferroni corrected p-values 
from the hypergeometric test, fold enrichment of Deeply shared CRMs, and the nearest gene to the Deeply shared CRM, if it is protein coding, are 
shown. Figure 7—source data 1G contains detailed enrichment information including SNP ID and primary GWAS publication (PMID).
DOI: 10.7554/eLife.02626.022
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It is also becoming clear that integrative approaches to enhancer discovery can outperform pre-
dictions made using single criteria (Erwin et al., 2014). We compared our CRM and singleton data 
to enhancer predictions made by a recent integrative approach (EnhancerFinder; Erwin et al., 
2014). EnhancerFinder is trained on experimentally verified human VISTA enhancers and utilizes 
evolutionary conservation, DNA motifs, and functional genomics data (such as p300 and histone 

Table 2. HGMD disease variants falling within motifs of shared CRMs and singletons

Coordinates Gene name HGMD (regulatory, disease mutations) Disease mutations

Shared CRM 3:30622781-30623121 TGFBR2 Marfan syndrome II 1

3:37009728-37010105 MLH1 Colorectal cancer, non-polyposis 8

3:95175129-95175686 PROS1 Protein S deficiency 2

3:172227012-172227583 SLC2A2 Diabetes 1

4:187423808-187424193 F11 Factor XI deficiency 1

5:176769019-176769427 F12 Factor XII deficiency 2

7:75769704-75769860 HSPB1 Amyotrophic lateral sclerosis 1

9:35647685-35648108 RMRP Cartilage-Hair hypoplasia* 60

9:103237817-103238177 ALDOB Fructose intolerance 1

11:57121333-57121845 SERPING1 Angioneurotic oedema 3

11:116213420-116213833 APOA1 Apolipoprotein A1 deficiency; Atherosclerosis with  
coronary artery disease

2

12:119900361-119900931 HNF1A Diabetes 9

13:112807935-112808278 F7 Factor VII deficiency 15

17:39777939-39778164 GRN Amyotrophic lateral sclerosis; Frontotemporal dementia 2

19:11060834-11061300 LDLR Hypercholesterolaemia 23

19:40465042-40465277 HAMP Haemochromatosis 2

19:50140788-50141367 APOC2 Apolipoprotein C2 deficiency 1

20:42417527-42417906 HNF4A Diabetes 13

X:138440311-138440689 F9 Haemophilia B 22

Shared singleton 1:55277551-55277787 PCSK9 Hypercholesterolaemia, autosomal dominant 1

2:47483486-47483635 MSH2 Colorectal cancer, non-polyposis 1

5:147191404-147191657 SPINK1 Pancreatitis 5

11:107598900-107599060 ATM Ataxia telangiectasia 1

17:3486175-3486485 CTNS Cystinosis 2

17:27840752-27841062 CDK5R1 Mental retardation 1

19:54160105-54160315 FTL Cataract, bilateral 1

X:66680386-66680665 AR Prostate cancer 1

Human only CRM 1:113300254-113300535 SLC16A1 Exercise-induced hyperinsulinism 1

1:224075148-224075491 EPHX1 Hypercholanaemia 1

3:170965492-170965762 TERC Aplastic anaemia; Dyskeratosis congenita;  
Myelodysplastic syndrome

3

8:64161127-64161334 TTPA Ataxia, isolated vitamin E deficiency 1

10:27429312-27429620 ANKRD26 Thrombocytopaenia 12

13:59636050-59636246 DIAPH3 Auditory neuropathy 1

X:146800975-146801150 FMR1 Fragile X mental retardation syndrome 3

X:153643911-153644318 DKC1 Dyskeratosis congenita, X-linked 1

HGMD disease variants falling within shared CRMs, shared singletons and human only CRMs. The number of unique regulatory mutations designated as 
‘disease-mutations’ in the HGMD database recorded within each CRM or singleton is shown.
*RMRP is a non-coding RNA that is found in HGMD associated to several related diseases.
DOI: 10.7554/eLife.02626.023
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modifications) as classifiers. We compared the 84,301 human developmental enhancers predicted 
by EnhancerFinder to our data. While all phylogenetic categories overlapped significantly (Heger  
et al., 2013), the Deeply shared CRMs gave the highest overlap (∼30%) with the EnhancerFinder 
predictions. The evidence we present here for the functional relevance of Deeply shared combinatorial 
TF–DNA interactions in primary liver tissue suggests that results from such empirical studies in 
primary tissues will be another valuable source of information which can be utilized in integrative 
methods for enhancer prediction.

Just as using DNA constraint as a sole criteria for enhancer finding has its limitations, using filtering 
approaches that require conserved combinatorial binding will also miss important regulatory events 
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Figure 8. Shared CRMs link TF binding with disease-causing variants in coagulation and lipid regulation in the 
liver. Human CRMs that had TF binding in syntenic regions in at least two additional species (n = 5046) were 
intersected with the HGMD database. All protein coding genes associated with a regulatory mutation were 
analysed. Relationships among these genes were investigated and a representative analysis obtained using 
GeneMANIA (‘Materials and methods’). Genes (large grey circles) are connected by pathways and protein–
protein interactions are shown. The smaller white circles are genes predicted by GeneMANIA to be in the 
network. The 47 unique genes were associated into 35 clusters using DAVID (Huang da et al., 2009). Eight 
Gene Ontology terms from the 35 clusters had an adjusted p-value of less than 0.005 (Figure 8—source data 1A; 
Supplementary file 3). 4 of the 8 significant GO categories containing the most genes are illustrated: response to 
wounding (open red circle, p = 3.16 × 10−9; 9.9-fold enriched); blood coagulation (red dot, p = 9.34 × 10−6; 22.0-fold 
enriched); response to organic substance (open yellow circle, p = 1.05 × 10−5; 6.4-fold enriched); and lipid homeo-
stasis (yellow dot, p = 6.93 × 10−5; 36.2-fold enriched).
DOI: 10.7554/eLife.02626.024
The following source data and figure supplements are available for figure 8:

Source data 1. Table of DAVID enrichments used to annotate Figure 8 and the HGMD genes that overlapped our 
CRMs and singletons in the different phylogenetic categories. 
DOI: 10.7554/eLife.02626.025
Figure supplement 1. CRMs link TF binding with disease-causing variants in blood coagulation. 
DOI: 10.7554/eLife.02626.026
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near genes of interest. For example, the common SNP rs2279744 (also known as ‘SNP 309’) is found 
in the first intron of the MDM2 and contributes to carcinogenesis in humans by increasing levels of 
MDM2, a negative regulator of TP53 (Bond et al., 2004). This SNP has been shown to enhance the 
binding of the SP1 transcription factor at a site that does not have a clear orthologous mouse motif. 
For this reason, transgenic mice with human intron 1 alleles have been created and show a cancer 
phenotype (Post et al., 2010). This example illustrates where strictly using sequence conservation 
alone would fail to identify a functional regulatory variant. Interestingly, in our data we found a Deeply 
shared human HNF4A singleton TF binding event spanning rs2279744. Although the role of HNF4A at 
the MDM2 intron 1 has yet to be characterized, rs2279744 also serves as an example where excluding  
a presumptive singleton TF binding events from functional analyses would have missed an important 
regulatory variant.

Our results suggest that conserved liver regulatory regions reside near SNPs or rare mutations 
associated with liver related phenotypes. The most striking disease associations we observed 
involved the blood coagulation pathway. This pathway is perhaps one of the best-studied biological 
pathways and has long served as a model system for understanding human disease gene mutations. 
This rich history allowed us to observe, perhaps for the first time, how recurrent TF binding muta-
tions found within conserved combinatorially occupied TF binding sites can be afflicted on several 
members of the same pathway. Conserved combinatorial control regions were also found near pro-
teins that are part of the coagulation and complement system (e.g., C1R, C1S, C2, C4B, C4B, C4BPA, 
C4BPB, C5, C6, C7, C8A, C8B, C8G, C9, CFB, CFH, and CPB2). The interplay between the coagula-
tion and complement system proteins has long been appreciated (reviewed by Markiewski et al., 
2007), and our results suggest that their gene expression in the liver is coordinated by conserved 
cis-regulatory modules.

Overall, the observation of recurrent phenotype-causing regulatory mutations in a single path-
way is likely a phenomenon that occurs in other tissues and biological pathways. Our study  
suggests that identifying sites of shared combinatorial binding will be relevant criteria for assigning 
pathological significance to candidate disease variants uncovered in whole genome sequencing 
studies.

Materials and methods
Molecular biology and genomics
Tissue preparation
Tissues from all five species were treated post-mortem with 1% formaldehyde as previously described 
(Schmidt et al., 2009). The dog liver material (Cfam; 2 adult males; 14 months of age) was obtained 
from commercial sources (Harlan). Human liver material (Hsap, 2 males, unknown age) was obtained 
from the Liver Tissue Distribution Program (NIDDK Contract #N01-DK-9-2310) at the University of 
Pittsburgh and from Addenbrooke's Hospital, Cambridge under the human tissue license (08/H0308/117). 
Mmus (adult C57BL6/J males, 2.5 months of age) was obtained from the CRI under Home Office 
license PPL 80/2197. Macaque (Mmul) material was purchased from the CFM, UK.

ChIP-Sequencing
The CEBPA antibody sc-9314 (Santa Cruz Biotech, CA) and HNF4a antibody ARP31946 (Aviva 
Biosystems, CA) were used as previously described (Schmidt et al., 2010). FOXA1 antibody ab5089 
(Abcam, UK) has been previously used for FOXA1 ChIP–chip and ChIP-seq experiments in human and 
mouse (Motallebipour et al., 2009; Hurtado et al., 2011). ONECUT1 (HNF6) anti-human polyclonal 
antibody sc-13050 (Santa Cruz Biotech) has previously been described for human and mouse ChIP–
chip (Odom et al., 2007; Wilson et al., 2008). Further details on the antigens used to raise the antibodies 
used for ChIP-seq are shown in Figure 1—source data 1D. Briefly, the immunoprecipitated mate-
rial was end-repaired, A-tailed, ligated to single- or paired-end sequencing adapters, amplified by 
18-cycles of PCR and size selected (200–300 bp) followed by single end sequencing on an Illumina 
Genome Analyzer II according to the manufacturer's instructions.

Data
ChIP-seq data generated for this study includes: CEBPA, FOXA1, ONECUT1, and HNF4A in rhesus 
macaque, FOXA1 in human, and FOXA1 and ONECUT1 in dog. Experiments used in this study that 
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have been previously reported by our team include: ChIP-seq experiments for CEBPA and HNF4A for 
human and dog (Schmidt et al., 2010; E-TABM-722); ChIP-seq for Hnf4a, Cebpa, and Foxa1 in 
C57BL6/J mice (E-MTAB-1414), as well as for Brown Norway rat (E-MTAB-1415) (Stefflova et al., 2013); 
Human and mouse ONECUT1 ChIP-seq (E-MTAB-890) (Funnell et al., 2013); and RNAseq data for all 
five species (Kutter et al., 2011; E-MTAB-424). To facilitate analysis of this data set by others, all ChIP-
seq files used here have been deposited in ArrayExpress under a single accession number 
(E-MTAB-1509). We filled genomic gaps in the coding regions for dog FOXA1 and macaque ONECUT1 
and deposited them under NCBI accessions numbers JN601139 and JQ178331 respectively. Illumina 
BodyMap data were obtained from E-MTAB-513.

Computational biology and analysis
Sequence alignment and peak calling
ChIP-seq and input reads from each species were aligned with MAQ (Li et al., 2008) using default 
parameters to their respective genome assemblies (human [NCBI 36], macaque [Mmul_1], mouse 
NCBI m37; rat [RGSC3.4] and dog [CanFam2.0]). All sequence, genome annotations, and comparative 
genomics data were taken from Ensembl release 52.

For each TF, at least two biological replicates were performed and aligned to their respective genomes 
(Figure 1—source data 1A–C) (Landt et al., 2012). Sequence reads from high quality replicates were 
pooled prior to calling peaks used for all comparative analyses and building CRMs. Peak calling was 
performed using SWEMBL with parameters ‘-R 0.005 -i –S’ as described previously (http//www.ebi.
ac.uk/∼swilder/SWEMBL/; Schmidt et al., 2012). The correlation of normalized read counts between 
biological replicates in the ChIP-seq data was further assessed using the DiffBind Bioconductor package 
(Stark and Brown, 2011) (Figure 1—source data 1C). ChIP-seq data was also assessed using the quality 
control standards proposed by the ENCODE consortium and further described by Marinov et al. (2014). 
In the case where the second replicate could validate the first replicate, but gave substantially less peaks, 
we only used the one replicate that gave the most ChIP-seq binding events for our downstream com-
parative analyses. This occurred for: macaque CEBPA, macaque HNF4A, macaque FOXA1, and dog 
ONECUT1. Although the human female ONECUT1 was a good replicate, we only used peaks from the 
human male ONECUT1 experiment to confine our comparative analysis to one sex.

Motif discovery
Motif discovery was conducted with MEME (Bailey et al., 2009) using the default settings and the 
following parameters (-revcomp -maxw 20 -minw 6 -nmotifs 5). We selected the top 500 peaks 
ordered by input-corrected read depth and used the 25 bp centered on the identified summit of the 
peak as our input for the motif discovery analysis. As we previously reported for CEBPA and HNF4A, 
the position weight matrices (PWM) for FOXA1 and ONECUT1 were nearly identical between spe-
cies (Figure 1—figure supplement 1) (Schmidt et al., 2010). For Figure 8—figure supplement 1, 
we used the mouse PWMs for each TF to identify motif location within all of our CRMs using the 
programs PERL TFBS (Lenhard and Wasserman, 2002) and CENTIPEDE (Pique-Regi et al., 2011). 
This motif location information was used in conjunction with ChIP-seq signal to manually annotate 
promoters and regulatory variants (Figure 8—figure supplement 1).

Search for secondary motifs was done using peak-motifs from RSAT (Thomas-Chollier et al., 2011) 
with default parameters. peak-motifs uses a word count approach which enables users to input large 
sequence sets and recover motifs in a short time, in contrast with most alignment based approaches 
like MEME. CRMs and Singleton binding regions were classified in accordance to their conservation 
status, and these separated sets were used as input. Output motifs were compared with motifs discov-
ered using MEME (see above) and external motifs coming from JASPAR (Vertebrate core 2009 version) 
(Sandelin et al., 2004) and UniPROBE (Newburger and Bulyk, 2009) (2009 version) databases, in 
order to assign identity to the discovered motifs.

Motif comparison was performed using compare-matrices from RSAT. The program calculates the 
correlation between two matrices shifting positions; the correlation is normalized based on the width 
of the alignment to avoid high correlation based on few flanking positions (Supplementary file 1).

Cis-regulatory module (CRM) construction
We first computed the distances separating any two TF summits along the genome. ChIP-seq peaks 
were clustered into CRMs when the peak summits from at least two distinct TFs (e.g., CEBPA and 
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HNF4A) fell within 300 bp (see Figure 1 for graphical explanation). (Figure 1A, Figure 1—figure 
supplement 3). All other TFs were treated as singletons.

Interspecies overlap of transcription factor binding and CRMs
Shared binding events and CRMs were identified using the 9-way Enredo-Pecan-Ortheus (EPO; Paten 
et al., 2008) multiple sequence alignments from the Ensembl Compara database (Flicek et al., 2010). 
We performed these comparative analyses requiring different overlaps within the MSA criteria (1 bp, 
10 bp, 25 bp, and 50 bp) (Figure 1—source data 1G). This range of parameters did not overtly affect the 
number of shared CRMs we retrieved. For the results presented, we define a CRM (or single TF) occupied 
region to be shared if it overlaps at least 10 bp of a CRM (or single TF) occupied region in a second species. 
See Figure 2—source data 1 for all the CRMs and singletons along with their phylogenetic categories.

Liver RNA-seq data analysis
Liver RNA-seq data from the same species were used to analyze if CRM status and conservation were 
related to gene expression levels. Polyadenylated mRNA levels were assessed using previously 
described RNA-seq data (E-MTAB-424; Kutter et al., 2011). Briefly, trimmed 36 bp reads were aligned 
using TopHat and FPKM estimates were obtained using Cufflinks (Trapnell et al., 2012) for all features 
annotated in Ensembl 52. Individual TF binding events and CRMs were associated to the nearest gene. 
The number of shared species for individual TF binding events and CRMs were recorded and associ-
ated with expression data.

Illumina Body Map analysis
We retrieved raw FASTQ files from ArrayExpress (accession E-MTAB-513). We first filtered these data 
with prinseq-lite (v0.15) and fastx (v0.0.13): we trimmed both read ends with a quality threshold of 20, 
and we then discarded those reads that were shorter than 35 nucleotides, had more than 5% of Ns, a 
dust score bigger than 10 (i.e., low complexity reads), and more than 5% of the bases with a quality 
inferior to 30. This subset of high quality reads was then mapped to the genome using BWA (v0.5.9, 
default options). We retrieved mapped reads and filtered them further by removing reads with a map-
ping quality below 20 (including multireads). In the case of paired-end data, we also removed all reads 
that were not properly paired. Finally, we calculated exon expression levels using htseq-count (HTSeq 
v0.5.3p3) and averaged those to produce gene expression estimates. TF binding sites not found in 
CRMs (Singletons) or within CRMs (Modules) were associated with the nearest gene. The FPKM 
(Fragments Per Kilobase of exon per Million reads) for each gene was recorded (obtained from the 
Human BodyMap 2.0 dataset from Illumina) and displayed as a heatmap (Figure 5).

Comparison to ENCODE data
We first compiled data relevant to transcriptional regulation from ENCODE, for all cell lines. For each 
ENCODE data set, we then calculated its observed overlap with each of our ChIP data sets (i.e., ‘Deeply 
shared CRMs’, and ‘Shared Singletons’) by counting the number of regions that overlap by at least 1 bp. 
We then built a distribution of expected overlap values from 1000 iterations of randomizing the input 
regions, by shuffling each one into a random genomic region chosen from among the DNaseI hypersen-
sitive regions in any cell type (i.e., only shuffling them into possible regions of open chromatin, as 
a conservative estimate of possible regions where TFs might bind). The distribution of the overlap scores 
from the randomized data resembles a normal distribution, which we used to generate a Z-score and 
p-value for the observed number of peaks that overlap each real data set (see Supplementary file 1).

Functional enrichment analyses using GREAT
Functional enrichment of ChIP-seq data was performed using the online tool GREAT version 2.0.2 
(McLean et al., 2010). Importantly, GREAT is designed for ChIP-seq data analysis unlike hypergeomet-
ric enrichment analyses used for gene expression data. Hg18 assembly was used with the Association 
Rule: Basal+extension: 5 kb upstream, 1 kb downstream, 1000 kb max extension (Figure 3, Figure 6). 
GREAT figures were produced with an in-house R tool and are ranked according to the same default 
criteria used by the GREAT (binomial FDR q-value is ≤0.05 with a significant hypergeometric FDR 
q-value and a minimum region fold enrichment of 2). The −log10 binomial FDR q-values were plotted 
on the x-axis. Q-values for up to a maximum of five of the most significant enrichment categories 
obtained for each test data set are shown. Significant enrichments are labeled with an asterisk, which 
is drawn proportional to the fold enrichment value (Figure 3—source data 1).
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Overlap of shared CRMs with curated human regulatory mutations
Human CRMs that had TF binding in syntenic regions in at least two additional species (n = 5046) were 
intersected with the Human Gene Mutation Database (HGMD; professional version). A representative 
network analysis of these genes was obtained using the GeneMANIA server using default parameters 
(Warde-Farley et al., 2010). (Figure 8, Figure 8—source data 1). Using this data and the Default 
parameters for its Pathway analysis, GeneMania drew upon information from six sources (five of which 
are within Pathway Commons) and the sixth being Wu et al. (2010). For its physical interaction anal-
ysis, it utilized 190 data sources supported by five data sets from iRefIndex (Razick et al., 2008) and 
one study in BioGrid (Zanon et al., 2013). Functional annotation enrichment of these genes was per-
formed using DAVID (Huang da et al., 2009).

Location and GERP analysis of CRMs and singletons
To define the locations of each regulatory region, we sliced the genome into categories: TSS ±3 kb, 
intronic, intergenic, and exonic. We obtained all transcripts (exons and introns) defined by the Ensembl 
genebuild, keeping the longest features. Any regions falling within ±3 kb of a TSS was characterized 
as the TSS ±3 kb category. In the event of complex gene arrangements or regions bridging two cat-
egories, we prioritized the locations as follows: TSS ± 3 kb > intron > intergenic > exon. Conservation 
scores were obtained from the Ensembl Compara database (Flicek et al., 2010). Genomic Evolutionary 
Rate Profiling (GERP; Cooper et al., 2005) score was used to calculate the conservation of each nucle-
otide in multi-species alignment The multiple alignment used to derive GERP score is the 29-way EPO 
alignment. For CRMs and singletons, GERP scores were extracted for each base pair ±1 kb of the 
center of the CRMs or the peak summit for singletons.

Intersecting GWAS with shared CRMs
Linked SNPs and r2 values were obtained using the Ensembl Variation Perl API (Rios et al., 2010) with 
the 1000 Genomes Project pilot 1 (1000 Genomes Project Consortium et al., 2010) low coverage 
CEU panel genotypes. Linkage disequilibrium measures were calculated between target SNPs from 
the NHGRI GWAS catalog (Hindorff et al., 2009) up to a maximum of 100 kb upstream and down-
stream of the lead SNP. Prior to overlapping with CRMs/singletons, windows around each SNP were 
calculated based on the largest genomic interval between two SNPs in linkage disequilibrium with the 
lead SNP (r2 ≥ 0.8). Alternatively, each GWAS lead SNP was given a window of ±2.5 kb. The GWAS 
catalog (25 August 2011) was manually summarized into 25 categories using the given Disease Trait, 
Experimental Factor Ontologies (EFO; Malone et al., 2010), and the primary literature. The motiva-
tion for this classification was to group GWAS studies that had a clear tissue-specificity (e.g., liver, im-
mune system) or disease type (e.g., diabetes, cancer) (see Figure 7—figure supplement 1 for overview 
of classification and Figure 7—source data 1H for the disease trait/summary key used). Lead SNPs 
whose window overlapped were collapsed into a single interval. Identical disease trait/summaries for 
lead SNPs within the same interval were counted only once.

We implemented two null models to further test the significance of the enrichments we found. First, 
we shuffled the GWAS SNP summary annotation 1000 times. Using each random set, we annotated 
CRMs and singletons with the summaries assigned to overlapping SNPs as described for Figure 7. We 
then calculated the enrichment for each summary term in the various phylogenetic categories. Second, 
we created a random set of SNPs from the full list of GWAS lead SNPs that matched the minor allele 
frequency and distance to transcription start site that we observed in our analyses in Figure 7. This was 
repeated 1000 times to create a null distribution of p-values. We considered an enrichment significant 
if less than 5% of the 1000 p-values obtained from either of the two null models had an enrichment 
p-value equal or lower to the one obtained using the original GWAS SNPs summary annotation sample 
before multiple testing correction.

Analyses were also performed by collapsing the NHGRI Disease Traits (see Table 1). All hypergeometric 
tests and heatmap plots were performed using R and were corrected for multiple testing.
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