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Abstract Rashid et al. (2016) questioned the use of the Mg-/Ca-based sea surface temperature (SST) data
from the subpolar North Atlantic Ocean as well as the alkenone-based SST data from the western tropical
Indian Oceanwe used to reflect the winter SSTs or regional changes in the Holocene SSTs. We first would like to
reemphasize that the main message we wanted to convey in our article is that the East Asian winter monsoon
(EAWM) strength decreased and then increased again during the Holocene but with a substantial lag in
southern China as compared to northern China. We, of course, wanted to back up our model results with
published SST data that may have detected such an asynchronous variation in the EAWM. For convenience, we
used a series of proxy records extracted from the extended Global database for alkenone-derived HOlocene
Sea-surface Temperature (GHOST) database that were initially intended to provide a template of Holocene SST
trends for model/data comparison purpose (http://doi.pangaea.de/10.1594/PANGAEA.737370). Rashid et al.
(2016) questioned our model/data comparison exercise, arguing that the data we present in Zhang et al.
(2015a) cannot be used to track leads and lags in winter SSTs in the North Atlantic and northern Indian Ocean.
Belowwe address point by point the issues raised by Rashid et al. (2016) and thank the authors for giving us the
opportunity to sharpen our model/data comparison analysis.

1. SST of the Subpolar North Atlantic Ocean

The first point raised by Rashid et al. [2016] concerns a series of proxy SST data from the northwestern Atlantic
Ocean core OCE326-26GGC that was used to indicatemiddle latitudeNorth Atlantic boreal winter SST variations
during the Holocene, especially for the rising trend in SSTs between 4.5 ka and 2 ka [Zhang et al., 2015a,
Figure 11b3], which is just the curve of the Mg-/Ca-based SST from the planktonic foraminifera Globigerina
bulloides from the Laurentian Fan core OCE326-26GGC [Keigwin et al., 2005, Figure 5b]. This curve is referred to
as Figure 1b2 in Rashid et al. [2016]. After having carefully checked the data and curves in our paper [Zhang et al.,
2015a], we realized that the citation of Sachs [2007] for the Mg-/Ca-derived SST from the core OCE326-26GGC is
a misuse of Keigwin et al. [2005], and we thank Rashid et al. [2016] for reporting us this mistake.

Then, Rashid et al. [2016] question our interpretation of the Laurentian Fan core OCE326-26GGC SST results in
terms of seasonality and depth habitat. We acknowledge that seasonality and depth habitat in this region
and elsewhere is a long-standing debate so that different interpretations and opinions may vary among
different authors [see, e.g., Hillaire-Marcel and de Vernal, 2008]. As mentioned by Rashid et al. [2016], G.bulloides
seasonality may vary upon latitudes and cite, in particular, the study by Tolderlund and Bé [1971]. This paper
reports seasonal fluxes of G.bulloides beingmaximum during summer at two stations located at ~56° and 53°N,
and during winter at three stations located at ~44°, 35°, and 32°N in the northwestern Atlantic [see Tolderlund
and Bé, 1971, Figure 5]. Core OCE326-26GGC being located at 43°N, the study by Tolderlund and Bé [1971], tends
to confirm our interpretation of OCE326-26GGC core in terms of winter SST.

Rashid et al. [2016] then turn to core MD99-2251, that was recovered further to the north and hence may be
located in a region where G. bulloides is more sensitive to summer temperatures [Tolderlund and Bé, 1971].
We, however, did not discuss this record in length since, as we quoted, “The core however was collected from
an area at the boundary of negative anomalies identified in the KCM simulated SST EOF1 component
(Figure 11a)” [Zhang et al., 2015a]. However, Rashid et al. [2016] finish their comment on core MD99-2251
by comparing its Mg/Ca signal to the one published in Berner et al. [2008] that represent August SSTs
and point out that the data “do not show any rising trend in SSTs at 4.5 ka either” [Rashid et al., 2016].
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Although Rashid et al. [2016] do not
develop further this remark, we find it
encouraging that August SST does not
resemble to the MD99-2251Mg/Ca sig-
nal that we initially suggested as being
reflective of winter temperature.

In addition, we would like to perform
further comparisons between model
results and proxy records to confirm our
results as model-data comparisons can
reduce the seasonal bias in proxy records
[Schneider et al., 2010; Lohmann et al.,
2013]. Mg/Ca records generally reveal
warming trends in the subtropical and
subpolar North Atlantic (north of 30°N)

except the eastern part of the subtropical North Atlantic during the Holocene (Figure 1, Table 1), which fit well
with modeled winter and spring SSTs (Figures 2a and 2b) but differ somewhat from summer SSTs [Zhang et al.,
2015b] as estimated in the Kiel Climate Model (KCM) Holocene transient simulation (HT) simulation [Jin et al.,
2014]. The warming trends in the subtropical and subpolar North Atlantic (north of 30°N) can be attributed to
the increasing winter insolation (Figure 3) [Liu et al., 2003; Came et al., 2007; Leduc et al., 2010]. North Atlantic
SSTs tend to extend their memories from winter to spring as shown in Figure 2c showing high correlations
between winter and spring SSTs on interannual to interdecadal timescales even when the linear trends (insola-
tion forcing) were removed (Figure 2d), generating similar modes in the changing trends of winter and spring
SSTs during the Holocene in terms of spatial pattern and amplitudes (Figures 2a and 2b) in spite of significantly
different changing trends in winter and spring insolation (Figure 3). The lagged response of spring SSTs to winter
insolation has also been suggested by other studies [e.g., Laepple and Lohmann, 2009; Timmermann et al., 2014].
These suggest that variability in spring SSTs in the North Atlantic during the Holocene probably resulted from
winter SSTs. Winter SSTs in the North Atlantic store their signals not only in winter water but also in spring water.
Therefore, Mg/Ca records in the subtropical and subpolar North Atlantic can reflect winter SSTs even if there were
no evidence for a calcifying population of planktonic foraminifera being present in winter as planktonic
foraminifera records (both N.pachyderma (s) and G.bulloides) in this area can record spring ocean conditions
[Jonkers et al., 2013; Rashid et al., 2016] that receives signal from winter SSTs.

2. Western Indian Ocean SST

Rashid et al. [2016] then turn to the reliability of our interpretation of the alkenone-derived SST record from
core MD77-194. They start by arguing that long-distance transport of alkenones may obscure the SST signal
from the region. This process is of course probably at least partly at play at this site, and we further note that
such process may even alter foraminifera at other locations [van Sebille et al., 2015], in the same manner than

Figure 1. Mg-/Ca-based SST linear trends (°C/9.5 ka) during the Holocene
(9.5–0 ka BP) over the North Atlantic. Summary of Mg/Ca records are
described in Table 1.

Table 1. Summary of Mg/Ca Records Used in the Study

ID Core name Latitude (°N) Longitude (°E) Linear trend (°C/9.5 ka) Reference

1 RAPID-12-1 K 62.09 �17.82 0.7 Thornalley et al. [2009]
2 ODP984 61.425317 �24.08242 1.4 Came et al. [2007]
3 MD99-2251 57.447833 �27.90783 1.2 Farmer et al. [2011]
4 OCE326-GGC26 43.483 �54.867 �0.9 Keigwin et al. [2005]
5 MD02-2575 29.0017 �87.1188 �2.0 Nürnberg et al. [2008]
6 ODP999 12.75 �78.733 0.9 Schmidt et al. [2004]
7 VM28-122 11.567 �78.417 0 Schmidt et al. [2004]
8 PL07-39PC 10.7 �65.942 �0.2 Lea et al. [2003]
9 MD03-2707 2.502 9.395 �1.7 Weldeab et al. [2007a]
10 GeoB4905-4 2.5 9.39 �0.8 Weldeab et al. [2007b]
11 BOFS31_1K 18.9979 �20.1621 �0.4 Elderfield and Ganssen [2000]
12 MD99-2334 37.801167 �10.17133 4.0 Skinner and Elderfield [2005]
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for virtually every single proxy record from the marine realm. This process cannot be avoided, though, but
other records suggest that the alkenone-based winter SST trends we present in Zhang et al. [2015a] are
not an artifact (see detailed discussion below).

Rashid et al. [2016] further provided four evidences arguing against our reported winter SST record ((a) The core
MD77-194 does not contain sediments younger than 2.71 ka. (b) Fluctuation of 0.3 °C SST between 4.5 ka and
2 ka is negligible in estimating the SSTs from alkenone concentration from core MD77-194. (c) Modern analog
technique-derived (MAT-derived) SST estimates from the same core (i.e., MD77-194) do not show the “apparent
cooling of 0.2°C,” rather it shows the warming trend which is bigger than 0.2°C. (d) There is no abrupt
increase in SSTs in the eastern (it is not the western) tropical Indian Ocean) to conclude that the alkenone-
derived SSTs from core MD77-194 is “not a reliable in-situ temperature” and “generally assumed to be an

annual average SST proxy.” In addition,
Rashid et al. [2016] compared recent
Mg/Ca-SST data from a nearby core
SK237-GC04 [Saraswat et al., 2013] with
the alkenone-derived SSTs from core
MD77-194 [Rashid et al., 2016, Figure 2].

On point (a), to reflect the evolution of
SSTs during the Holocene over the
low-latitude Indian Ocean, we used
SSTs over the western tropical Indian
Ocean from core MD77-194 [Sonzogni
et al., 1998] as it was used to compute
long-termHolocene SST trends in Leduc
et al. [2010]. As no radiocarbon data

Figure 3. Changes in January (plus line) and April (circle line) insolation at
45°N during the Holocene [Berger and Loutre, 1991].

Figure 2. Changing trends (°C/9.5 ka) in (a) winter and (b) spring North Atlantic SSTs during the Holocene as estimated in
the KCM HT simulation. Point-to-point correlations between December–February (DJF) and March–May (MAM) SSTs on
interannual to interdecadal timescales (c) without and (d) with the removal of linear trends (insolation forcing). Dark (light)
shading indicates areas where trends (correlations) are positively (negatively) significant at the 99% confidence level.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD024270

JIN ET AL. REPLY TO COMMENT (2015JD023983) 1617



were available for that core, MD77-194
age model was considered as constant
through the Holocene, with core top
assigned to a “zero age” [Leduc et al.,
2010]. Although probably appropriate
to estimate the long-term Holocene
SST trend, we agree with Rashid et al.
[2016] that other cores with better age
control are warranted. In the north-
eastern Indian Ocean, an extended
bibliographic survey made us aware of
two other alkenone-based SST records
with a much better age control than
for core MD77-194 [Doose-Rolinski
et al., 2001; Huguet et al., 2006].

On points (a), (b), and (d), many other studies do share a common SST increase during the mid-Holocene,
although not “abrupt,” ranges from ~0.5°C to 1.5°C starting at around 6 ka seen in four different cores
(Figure 4) over the tropical Indian Ocean and surrounding ocean [Arz et al., 2003; Kienast et al., 2001; Zhao et al.,
2006; Lückge et al., 2009], i.e., in synchrony with other climatic records other than MD77-194 (Figure 5) that
trend back toward values suggestive of a reinforced EAWM in southern Asia.

On point (c), along with the remark that the Mg-/Ca-derived SSTs from core SK237-GC04 [Saraswat et al., 2013]
does not share the above mentioned trends, we emphasize that (1) the MAT records are more and more ques-

tioned in the paleocommunity since,
in the MARGO effort, it has been iden-
tified to be responsible for a much
stronger level of spatial heterogeneity
in the tropics than has been simulated
by coupled model runs (see, e.g., dis-
cussion in Kageyama et al. [2013] and
Lea et al. [2014]), and (2) by mixing the
alkenone-derived and Mg/Ca-derived
SST, Rashid et al. [2016] seem to ignore
the increasing number of tropical to
subtropical SST records suggesting that
mixing SST proxies may lead to misin-
terpret SST signals because they do
not record SST over the same seasons
[Koutavas and Sachs, 2008; Leduc et al.,
2010; Schneider et al., 2010; Lohmann
et al., 2013; Wang et al., 2013; Hessler
et al., 2014; Timmermann et al., 2014;
Leduc et al., 2014]. Among above men-
tioned articles, those that deal with SST
estimates from the northern tropics
all interpret alkenone-derived SSTs as
being reflective of winter-skewed SST
records. Such a winter-skewed interpre-
tation of alkenone-based SST records is
also in agreement with the seasonality
of coccolithophorids fluxes that peak
in winter [Chen et al., 2007]. At low lati-
tudes, where light is always available
and the upper ocean largely stratified,

Figure 5. Evolution of SSTs in the tropical Indian Ocean and surrounding
oceans. Locations of proxy records are given above in Figure 4.

Figure 4. Locations of alkenone records (GeoB5844 [Arz et al., 2003], MD77194
[Sonzogni et al., 1998], GIK18252 [Kienast et al., 2001], MD972151 [Zhao et al.,
2006], and SO139-74KL [Lückge et al., 2009]) over the tropical Indian Ocean and
surrounding oceans given below in Figure 5.
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the first-order limiting factor for growth of primary producers such as coccolithophorids is nutrient availability,
which increases in winter when upper ocean mixing occurs [Behrenfeld et al., 2006].

3. Conclusion

The divergences in the use of the SSTs records from the subpolar North Atlantic and tropical Indian Ocean
during the Holocene between Zhang et al. [2015a] and Rashid et al. [2016] mirror enormous controversy
interpreting paleo-SST records [e.g., Mann et al., 2009; Leduc et al., 2010; Schneider et al., 2010; Lohmann
et al., 2013; Liu et al., 2014]. Further studies, e.g., modern process analysis, model-data comparisons, are needed
to address this controversy.
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