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Traditional beta is only a linearmeasure of overall market risk and places equal emphasis on upside and downside risks, but actually
the latter is always much stronger probably due to the trading mechanism like short-sale constraints.Therefore, this paper employs
the nonlinearmeasure, tail dependence, tomeasure the extreme downside risks that individual stocks crash together with the whole
market and investigates whether such tail dependence risks will affect stock returns. Our empirical evidence based on Shanghai A
shares confirms that most stocks display nonnegligible tail dependence with the whole market, and, more importantly, such tail
dependence risks can indeed provide additional information beyond beta and other factors for asset pricing. In cross-sectional
regression, it is proved that this tail dependence does help to explain monthly returns on Shanghai A shares, whereas the time-
series regression further indicates that mimicking portfolio returns for tail dependence can capture strong common variation of
Shanghai A stock returns.

1. Introduction

Based on the classical Capital Asset Pricing Model (CAPM)
developed by Sharpe [1], Lintner [2], and Black [3], it is the
comovements of individual stocks with the whole markets
that determine stocks’ expected returns. The stock prices,
especially, depend on market betas, which are defined as the
covariance of the stock and market returns divided by the
variance ofmarket returns. As a linearmeasure, beta provides
an overall description of market risk and cannot distinguish
upside from downside risk. However, it is well-documented
that the degree of downside market risk is usually stronger
than upside market risk’s; see Longin and Solnik [4] and
Ang and Chen [5]. As advocated by Hong and Stein [6],
due to the short-sale constraints existing in many stock
markets, the trade of bearish investors whowant to sell stocks
short is always prohibited and hence the adverse information
held by these investors could not be released to the market.

If such adverse information is pent-up for a long time, it
may accumulate to a very large amount. As long as such
adverse information is finally flushing out to the market, it
would provoke a heavy crash and bring the extreme down-
side risk which is much stronger than the upside counter-
part.

Therefore, in this paper, we want to turn our focus onto
this extreme downside market risk. We employ tail depen-
dence, which is a flexible measure of extreme comovements
and can be easily calculated using the sound Copula theory,
to capture the risk that individual stocks crash together with
the whole market and further explore the effect of such
tail dependence risk on stock returns. The main purpose
of our investigation is to compare the role of this new tail
dependence in the asset pricing framework with that of
classical beta. Such a comparison is motivated by two aspects.
The first motivation is from the institutional perspective. As
suggested by the theory of Hong and Stein [6], the extreme

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 980768, 17 pages
http://dx.doi.org/10.1155/2015/980768



2 Discrete Dynamics in Nature and Society

downside risk generated by short-sale constraints is stronger
than upside risk and thus demands greater compensation, so
we expect that the tail dependence risk defined in our paper
would play amore significant role than linear beta in affecting
the stock returns. The second motivation is from the statisti-
cal perspective: beta is a linear measure which describes the
overall degree of dependence, whereas tail dependence is a
nonlinear measure of extreme comovements. Intuitively, tail
dependence canmeasure the probability that both the returns
of individual stocks and the market returns are extremely
negative (or extremely positive). Beta is calculated based on
all the observations but tail dependence only looks at the tails
of the distribution, and thus those stocks sharing the same
betas might have different tail dependence with the market;
see Hu [7]. We believe that the tail dependence should
provide additional important information beyond beta for
asset valuations.

Before 20101, China’s stock market was one of the few
markets completely prohibiting the short selling of stocks and
lacking other financial derivatives like stock index futures
which can be sold short; see Comerton-Forde and Rydge
[8] and Bris et al. [9]. According to our discussion above,
such a specific feature would make heavy extreme downside
market risk a strong feature of theChinese stockmarket. Con-
sidering this, we choose to carry out our empirical analysis
based on the data of Shanghai A shares. Besides, there are
also many other special features in Shanghai’s stock market.
For example, the fact that many firms in China have far
lower free float may make the size effect weaker or even
disappear, and, because of the dubious accounting prac-
tice, the ability of book-to-market variables to explain stock
returns might become questionable too. These unique fea-
tures in Shanghai’s stockmarket are quite different from those
in mature stock markets, so this study can also allow us to
diagnose whether those factors which proved to be useful
in explaining the stock returns on mature markets would be
important factors in pricing Chinese stocks, in addition to
verifying the existence of tail dependence and examining its
effects on stock returns.

As early as 1970s, Bawa and Lindenberg [10] proposed
that the CAPM should be extended by taking into account
the asymmetry of downside and upside market risks. And,
recently, a study which is very close to ours, Ang et al. [11],
defined a “downside beta” to measure the downside market
risk and confirmed that the stock returns are significantly
affected by downside betas. The downside beta in their paper
was calculated as the covariation of individual stocks and the
market when the market return falls below its average. But,
differently, our focus is the extreme downside market risk
during market crisis (i.e., the market returns are extremely
negative, not just below the average). Such extreme downside
market risks cannot be captured by just using downside
beta, so we employ the tail dependence to measure the
extreme comovements of individual stocks and the market.
Besides, by introducing the sound Copula theory2 into the
calculation of tail dependence, we are able to provide a more
explicit representation of the dependence structure between
individual stocks and the market and capture their tail
behaviours without the discretionary choice of a threshold

to define “downside beta” as in Ang et al. [11]. Huang et
al. [12] also defined a measure of extreme downside risk
and explored its effects on expected stock returns, but it is
also different than our extreme downside market risk in as
much as individual stocks crash downwith the wholemarket,
measured by the tail dependence between individual stocks
and the market. Huang’s measure of extreme downside risk
is constructed by the left tail index, only based on the infor-
mation of each stock’s marginal distribution3.

Our empirical evidence based on A shares of Shanghai’s
stock market confirms that remarkable tail dependence with
the whole market does exist for most stocks in this market.
More importantly, we find that this tail dependence plays
a nonnegligible role in explaining the cross-sectional stock
returns in Shanghai’s stock market; the stocks with stronger
tail dependence tend to have higher averagemonthly returns.
Even after controlling the effects of linear beta and other
factors, the tail dependence still shows significant relation
with stock returns. In contrast, the coefficients of linear
beta are consistently insignificant in our cross-sectional
regressions. Furthermore, we also employ the time-series
regression approach of Black et al. [13] to analyze the role of
tail dependence in asset pricing, and the results suggest that
a portfolio constructed as proxy for risk factor related to tail
dependence can capture strong common variations in returns
of Shanghai A shares. Therefore, we advocate that the tail
dependence of individual stocks with themarketmay contain
additional information beyond linear beta and other factors;
thus tail dependence risk should be taken into account in
asset pricing.

Our investigation can provide two contributions to the
existing literature. Firstly, we define a “tail dependence” index
to represent a new dimension for market risk, “extreme
downside market risk,” that is, the risk of individual stocks
crashing together with the whole market. More importantly,
we recommend by providing supportive evidence that this
“tail dependence” index has the potential to be a new pricing
factor for stock returns. Secondly, our analysis may provide
a possible explanation for the inconspicuous relation of betas
with stock returns in previous studies like Fama and French
[14] and Easley et al. [15]. These studies found that the cross
section of returns on common stocks shows little relation
to the market betas, but our results show that although no
significant relation with stock returns could be found for
betas, tail dependence will significantly affect stock returns.
The insignificant relation of beta with stock returns found
before is probably only due to the fact that beta is an overall
measure for market risk. We insist that the pricing ability
of market risk should not be doubted, and thus the extreme
downside market risk measured by tail dependence is still a
necessary factor for explaining stock returns.

The rest of this paper is organized as follows: Section 2
first introduces the calculation of tail dependence based on
Copula theory and explains its difference with linear market
beta; Section 3 then provides a brief description of the data
used, and some important preliminaries on methodology;
Section 4 outlines the empirical analysis for the existence of
tail dependence and its effects in asset pricing; finally, we
conclude our main results in Section 5.
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2. Methodology

2.1. Tail Dependence and CopulaTheory. As discussed above,
in the stock markets like China’s, a large amount of adverse
information may be sidelined due to the existence of short-
sale constraints first and then flushing out during market
crashes. As a result, a majority of stocks tend to crash down
with the whole market and hence the extreme downside
market risk exists for most stocks. In our paper, we employ
the measure of tail dependence to describe such a risk of
individual stocks’ crashing together with the market, which
cannot be measured by classical betas or even downside beta.

Tail dependence is a nonlinear measure of extreme com-
ovements and thus could be a perfect candidate to describe
the relations between individual stocks and themarket during
crisis. For two variables 𝑋 and 𝑌 with the cumulative
distribution functions (CDFs) of 𝐹 and 𝐺, respectively, their
tail dependence can be defined as follows:

𝜆
𝑈
= lim
𝑢→1

𝑃 {𝑌 > 𝐺
−1
(𝑢) | 𝑋 > 𝐹

−1
(𝑢)} ,

𝜆
𝐿
= lim
𝑢→0

𝑃 {𝑌 < 𝐺
−1
(𝑢) | 𝑋 < 𝐹

−1
(𝑢)} ,

(1)

where 𝜆
𝑈
and 𝜆

𝐿
represent upper and lower tail dependences,

respectively. Loosely said, the bivariate tail dependence looks
at the concordance in the tail, that is, the relation between
the extreme values of 𝑋 and 𝑌. Geometrically, it measures
the dependence in the upper-right or lower-left quadrant
tail of a bivariate distribution. The value of tail dependence
is essentially calculated as a limit, so we can avoid the
discretionary choice of a threshold as in the definition of
downside beta. Besides, the tail dependence can be very easily
calculated using the sound Copula functions.

Copula is a function that incorporates marginal dis-
tributions into a joint distribution. Defined precisely, it is

a joint distribution function of standard uniform random
variables with a probability integral transformation applied
to marginals. For more details, see Nelsen [16] and Cherubini
et al. [17]. The linkage between the joint distribution and
its marginal is demonstrated by Sklar’s theorem. Let 𝑋 =
(𝑋
1
, . . . , 𝑋

𝑛
) be a vector of 𝑛 univariate variables with the

marginal distributions denoted by 𝐹
1
, . . . , 𝐹

𝑛
; Sklar’s theorem

states that there exists a Copula function 𝐶 which could
link the joint 𝑛-dimensional distribution function 𝐹 to its
marginals as follows:

𝐹 (𝑥
1
, . . . , 𝑥

𝑛
) = 𝐶 (𝐹

1
(𝑥
1
) , . . . , 𝐹

𝑛
(𝑥
𝑛
)) . (2)

This relation can be expressed in terms of densities by
deriving both sides of (2), and we get

𝑓 (𝑥
1
, . . . , 𝑥

𝑛
) = 𝑐 (𝐹

1
(𝑥
1
) , . . . , 𝐹

𝑛
(𝑥
𝑛
)) × 𝑓

1
(𝑥
1
)

× ⋅ ⋅ ⋅ × 𝑓
𝑛
(𝑥
𝑛
) ,

(3)

where 𝑓 represents the joint density function and 𝑓
𝑖
the

marginal density function. And the Copula density function
is defined by 𝑐(𝑢

1
, . . . , 𝑢

𝑛
) = 𝜕𝐶(𝑢

1
, . . . , 𝑢

𝑛
)/𝜕𝑢
1
, . . . , 𝜕𝑢

𝑛
.

Hence, the joint density can be defined as the product of the
Copula density and the univariate marginal densities4.

Therefore, the information of marginal distributions is
contained in 𝐹

𝑖
(𝑥
𝑖
), while the information of dependence

structure is completely captured byCopula functions. Copula
can capture the nonlinear dependence structure and allows
the dependence degree in the tails to be different from that in
the middle of distribution. One important feature of Copula
functions is that it can always be easily related to the tail
dependence we focus on in this paper; there exists a formula
relating Copula functions to tail dependence as follows [18]:

𝜆
𝑈
= lim
𝑢→1

𝑃 {𝑌 > 𝐺
−1
(𝑢) | 𝑋 > 𝐹

−1
(𝑢)} = lim

𝑢→1

𝑃 {𝑋 > 𝐹
−1
(𝑢) , 𝑌 > 𝐺

−1
(𝑢)}

𝑃 {𝑋 > 𝐹−1 (𝑢)}

= lim
𝑢→1

1 − 𝑃 {𝑋 < 𝐹
−1
(𝑢)} − 𝑃 {𝑌 < 𝐺

−1
(𝑢)} + 𝑃 {𝑋 < 𝐹

−1
(𝑢) , 𝑌 < 𝐺

−1
(𝑢)}

1 − 𝑃 {𝑋 < 𝐹−1 (𝑢)}
= lim
𝑢→1

1 − 2𝑢 + 𝐶 (𝑢, 𝑢)

1 − 𝑢
,

(4)

𝜆
𝐿
= lim
𝑢→0

𝑃 {𝑌 < 𝐺
−1
(𝑢) | 𝑋 < 𝐹

−1
(𝑢)} = lim

𝑢→0

𝑃 {𝑋 < 𝐹
−1
(𝑢) , 𝑌 < 𝐺

−1
(𝑢)}

𝑃 {𝑋 < 𝐹−1 (𝑢)}
= lim
𝑢→0

𝐶 (𝑢, 𝑢)

𝑢
. (5)

If the formula in (4) exists finitely, 𝐶 is said to have upper
tail dependence if 𝜆

𝑈
∈ (0, 1], no upper tail dependence if

𝜆
𝑈
= 0.The value 𝜆

𝑈
, called the “upper tail dependence coef-

ficient,” represents the limit of the conditional probability
that the distribution function of 𝑋 exceeds the threshold 𝑢,
given that the corresponding function for 𝑌 does, when 𝑢
tends to one, and analogously for the lower tail dependence
coefficient 𝜆

𝐿
. Through this formula, we can introduce the

sound Copula theory into the calculation of tail dependence
between individual stocks and the market. Especially for

some well-known parametric families of Copula functions,
their parameters could be directly related to tail dependence;
see Table 1.

Just as shown by Table 1, various Copulas can represent
different patterns of dependence structure and thus have
different features of tail dependence. In previous studies four
stylized Copulas are most widely used: Gaussian Copula is
always used as a benchmark and no tail dependence exists,
Student’s 𝑇 Copula has symmetric tail dependence in both
lower and upper tails, and Clayton and Gumbel Copulas
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Table 1: Parameters and tail dependence coefficients of various Copulas.

Parameters Lower tail dependence coefficients Upper tail dependence coefficients
Gaussian 𝜌 — —
𝑇 𝜌, ] 2𝑇]+1(−√V + 1(√1 − 𝜌/√1 + 𝜌)) 2𝑇]+1(−√V + 1(√1 − 𝜌/√1 + 𝜌))
Clayton 𝛼 2

−1/𝛼 —
Gumbel 𝜃 — 2 − 2

1/𝜃

have only lower and upper tail dependence, respectively. As
our focus in this paper is on the extreme downside market
risk, we choose to employ the Clayton Copula to model
the dependence structure between individual stocks and the
whole market and calculate their lower tail dependence, that
is, the propensity of individual stocks crashing together with
the market. The formula of the Clayton Copula function is
given as follows:

𝐶Cla (𝑢, V) = max {(𝑢−𝛼 + V−𝛼 − 1)−1/𝛼 , 0} ,

𝛼 ∈ (−1, 0) ∪ (0, +∞) .

(6)

Applying formulas (4) and (5), we can easily derive that the
Clayton Copula has no upper tail dependence but has lower
tail dependence for 𝛼 > 0, and the tail dependence coefficient
can be calculated by

𝜆
𝐿
= 2
−1/𝛼
. (7)

In this paper, the marginal distributions of individual stocks’
returns and the market returns are estimated as empirical
distributions to ensure robustness and due to the scarcity
of data, and, next, we calculate the MLE estimates of the
parameter 𝛼5. Then, the (lower) tail dependence between
individual stocks and themarket can be obtained through (7).

2.2. Beta versus Tail Dependence. Beta or correlation could
only tell us the overall strength of the linear relation, but
Copula function can provide a detailed picture of the depen-
dence structure and, more importantly, can show us differ-
ent manners of dependence in tails. Next, we will employ
two symmetric Copula functions, Gaussian and Student’s 𝑇
Copulas, to explain an intuition that the variables sharing the
same linear relationship may depict different features in tail
dependence. In Figure 1, the difference between linear and
nonlinear relations can be easily observed.

The two densities in Figure 1(a) show that, for the two
Student’s 𝑇 Copulas with the same correlation coefficients of
0.5 but different degree of freedom parameters, the levels of
dependence in tails are obviously different. Smaller degree
of freedom (] = 2.5), especially, brings stronger tail depen-
dence. There might be two more particular cases. As shown
by the first density in Figure 1(b) even the correlation of two
variables calculated using all the observations of the whole
distribution is small (𝜌 = 0.1); the extreme comovements
in tails of these two variables could be very strong; that is,
two variables with no significant linear relation may have
strong tail dependence. On the other hand, if the dependence
structure between two variables is described by the Gaussian

Copula (see the last density in Figure 1), we cannot find
any obvious tail dependence although they have a moderate
correlation, so two variables with significant linear relation
may be independent in the tails.

As discussed above, Copula functions could describe the
nonlinear dependence beyond linear correlation. Similarly,
tail dependence is also different from the linear beta and
contains additional information for the asset valuation. Actu-
ally, the classical beta in CAPM theory is related to linear
covariance, while the tail dependence coefficients (TDCs)
are a nonlinear measurement focusing on the extreme
comovements in the tails of distributions. Hence, the tail
dependence of individual stocks with the market should
provide a different perspective to understand the market
risk, and it is thus necessary to examine whether such tail
dependence also affects stock returns or even plays a more
significant role than linear beta in asset pricing.

3. Data and Preliminaries

In Chinese stock markets, there are two share types. A shares
are restricted to domestic investors (only became available
in 2005 for some Qualified Foreign Institutional investors),
while B shares were restricted to foreign investors until
early 2001 and then opened to domestic investors. Since B-
share markets are very illiquid and much smaller than the
A-share markets with less than 10% of the total numbers
of stocks outstanding, in this paper we focus on the A-
share stocks traded on Shanghai Stock Exchange, which is
bigger than Shenzhen Stock Exchange with most of the larger
predominantly state-owned companies listed [20, 21]. Our
price files are from DataStream while the files of the trading
and financial statement data are generated from the China
StockMarket &Accounting Research (CSMAR), which is the
most reliable andwidely used security database inChina.Our
sample period is 1997–2008, because the price limit of 10%
came into effect towards the end of 1996.

Two approaches are employed in our study. One is the
portfolio analysis, widely used in the literature like Ang and
Chen [5]. We construct portfolios ranked by tail dependence
and other factors and then analyze the characteristics of
the returns of the constructed portfolios. The other one is
regression analysis, including the cross-sectional regression
of Fama andMacBeth [19] aswell as the time-series regression
of Black et al. [13]. Since we want to examine whether the tail
dependence will still significantly affect stock returns even
after controlling the effect of other factors which have been
proved by previous studies to be important for asset pricing,
we involve the following factors in our analysis. First, we
follow Fama and French’s [14] suggestion to analyze the roles
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Figure 1: Four detailed pictures of Copula density functions. To visualize their joint probability distributions and dependence structures
between variables, this figure shows the surface of the densities for Gaussian and Student’s 𝑇 Copulas with various parameter values. The
formulas of twoCopula densities can be referred toCherubini et al. [17]. GaussianCopula only has one parameter, the correlation coefficient𝜌.
While Student’s𝑇Copula has two parameters, the correlation coefficient𝜌 and the degree of freedom ], the latter controls the level dependence
in tails. And when ] approaches infinity, the Student’s 𝑇 Copula would degenerate to Gaussian Copula.

of beta, size, and book-to-market value in affecting stock
returns. Second, we also consider the other two financial
factors, leverage and the earning-price ratios. In addition, we
want to test for the relation of liquidity with stock returns.
Finally, inspired by Easley et al. [15] and Lu and Wong [22],
we introduce the effect of momentum and volatility too. The
calculations of these asset pricing factors are given in the
following paragraphs.

3.1. Size. Due to the unique structure of corporate gover-
nance, many shares of the listed Chinese firms are prohibited
from trading. These shares include the state-owned shares
and the legal person shares [23]. We therefore employ the
market capitalization of tradable shares to represent the firm
size. In Tables 3 and 4, the numbers of firm sizes are all given
as the market capitalization divided by 1 million (it is because

the values of market capitalization are usually very large
numbers). And further, in the cross-sectional regression, the
logarithm of firm sizes is taken as explanatory variable.

3.2. Book-to-Market, Leverage, and Earnings-Price Ratio.
Book-to-market is the book value divided by themarket value
of tradable shares, while leverage is the ratio of debt to asset.
The earnings-price ratio is zero if the earnings are negative,
and the earnings are divided by prices when the earnings
are positive. To ensure that the accounting data are available
prior to observing the returns, we extract the values of these
factors from the latest financial report at least three months
before and analyze the effect of these extracted values on stock
returns (This is because, in the CSMAR database, we have
only semiannual financial reports before 2002, but since 2002
we can obtain quarterly financial reports. So, e.g., the financial
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factors affecting stock returns in August are from reports in
June of the same year or December of the preceding year).

3.3. Liquidity. Abundant literature including Brennan et al.
[24] and Amihud [25] found that liquidity is an important
factor determining the expected returns. One of the most
famous liquidity measures is Amihud’s measure, which is
calculated by

AMIHUD
𝑖,𝑡
=
1

𝐷
𝑖,𝑡

𝐷𝑖,𝑡

∑

𝑑=1

𝑅𝑖,𝑡,𝑑


DOLVOL
𝑖,𝑡,𝑑

× 10
6
, (8)

where 𝑅
𝑖,𝑡,𝑑

and DOLVOL
𝑖,𝑡,𝑑

represent the daily returns and
volume at day 𝑑 in month 𝑡 of stock 𝑖, and 𝐷

𝑖,𝑡
is the trading

days of stock 𝑖 in month 𝑡. This measure always results
in extreme values, so we also calculate its square root as
Hasbrouk’s [26] suggestion:

AMIHUD1/2
𝑖,𝑡
=
1

𝐷
𝑖,𝑡

√

𝐷𝑖,𝑡

∑

𝑑=1

𝑅𝑖,𝑡,𝑑


DOLVOL
𝑖,𝑡,𝑑

× 106. (9)

These two measures are negatively related to liquidity, with
higher values implying illiquid stocks. We also introduce
another liquidity measure, Turnover, which is calculated as

Turn
𝑖,𝑡
=
1

𝐷
𝑖,𝑡

𝐷𝑖,𝑡

∑

𝑑=1

DOLVOL
𝑖,𝑡,𝑑

DTMV
𝑖,𝑡,𝑑

, (10)

where DTMV
𝑖,𝑡,𝑑

represents market value of tradable shares
on day 𝑑 in month 𝑡 of stock 𝑖. Turnover is positively related
to liquidity, with higher values implying more liquid stocks.

3.4. Momentum and Volatility. It is well-known that the
historical stock prices contain information about the future
stock returns, so we also involve two additional factors,
momentum and volatility, which have been widely used
in the previous asset pricing literature including Easley et
al. [15] and Lu and Wong [22]. In our paper, momentum
is calculated as the average percentage of weekly returns
over the preceding two years, and volatility is the standard
deviation of the weekly returns over the preceding two years.

3.5. Beta, Downside Beta, and Tail Dependence. Each month,
we employ the monthly returns of the preceding two years
to calculate market betas, and the weekly returns6 of the
preceding two years to calculate the tail dependence coeffi-
cients (TDCs) of individual stocks with the market. The beta
and TDC calculated using such methods are usually called
“preranking beta and TDC,” and we use them to sort the
stocks and construct the portfolios. However, if we employ
these preranking betas and TDCs of individual stocks in the
regression, the estimators are likely to subject to an errors-in-
variables (EIV) problem (see [27]). Hence, in a similar way to
the approach of Fama and French [14] and Easley et al. [15],
we also calculate the “postranking portfolio betas and TDCs”
as follows. We first classify the stocks into three portfolios
based on size and further classify each of the three obtained

portfolios into three subportfolios based on preranking betas
or TDCs, and we could obtain nine subportfolios in total. We
calculate the betas or TDCs of the nine subportfolios based
on the full-period observations, and the “postranking beta
or TDC” of each stock is defined as the betas or TDCs of
the corresponding subportfolios it belongs to. It should be
noted that assigning full-period portfolio betas or TDCs to
individual stocks does not mean that a stock’s beta or TDC
is constant, since a stock could move across portfolios due to
the month-to-month changes in the size and in the estimates
of its preranking betas or TDCs. Besides, we also involve the
downside beta defined by Ang et al. [11] into our analysis:

𝛽
𝑖

−
=
cov (𝑟

𝑖
, 𝑟
𝑚
| 𝑟
𝑚
< 𝜇
𝑚
)

var (𝑟
𝑚
| 𝑟
𝑚
< 𝜇
𝑚
)
, (11)

where 𝑟
𝑖
and 𝑟

𝑚
denote the excess returns of individual

stock and the market excess returns, respectively, while 𝜇
𝑚

is the average of market returns. The downside beta is also
calculated using the similar procedure given above, and
we compare its effect on stock returns with that of tail
dependence7.

Summary statistics of the factors mentioned above are
provided in Table 2. Our main concern is the relations of
TDCwith other variables. Firstly, we find that the correlation
between size and TDC is the largest in absolute value, imply-
ing that small firms tend to have strong tail dependence with
the market. Another appealing finding is that the square root
of Amihud’s measure shows a positive relation with TDC,
which means illiquid stocks’ tail dependence with the whole
market is stronger. However, if Turnover is used as another
liquidity measure, the result is just opposite but insignificant
(the prices of liquid stocks are more likely to crash down
together with the whole market). Among the three financial
factors, TDC has significant correlations with leverage and
earnings-price ratio, but the correlation between TDC and
book-to-market value is insignificant. In addition, momen-
tum is negatively correlated with TDCwhile volatility is posi-
tively correlatedwith TDC, but both correlations are insignif-
icant again. Finally, tail dependence has a positive relation
with betas but its relationwith downside beta is insignificant8.

4. Empirical Evidence

Before analyzing the effect of tail dependence on the stock
returns, we need to verify that such tail dependence does
exist. Firstly, we calculate the full-sample estimation of tail
dependence using all the observations during our sample
period and present its distribution in Figure 2(a). The his-
togram indicates that only few stocks have tail dependence
coefficients close to zero, while most tail dependence coef-
ficients lies in the range of 0.25–0.45. Next, the rolling
estimation of tail dependence (we use previous two years’
observations to estimate a tail dependence coefficient each
month and then roll the window one-step forward to get the
estimate of the next month) is given in Figure 2(b) to show
its time variation. We find that during most of the sample
period, nearly 75%of stocks have a tail dependence coefficient
larger than zero. Besides, the lines of mean and the other
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Table 2: Asset pricing factors. Panel (a) in this table contains the means, standard deviations, minimums, medians, and maximums of the
variableswe study in our paper. All statistics are calculated from the full sample, that is, pooling allmonths. TDCandBETAare the postranking
portfolio TDCs and betas, while DBETA is downside beta. SIZE is the market capitalization of tradable shares in RMB million. BTM, LEV,
and E/P represent the book-to-market, leverage, and earnings-price ratio, respectively.The following are the square root of Amihud’s liquidity
measure denoted by ASQT and the Turnover denoted by TURN. MTM is the momentum calculated as the average percentage returns over
the preceding two years, while VOL is the standard deviation of the weekly returns over the preceding two years. Panel (b) provides the
time-series means of monthly correlations of the variables. The values in the upper lower triangular part are Pearson’s correlations, while
the Spearman’s rank correlations in italic type are given in the lower triangular part. The correlations with superscript “∗” are significantly
different from zero at 5%.

TDC BETA DBETA SIZE BTM LEV E/P ASQT TURN MTM VOL
(a) Descriptive statistics

Mean 0.705 0.975 1.020 1.442 0.525 0.567 0.019 0.349 19.982 0.203 5.301
St. dev. 0.150 0.053 0.783 1.573 0.207 0.640 0.024 0.256 14.281 0.702 1.310
Min 0.341 0.897 −1.513 0.094 0.050 0.038 0.000 0.071 1.371 −1.933 2.456
Median 0.783 0.986 1.030 0.950 0.512 0.516 0.015 0.314 16.566 0.166 5.124
Max 0.803 1.062 4.066 12.298 1.180 8.272 0.202 2.768 107.673 2.670 12.295

(b) Pearson/Spearman correlations
TDC 0.583∗ 0.035 −0.646∗ −0.085 0.107∗ −0.326∗ 0.358∗ 0.169 −0.218 0.155
BETA 0.660∗ 0.025 −0.561∗ −0.147 0.093∗ −0.302∗ 0.421∗ 0.171 −0.217 0.121
DBETA 0.031 0.037 −0.027 0.014 −0.017 −0.037 0.012 0.027 −0.099 0.212
SIZE −0.801∗ −0.735∗ −0.018 0.119 −0.117∗ 0.286∗ −0.446∗ −0.161 0.241 −0.126
BTM −0.125 −0.123 0.022 0.226 −0.107 0.213 −0.177 −0.098 −0.229 −0.270∗

LEV 0.191∗ 0.173∗ 0.012 −0.260∗ 0.089 −0.122 0.207 0.083 −0.103 0.115
E/P −0.411∗ −0.357∗ −0.012 0.455∗ 0.239 −0.200∗ −0.220 −0.095 0.173 −0.200
ASQT 0.603∗ 0.553∗ 0.015 −0.778∗ −0.156 0.190 −0.347∗ −0.184∗ −0.216 0.103
TURN 0.252 0.225∗ 0.040 −0.269∗ −0.105 0.114 −0.183 −0.219 0.038 0.229
MTM −0.225 −0.209 −0.076 0.252 −0.237 −0.069 0.230 −0.277 0.065 0.033
VOL 0.183 0.167 0.203 −0.228 −0.260∗ 0.190∗ −0.312∗ 0.120 0.259 0.038

Table 3: Summary statistics for portfolios sorted by preranking TDCs. This table presents the full-period tail dependence coefficients, and
the time-series averages of other characteristics for portfolios sorted by preranking tail dependence coefficients (TDCs) monthly. RETURN
here is the average of postranking monthly returns. All other variables are defined as in Table 2. The portfolios with subscripts from 1 to 5
contain the stocks ranked by the preranking TDCs from the lowest to the highest.

Portfolios RETURN TDC BETA DBETA SIZE BTM LEV E/P ASQT TURN MTM VOL
TDC
1

−0.287 0.600 0.841 0.918 2.743 0.517 0.489 0.032 0.273 15.989 0.491 5.008
TDC
2

−0.317 0.791 0.950 1.022 1.522 0.523 0.542 0.022 0.315 18.700 0.273 5.274
TDC
3

−0.193 0.827 1.001 1.020 1.188 0.540 0.550 0.019 0.344 20.548 0.153 5.353
TDC
4

−0.148 0.846 1.025 1.057 0.969 0.531 0.581 0.014 0.384 21.108 0.092 5.425
TDC
5

−0.090 0.823 1.056 1.085 0.738 0.512 0.675 0.010 0.431 23.636 0.020 5.447

quartile indicate that the tail dependence becomes stronger
and stronger from 1999 to 2008.Therefore, we could conclude
from Figure 2 that most stocks of Shanghai Exchange have
nonignorable tail dependence with the whole market.

After verifying the existence of tail dependence, now we
turn to our main concern; that is, is this tail dependence
a determinant of the stocks returns in Shanghai’s market?
Our hypothesis is that the stronger tail dependence implies
higher risks that individual stocks’ prices fall down heavily
as the market declines and thus requires a higher risk
premium. Therefore, we expect a positive relation between
tail dependence and stock returns. Now, we begin to examine
the role of tail dependence in asset pricing by the approaches
of portfolio analysis and regression analysis.

4.1. Portfolio Analysis. In portfolio analysis, each month we
classify the stocks based on the factors of preceding month,
and average (equal-weighted) the stock returns as portfolio
returns. First, we sort all the Shanghai A stocks into five
portfolios based on the preranking tail dependence and
present the average returns and other characteristics of the
constructed portfolios in Table 3.

It is clear that the portfolios with higher preranking tail
dependence coefficients tend to yield higher average returns.
Average returns especially rise from −0.287% for the lowest
TDC portfolio to −0.090% for the highest (although this
rise is not monotonic as the postranking return of TDC1
is a bit higher than TDC2). The simple TDC sort seems to
support our prediction of a positive relation between tail
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Figure 2: The existence of tail dependence. To verify the existence of tail dependence, we show the distribution of full-sample (1997–2008)
tail dependence by the histogram and the related statistics in (a). At each time 𝑡, we employ previous two years’ observations to estimate the
tail dependences for all stocks and provide the dynamics of their mean, minimum, three quartiles, and maximum from 1999 to 2008 in (b).

dependence and average stock returns. Nevertheless, this
evidence may be muddied by the tight relations between
TDC and other variables, since we could observe that betas
and leverage monotonically increase with preranking TDCs,
while size and earnings-price ratios decrease monotonically
with preranking TDCs. The directions of all these relations
are consistent with the sample correlations reported in
Table 2.

In order to control the effect of other risk factors corre-
lated with tail dependence and examine whether the relation-
ship of tail dependence with stock returns occurs because of
the covariance of tail dependence and other factors, we sort
the portfolios twice, first on the basis of a risk factor and then

on the basis of the preranking TDCs.Then the characteristics
of these constructed portfolios are presented in Table 4. The
two-pass sort on size and TDC says that variation in tail
dependence that is tied to size is positively related to average
return, but variation in tail dependence unrelated to size is
not compensated in the average stock returns in Shanghai’s
market. Besides, whenwe sort the portfolio first by the square
root of Amihud’s measure, in the subquintiles we can find
that the relations of stock returns with preranking TDCs
almost disappear. If sorting the portfolios first by Turnover,
the relations between tail dependence and stock returns are
positive in each subquintile. Momentum also tends to con-
taminate the positive relation between TDCs and the stock
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Table 4: Returns, tail dependence, and other factors. Portfolios are formedmonthly. In eachmonth, the stocks are classified into three quintiles
based on the precedingmonth’s value of a risk factor, and then each quintile is subdivided into three portfolios according to preranking TDCs.
The full-period portfolio tail dependence coefficients and the time-series averages of other characteristics are presented in this table. RETURN
here is the average of postranking monthly portfolios returns, and all other variables are defined as in Table 2. From 1 to 3, the corresponding
variables are increasing.

Ranking by:
𝑋 TDC RETURN TDC BETA DBETA SIZE BTM LEV E/P ASQT TURN MTM VOL

Panel A:𝑋 = 𝐵𝐸𝑇𝐴
1 1 −0.464 0.556 0.304 0.864 2.749 0.461 0.506 0.031 0.272 17.127 0.716 5.631
1 2 −0.372 0.772 0.325 1.022 1.245 0.439 0.626 0.018 0.358 22.604 0.369 6.286
1 3 −0.177 0.780 0.339 1.018 0.719 0.434 0.741 0.009 0.445 26.037 0.149 6.675
2 1 −0.271 0.695 0.485 1.042 2.108 0.542 0.524 0.028 0.287 16.731 0.289 5.007
2 2 −0.284 0.787 0.494 1.089 1.210 0.542 0.520 0.018 0.338 20.431 0.112 5.351
2 3 −0.230 0.812 0.494 1.143 0.746 0.505 0.678 0.008 0.423 23.093 0.011 5.625
3 1 −0.052 0.670 0.712 0.940 2.108 0.616 0.463 0.028 0.283 15.255 0.135 4.073
3 2 −0.022 0.791 0.664 1.018 1.224 0.613 0.510 0.021 0.339 18.134 0.032 4.426
3 3 0.019 0.793 0.656 1.047 0.855 0.574 0.532 0.014 0.397 20.461 0.010 4.623

Panel B:𝑋 = 𝐷𝐵𝐸𝑇𝐴
1 1 −0.361 0.550 0.474 0.251 2.260 0.488 0.533 0.029 0.295 16.643 0.480 4.946
1 2 −0.233 0.758 0.475 0.254 1.202 0.525 0.564 0.018 0.343 20.568 0.213 5.204
1 3 −0.158 0.786 0.504 0.351 0.828 0.516 0.596 0.011 0.395 23.270 0.090 5.319
2 1 −0.252 0.573 0.492 1.020 2.275 0.541 0.483 0.028 0.289 16.847 0.377 4.980
2 2 −0.263 0.763 0.544 1.026 1.267 0.561 0.521 0.018 0.350 19.224 0.104 5.116
2 3 −0.138 0.787 0.561 1.035 0.819 0.530 0.694 0.011 0.423 21.233 0.000 5.240
3 1 −0.275 0.589 0.429 1.793 2.224 0.528 0.499 0.027 0.284 18.263 0.332 5.611
3 2 −0.107 0.763 0.480 1.742 1.245 0.522 0.593 0.019 0.346 20.806 0.177 5.632
3 3 −0.068 0.785 0.509 1.717 0.817 0.512 0.624 0.012 0.420 23.103 0.060 5.678

Panel C:𝑋 = 𝑆𝐼𝑍𝐸
1 1 −0.106 0.783 0.418 0.950 0.436 0.436 0.710 0.020 0.510 23.441 0.106 5.799
1 2 −0.080 0.803 0.484 1.019 0.411 0.467 0.638 0.010 0.491 23.211 −0.007 5.599
1 3 −0.022 0.794 0.504 1.073 0.408 0.482 0.769 0.007 0.489 25.544 −0.070 5.591
2 1 −0.310 0.741 0.508 0.973 1.019 0.499 0.506 0.024 0.330 18.328 0.315 5.100
2 2 −0.168 0.798 0.520 1.063 0.985 0.548 0.528 0.018 0.321 20.432 0.150 5.270
2 3 −0.209 0.783 0.561 1.085 0.914 0.577 0.543 0.013 0.337 20.233 0.090 5.198
3 1 −0.420 0.341 0.438 0.933 3.690 0.543 0.458 0.034 0.202 14.447 0.561 4.868
3 2 −0.254 0.654 0.491 1.016 2.805 0.568 0.460 0.026 0.215 16.493 0.422 5.084
3 3 −0.279 0.727 0.542 1.105 2.242 0.606 0.506 0.022 0.241 18.339 0.306 5.240

Panel D:𝑋 = 𝐵𝑇𝑀
1 1 −0.478 0.593 0.426 0.832 2.220 0.310 0.498 0.023 0.318 16.670 0.697 5.423
1 2 −0.384 0.788 0.426 1.044 1.033 0.311 0.637 0.013 0.380 21.230 0.351 5.859
1 3 −0.356 0.791 0.469 1.085 0.751 0.311 0.802 0.008 0.461 23.689 0.182 5.852
2 1 −0.325 0.698 0.451 1.027 2.360 0.514 0.500 0.030 0.282 17.711 0.331 5.078
2 2 −0.195 0.801 0.502 1.061 1.143 0.520 0.522 0.019 0.348 21.009 0.149 5.292
2 3 −0.117 0.804 0.534 1.092 0.857 0.513 0.556 0.012 0.415 22.214 0.030 5.374
3 1 −0.070 0.639 0.530 1.017 2.351 0.759 0.511 0.033 0.258 16.876 0.173 4.827
3 2 0.014 0.769 0.557 0.995 1.358 0.751 0.530 0.023 0.311 19.149 −0.009 4.969
3 3 0.051 0.785 0.576 1.029 0.856 0.740 0.552 0.013 0.371 21.449 −0.068 5.044

Panel E:𝑋 = 𝐿𝐸𝑉
1 1 −0.258 0.598 0.459 0.978 2.841 0.486 0.298 0.030 0.258 16.370 0.385 5.052
1 2 −0.181 0.781 0.523 0.992 1.344 0.507 0.301 0.021 0.308 19.275 0.191 5.129
1 3 −0.092 0.820 0.558 1.038 0.929 0.495 0.308 0.013 0.367 20.951 0.119 5.195
2 1 −0.270 0.659 0.509 0.953 2.386 0.535 0.515 0.027 0.275 15.575 0.437 4.962
2 2 −0.183 0.777 0.509 1.011 1.308 0.558 0.515 0.019 0.326 20.216 0.187 5.276
2 3 −0.117 0.791 0.537 1.122 0.859 0.528 0.517 0.012 0.390 22.971 0.108 5.419
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Table 4: Continued.

Ranking by:
𝑋 TDC RETURN TDC BETA DBETA SIZE BTM LEV E/P ASQT TURN MTM VOL
3 1 −0.394 0.689 0.424 0.967 1.654 0.543 0.786 0.028 0.344 19.394 0.381 5.390
3 2 −0.219 0.797 0.462 1.066 0.947 0.544 0.855 0.016 0.404 21.695 0.093 5.690
3 3 −0.152 0.793 0.492 1.061 0.667 0.528 0.998 0.008 0.471 23.534 −0.067 5.603

Panel F:𝑋 = 𝐸/𝑃
1 1 −0.755 0.767 0.402 0.979 1.105 0.456 0.673 0.004 0.387 21.240 0.080 5.827
1 2 −0.537 0.805 0.474 1.054 0.773 0.486 0.680 0.003 0.426 22.219 −0.060 5.745
1 3 −0.346 0.782 0.494 1.092 0.623 0.492 0.785 0.002 0.456 24.707 −0.098 5.696
2 1 −0.515 0.690 0.461 1.000 2.234 0.487 0.475 0.016 0.281 16.677 0.376 5.159
2 2 −0.244 0.791 0.503 1.045 1.185 0.532 0.498 0.015 0.338 20.602 0.240 5.341
2 3 0.070 0.807 0.546 1.053 0.949 0.533 0.513 0.014 0.381 21.587 0.200 5.252
3 1 0.040 0.383 0.491 0.912 2.974 0.555 0.479 0.046 0.251 15.906 0.544 4.873
3 2 0.094 0.659 0.526 0.997 1.826 0.586 0.493 0.039 0.289 17.427 0.347 4.873
3 3 0.362 0.722 0.575 1.062 1.208 0.595 0.511 0.036 0.337 19.842 0.214 4.949

Panel G: 𝑋 = 𝐴𝑆𝑄𝑇
1 1 −0.456 0.399 0.470 0.937 3.844 0.540 0.462 0.034 0.182 16.908 0.592 4.962
1 2 −0.380 0.689 0.475 1.007 2.398 0.548 0.485 0.024 0.204 21.216 0.449 5.219
1 3 −0.538 0.755 0.499 1.102 1.742 0.551 0.541 0.018 0.234 24.719 0.303 5.435
2 1 −0.251 0.738 0.483 1.002 1.363 0.532 0.485 0.026 0.313 16.565 0.240 5.091
2 2 −0.258 0.792 0.523 1.064 1.006 0.568 0.512 0.018 0.320 19.841 0.096 5.271
2 3 −0.189 0.795 0.545 1.075 0.819 0.556 0.544 0.012 0.341 22.238 0.077 5.312
3 1 0.020 0.762 0.451 0.936 0.726 0.455 0.659 0.021 0.527 16.471 0.138 5.440
3 2 0.018 0.817 0.505 0.989 0.550 0.486 0.637 0.012 0.498 19.647 0.014 5.479
3 3 0.153 0.786 0.512 1.090 0.441 0.486 0.786 0.008 0.522 22.715 −0.073 5.534

Panel H: 𝑋 = 𝑇𝑈𝑅𝑁
1 1 −0.164 0.539 0.478 0.880 2.828 0.531 0.497 0.029 0.334 10.220 0.370 4.748
1 2 0.079 0.755 0.543 1.001 1.617 0.560 0.546 0.022 0.382 12.110 0.167 4.976
1 3 0.343 0.777 0.569 1.021 1.111 0.563 0.564 0.014 0.445 13.950 0.043 5.113
2 1 −0.052 0.682 0.455 0.973 2.128 0.533 0.494 0.028 0.262 17.482 0.417 5.189
2 2 −0.073 0.806 0.505 1.026 1.128 0.544 0.547 0.019 0.347 18.883 0.136 5.325
2 3 0.034 0.812 0.536 1.089 0.816 0.523 0.643 0.011 0.426 20.068 0.001 5.355
3 1 −0.776 0.689 0.455 1.032 1.617 0.492 0.524 0.027 0.245 28.108 0.429 5.563
3 2 −0.703 0.782 0.449 1.058 0.966 0.495 0.589 0.015 0.319 28.936 0.202 5.725
3 3 −0.533 0.776 0.481 1.102 0.685 0.481 0.704 0.009 0.391 30.206 0.066 5.718

Panel I:𝑋 = 𝑀𝑇𝑀
1 1 −0.133 0.740 0.470 1.093 1.643 0.567 0.599 0.023 0.353 18.367 −0.497 5.226
1 2 0.098 0.789 0.477 1.089 0.981 0.575 0.621 0.014 0.389 19.835 −0.467 5.245
1 3 0.095 0.796 0.499 1.134 0.696 0.555 0.766 0.008 0.466 22.233 −0.453 5.416
2 1 −0.222 0.721 0.484 0.961 2.049 0.564 0.507 0.027 0.317 17.089 0.170 5.023
2 2 −0.156 0.803 0.526 0.988 1.115 0.551 0.506 0.018 0.347 20.155 0.176 5.144
2 3 −0.116 0.790 0.545 1.052 0.796 0.524 0.575 0.012 0.400 22.315 0.169 5.235
3 1 −0.352 0.388 0.448 0.837 2.801 0.462 0.490 0.032 0.240 16.197 1.062 5.227
3 2 −0.534 0.684 0.502 0.981 1.695 0.461 0.504 0.023 0.285 20.143 0.911 5.519
3 3 −0.555 0.742 0.512 1.042 1.171 0.465 0.537 0.018 0.347 23.587 0.761 5.684

Panel J:𝑋 = 𝑉𝑂𝐿
1 1 −0.187 0.493 0.473 0.780 2.684 0.536 0.476 0.032 0.271 14.607 0.346 3.977
1 2 0.004 0.757 0.519 0.862 1.403 0.593 0.481 0.025 0.322 17.705 0.159 4.093
1 3 0.085 0.787 0.521 0.912 0.952 0.592 0.512 0.018 0.377 19.646 0.043 4.239
2 1 −0.211 0.703 0.485 1.042 2.216 0.540 0.511 0.029 0.290 16.998 0.359 5.116
2 2 −0.243 0.798 0.517 1.032 1.223 0.565 0.527 0.017 0.337 20.160 0.120 5.129
2 3 −0.145 0.792 0.538 1.059 0.834 0.533 0.613 0.011 0.401 22.383 0.059 5.149
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Table 4: Continued.

Ranking by:
𝑋 TDC RETURN TDC BETA DBETA SIZE BTM LEV E/P ASQT TURN MTM VOL
3 1 −0.632 0.723 0.468 1.196 1.892 0.463 0.559 0.021 0.309 20.695 0.431 6.701
3 2 −0.288 0.793 0.464 1.128 0.948 0.446 0.676 0.014 0.379 23.106 0.227 6.691
3 3 −0.249 0.799 0.483 1.176 0.788 0.456 0.746 0.008 0.457 24.647 0.083 6.597

returns, as shownbyPanelHofTable 4.However, the remain-
ing factors including beta, downside beta, book-to-market,
leverage, earnings-price ratios, and volatility cannot disturb
the positive relation of tail dependence with stock returns.
In summary, our portfolio analysis shows that the returns
of stocks whose tail dependence with the whole market is
stronger will be higher; only few factors might contaminate
this positive relation of tail dependence with stock returns.

When looking at the stability issue of tail dependence, we
can find that the ranking of TDCs is highly preserved. For
the portfolios sorted only by preranking TDCs, the postrank-
ing portfolio TDCs show an increasing pattern, albeit the
exception of the highest TDC portfolio. It is probably because
the stocks in this portfolio are relatively small and illiquid,
thus resulting in a bit lower tail dependence than the fourth
portfolio. The results of twice-sorted portfolios also indicate
that tail dependence is highly stable.

Whatever the first risk factor is, from the characteristics
of subportfolios sorted on the basis of preranking tail depen-
dence, we can examine the relations between the postranking
factors and the preranking TDCs. Among all the postranking
factors, the decreasing size and momentum as well as the
increasing earnings-price ratios are the most appealing.
Except for several cases of no remarkable relations, linear
beta, downside beta, leverage, Turnover, and volatility display
positive relations with preranking TDCs too. The relation of
postranking book-to-market values with preranking TDCs
is not compelling again. All these relations share the similar
directions to those contemporaneous correlations in Table 2.

Besides, putting the characteristics in each subquintile
aside, we can also extract the relations of average returns with
each risk factor other than tail dependence. It can be clearly
seen that small stocks and the stocks of high-leverage firms
tend to earn higher returns, whereas beta, downside beta,
boot-to-market value, and earnings-price ratios have positive
relations with the stock returns. Moreover the relation of
liquidity with stock returns is consistently negative, nomatter
based on the square root of Amihud’s measure or Turnover.
Momentum and volatility also present a negative relation
with stock returns.

4.2. Cross-Sectional Regression. The month-by-month cross-
sectional regression of the stock returns on various risk
factors is also widely used in existing as a formal asset-
pricing test, so we employ the standardmethodology of Fama
and MacBeth [19] to further test the relationships found
in portfolio analysis. The cross section of stock returns is
monthly regressed on the tail dependence and other factors,
and then the time-series averages and standard deviations of

monthly coefficients are used to analyze whether these asset
pricing factors are explanatory for stock returns. First, we
turn to the primary interest in our paper, examining whether
tail dependence is a determinant of the returns of Shanghai
stocks and provides additional information beyond other risk
factors (especially beta) for asset valuation by observing the
coefficients of TDCs in various regressions. In order to avoid
the error-in-variables (EIV) problem, we use the postranking
TDCs in the regression analysis.

The results presented in Table 5 verify our hypotheses in
the Introduction that those stocks with stronger tail depen-
dence with the whole market will have higher returns. Even
after controlling the effect of other factors, the coefficients of
tail dependence are consistently significant and positive in all
the regressions. Moreover, involving tail dependence in the
various regressions can achieve the improvements in 𝑅2 from
0.23% to 0.42%, as shown by the last column of Table 5. In
contrast, we cannot find any significant relationship with the
stock returns for betas, which is inconsistent with classical
CAPM theory but in line with the results for mature markets
in Fama and French [14], Chalmers and Kadlec [28], Datar
et al. [29], and Easley et al. [15]. This is probably because
beta only measures the overall market risk, but actually the
existence of short-sale constraints would generate a much
stronger downside than upside risk. Such extreme downside
market risk cannot be captured by the downside beta defined
by Ang et al. [11], as we can find that all their coefficients are
insignificant either.

Therefore, our measure of tail dependence, which can
describe this risk of individual stocks crashing down together
with the entire market, presents a more significant ability
of explaining the cross-sectional stock returns than linear
beta and even downside beta, and this ability still exists
after controlling the effect of other factors. Our results might
imply that tail dependence tends to contain some additional
information beyond the widely cited factors (especially the
linear beta) in previous literature and thus call for future
studies to consider it a new possible asset pricing factor.

From the results in Table 5, we could also examine
whether those factors proved to affect the stock returns in
mature markets will help to explain the returns of Shanghai
stocks. First, the size effect, implying that average returns on
small stocks are relatively high, has been well-documented
in the literature as early as by Banz [30], but in our paper
most of the coefficients for size in various regressions are
insignificant albeit with negative signs. The only three pos-
itive slopes appear in the regressions involving the square
root of Amihud’s measure, but they are still insignificant.
Easley et al. [15] also give a positive relation of size with stock
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returns, while our insignificant negative coefficients are in
line with Copeland et al. [31], whose focus is information-
based trading but with a similar sample to ours (also based
on the data of Shanghai A shares).

Among the three factors related to financial information,
book-to-market and earnings-price ratio both display posi-
tive relations with stock returns. This goes against the exten-
tive doubts on the quality of financial statements inChina and
is inconsistent with the well-known fact that the speculative
individual investors who dominate theChinese stockmarkets
cannot understand the book values accurately. Fama and
French [14] found that adding both size and book-to-market
to the regression kills the explanatory power of earnings-
price ratios, but our analysis shows that all the coefficients of
earnings-price ratios are consistently positive and significant.
Differently, although the portfolio analysis indicates that the
stock returns decrease slightlywith leverage, we find that such
negative relations are insignificant, which is in line with Fama
and French [14].

Inspired by the findings of Brennan et al. [24], Datar et al.
[29], and Amihud [25], we also analyze the relation of stock
returns with liquidity.We find that the coefficients of both the
square root of Amihud’s measure and Turnover consistently
show that the returns of illiquid stocks tend to be higher.
However, it should be noted that when these two variables are
both included in one regression, the coefficients of the square
root of Amihud’s measure become will become insignificant
(but still positive).

For the two variables calculated using historical prices,
the coefficients of momentum are all significantly negative.
This finding is consistent with Copeland et al. [31] and reflects
that there is a high degree of mean reversion in China’s
stock markets, implying that news generates excessive price
movement in one period and consequent overreaction tends
to be followed by reversal in the next. In contrast, we cannot
get a consistent conclusion from the coefficients of volatility.

4.3. Time-Series Regression. The cross-sectional evidence
above has verified that the tail dependence risk significantly
affects the stock returns of Shanghai A shares, and this
effect will not disappear even after adding other factors in
the regressions. If this tail dependence of individual stocks
with the market truly reflects a pricing factor, one can also
construct a return proxy from the portfolios sorted according
to tail dependences as in Fama and French [32], and the stock
returns should vary with this proxy over time according to
the APT model. Therefore, in this section, we will further
investigate the time-series behavior of such a constructed
proxy for Shanghai A share stocks.

We construct the proxy for tail dependence following
a procedure similar to that in Fama and French [32]: each
month, we divide all the stocks in our sample into five groups
based on the tail dependences, with the same number of stock
in each group. Then, the mimicking portfolio “MP TDC” is
constructed to proxy for the risk factor related to tail depen-
dence. It is calculated, especially, as the (monthly) difference
between the average returns of the portfolio with the highest
tail dependences and the average returns of the portfolio with
the lowest tail dependences. Since we want to control the

effect of other pricing factors in the time-series regression,
themimicking portfolios to proxy for other factors (including
size, book-to-market value, leverage, earning-price ratio,
square root of Amihud’s measure, Turnover, momentum, and
volatility) are also constructed in a similar way. For each
factor, all the stocks are first divided into five groups, and the
proxy for size, “SML,” is calculated as the difference between
the average returns of the portfolio with the smallest firm
sizes and the average returns of the portfolio with the largest
firm sizes. The proxy for book-to-market value, “HML,” is
calculated as the difference between the average returns of
the portfolio with the largest book-to-market values and the
average returns of the portfolio with the smallest book-to-
market values. The proxy for leverage, “MP LEV,” is the
difference between the average returns of the portfolio with
the largest leverage values and the average returns of the
portfolio with the smallest leverage values, and so on.

Similar to Fama andFrench [32], we use the excess returns
on nine portfolios, formed on size and book-to-market value,
as the dependence variables in our time-series regression.
The nine portfolios are constructed as follows. Firstly, at each
month, we divide all the stocks into three portfolios based on
firm sizes. Next, the stocks in each of the three portfolios are
further divided into 3 subportfolios based on book-to-market
values. Finally, we obtain nine portfolios in total. Together
with the market returns, the proxies for tail dependence and
other pricing factors are tested on the obtained nine size and
book-to-market value sorted portfolios.

We first turn to our main concern in this paper, the
performance of the tail dependence proxy in the time-series
regression.The evidence in Table 6(a) shows that, if the proxy
for tail dependence is added into the Fama-French’s three-
factor model, the adjusted 𝑅2 will achieve an improvement
from 1.8% to 4.7%. More importantly, all the 9 portfolios are
loadedpositively and significantly on the proxy for tail depen-
dence at the confidence level of 5%. The results in Table 6(b)
further indicate that, even after the proxies for other pricing
factors are also included in the time-series regression, the
slopes of the proxy for tail dependence remain significantly
positive except for one portfolio (positive but insignificant).
In the full model of Table 6(b), we also observe an increase
of the adjusted 𝑅2 by adding the proxy for tail dependence
into the regressions. We thus advocate that, for Shanghai A
stocks, the portfolio constructed to mimic the risk factor
related to tail dependence could help to capture common
variation in returns, no matter what else is in the time-series
regressions.This represents evidence that the tail dependence
of individual stocks with the whole market is indeed a proxy
for the sensitivity to common risk factors in stock returns.

Among other pricing factors, the performance of market
returns is the most remarkable. All the slopes of market
returns are highly significant and close to one. In other words,
the market factor explains a large portion of the variations
in stock portfolio returns. The slopes of the “SML” proxy are
positive for the portfolios of small stocks and the slopes of the
“HML” proxy are significantly positive for the portfolios with
the largest book-to-market values. Besides, all the portfolios
are positively loaded on the proxy for leverage but this
variable is insignificant. The slopes of the proxy for volatility
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Table 6: (a) Regression of portfolio returns on the proxy for tail dependence and Fama-French factors.This table shows results from regressing
each of the nine size and book-to-market value sorted portfolios’ excess returns on three factors in Fama-French model and the proxy for
tail dependence; that is, 𝑅

𝑡
− RF
𝑡
= 𝑎 + 𝑏(RM

𝑡
− RF
𝑡
) + 𝑠SML

𝑡
+ ℎHML

𝑡
+ 𝑘TDCMP TDC + 𝑒

𝑡
, where 𝑅

𝑡
represent each portfolio’s returns,

RM
𝑡
represent market returns, and RF

𝑡
are risk-free rates. SML, HML, and MP TDC are the proxies for size, book-to-market value, and tail

dependence, respectively. “∗” denotes the fact that the corresponding coefficients are significantly different from zero at the confidence level
of 5%. (b) Regression of portfolio returns on the proxies for tail dependence and all the other factors.This table shows results from regressing
each of the nine size and book-to-market value sorted portfolios’ excess returns on three factors in Fama-French model, the proxy for tail
dependence, and the proxies for other factors; that is, 𝑅

𝑡
− RF
𝑡
= 𝑎 + 𝑏(RM

𝑡
− RF
𝑡
) + 𝑠SML

𝑡
+ ℎHML

𝑡
+ 𝑘LEVMP LEV + 𝑘E/PMP E/P +

𝑘ASQTMP ASQT + 𝑘TURNMP TURN + 𝑘MTMMP MTM + 𝑘VOLMP VOL + 𝑘TDCMP TDC + 𝑒
𝑡
, where 𝑅

𝑡
represent each portfolio’s returns,

RM
𝑡
represent market returns, and RF

𝑡
are risk-free rates. SML, HML, MP LEV, MP E/P, MP ASQT, MP TURN, MP MTM, MP VOL,

and MP TDC are, respectively, the proxies for size, book-to-market value, leverage, earning-price ratio, square root of Amihud’s measure,
Turnover, momentum, volatility, and tail dependence. “∗” denotes the fact that the corresponding coefficients are significantly different from
zero at the confidence level of 5%.

(a)

Low Median High Low Median High
𝑎 𝑡(𝑎)

Small −0.428 −0.221 −0.254 −1.688 −0.866 −1.069
Median −0.381 −0.509 −0.315 −1.484 −1.960 −1.310
Large −0.327 −0.450 −0.457 −1.341 −1.804 −1.962

𝑏 𝑡(𝑏)

Small 0.998∗ 0.962∗ 1.010∗ 20.105 18.978 21.544
Median 0.963∗ 1.018∗ 0.966∗ 19.332 19.998 20.470
Large 0.946∗ 1.027∗ 0.994∗ 19.822 20.674 21.389

𝑠 𝑡(𝑠)

Small 0.544∗ 0.435∗ 0.439∗ 4.539 3.553 3.881
Median 0.040 0.079 0.074 0.334 0.645 0.648
Large −0.386∗ −0.072 −0.106 −3.352 −0.604 −0.946

ℎ 𝑡(ℎ)

Small −0.212 0.214 0.418∗ −1.723 1.710 3.608
Median −0.115 0.132 0.461∗ −0.937 1.048 3.947
Large −0.307∗ 0.253∗ 0.473∗ −2.604 2.061 4.116

𝑘TDC 𝑡(𝑘TDC)

Small 0.548∗ 0.677∗ 0.715∗ 4.546 5.501 6.288
Median 0.570∗ 0.616∗ 0.678∗ 4.713 4.985 5.917
Large 0.556∗ 0.418∗ 0.509∗ 5.797 3.468 4.508

𝑅
2 Increase of 𝑅2 by adding proxy for TDC

Small 84.3% 82.8% 86.1% 2.6% 4.3% 4.7%
Median 80.0% 81.1% 82.7% 3.7% 3.9% 5.1%
Large 80.7% 80.6% 82.4% 3.7% 1.8% 2.9%

(b)

Low Median High Low Median High
𝑎 𝑡(𝑎)

Small −0.075 −0.084 −0.051 −0.189 −0.216 −0.129
Median −0.140 −0.124 −0.049 −0.360 −0.304 −0.128
Large −0.065 −0.118 −0.062 −0.170 −0.290 −0.157

𝑏 𝑡(𝑏)

Small 0.965∗ 0.922∗ 0.978∗ 18.906 17.960 20.470
Median 0.931∗ 0.988∗ 0.933∗ 18.016 18.893 19.273
Large 0.912∗ 0.991∗ 0.957∗ 18.579 19.756 20.408

𝑠 𝑡(𝑠)

Small 0.464∗ 0.303 0.304 2.056 1.335 1.439
Median 0.091 0.024 −0.009 0.398 0.102 −0.040
Large −0.246 −0.117 −0.018 −1.135 −0.527 −0.089
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(b) Continued.

ℎ 𝑡(ℎ)

Small −0.199 0.253 0.537∗ −1.356 1.707 3.896
Median −0.056 0.076 0.421∗ −0.375 0.504 3.022
Large −0.212 0.223 0.478∗ −1.500 1.546 3.537

𝑘LEV 𝑡(𝑘LEV)

Small 0.152 0.156 0.029 0.753 0.736 0.148
Median 0.215 0.144 0.265 1.010 0.669 1.331
Large 0.219 0.077 0.102 1.081 0.372 0.529

𝑘E/P 𝑡(𝑘E/P)

Small −0.012 −0.214 −0.113 −0.088 −1.528 −0.869
Median −0.234 0.061 −0.077 −1.664 0.429 −0.582
Large −0.048 0.057 −0.015 −0.360 0.418 −0.116

𝑘ASQT 𝑡(𝑘ASQT)

Small 0.015 −0.009 0.107 0.058 −0.036 0.454
Median −0.154 −0.008 0.019 −0.607 −0.031 0.080
Large −0.110 −0.057 −0.239 −0.456 −0.231 −1.037

𝑘TURN 𝑡(𝑘TURN)

Small −0.087 −0.057 −0.132 −0.535 −0.345 −0.864
Median 0.122 −0.173 −0.143 0.737 −1.032 −0.928
Large −0.022 −0.166 0.094 −0.142 −1.036 0.625

𝑘MTM 𝑡(𝑘MTM)

Small 0.187 0.168 −0.004 1.545 1.376 −0.031
Median 0.040 0.244∗ 0.212 0.323 1.967 1.849
Large −0.065 0.247∗ 0.205 −0.560 2.078 1.845

𝑘VOL 𝑡(𝑘VOL)

Small 0.341∗ 0.304 0.303 2.033 1.803 1.927
Median 0.232 0.259 0.223 1.365 1.508 1.401
Large 0.298 0.342∗ 0.397∗ 1.846 2.076 2.575

𝑘TDC 𝑡(𝑘TDC)

Small 0.343∗ 0.383∗ 0.490∗ 2.241 2.485 3.418
Median 0.403∗ 0.424∗ 0.448∗ 2.603 2.701 3.089
Large 0.438∗ 0.190 0.345∗ 2.977 1.260 2.456

𝑅
2 Increase of 𝑅2 by adding proxy for TDC

Small 84.7% 83.7% 86.6% 0.6% 0.7% 1.3%
Median 80.1% 81.5% 83.2% 1.1% 1.0% 1.3%
Large 81.1% 81.7% 83.4% 1.3% 0.1% 0.7%

are also consistently positive. No consensus could be found
for the results of other pricing factors. It is also important
to examine the pattern in the intercepts. All the intercepts
are insignificantly negative, but we can find that 𝑇 values of
intercepts in the full model are lower than those in the model
only including the Fama-French factors and the proxy for
tail dependence.This means that adding other pricing factors
into the time-series regression can help to bring the intercepts
to zero.

5. Conclusion

The existence of short-sale constraints in many stockmarkets
alwaysmakes a large amount of the adverse information pent-
up. When the market is shocked by an event and declines,
this originally sidelined information would be flushing out to
the market and generate the extreme downside risk, which is
rather stronger than upside risk. However, as a linearmeasure
of overall market risk, the beta in classical CAPM cannot
distinguish the difference between them.

Therefore, this paper introduces a nonlinear measure,
tail dependence, to capture this extreme downside market
risk that individual stocks crash down together with the
market. It can be viewed as a different perspective on “market
risk” beyond linear beta and thus requires compensation. By
employing the sound Copula theory to model the depen-
dence structure between individual stocks and the market,
their tail dependence can be easily estimated. We attempt to
give the answers to the following two questions. First, does
this tail dependence with the market indeed exist? And if it
exists, is this tail dependence a determinant of stock returns?

We build elaborate empirical analysis based on the data
of Shanghai A shares, and our results verify that most
Shanghai A-share stocks do crash down together with the
market, evident by their nonzero tail dependence coefficients.
Furthermore, the tail dependence of individual stocks with
the market is proved to have additional explanatory power
beyond linear beta and other factors for the cross-sectional
stock returns of Shanghai’s market. The stocks with stronger
tail dependence will always have higher returns, and, even
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after controlling the effect of other asset pricing factors, this
positive relation is still significant. The evidence of the time-
series regression further suggests that, if a portfolio is con-
structed to mimic the risk factors related to tail dependence,
the returns of this mimicking portfolio can also help capture
reasonable common variations in returns of Shanghai A
shares. Both these findings inspire us that the tail dependence
may contain certain information that beta and other pricing
factors well-cited by previous studies cannot provide, and
thus we advocate that this tail dependence should be also
taken into account in future studies.

During our sample period, short selling is strictly prohib-
ited in Shanghai stock market. In other markets, even if short
selling is not strictly prohibited, the short-sale constraints
still exist due to the cost, risk, and institutional restrictions
associated with short-selling. For example, Hong and Stein
[6] suggest that “mutual fund managers, by virtue of their
charters or regulations, are often deterred from taking short
position.” Therefore, we could further use the data of such
markets to widely examine the robustness of the relation
between tail dependence and stock returns found in our
paper. Moreover, our work can also be extended in another
direction: it would be interesting to analyze the upper tail
dependence. Since the patterns of the tail dependence with
the whole market are likely to be different across stocks, we
could use the mixture of Copulas introduced by Hu [7] to
explore both the upper and lower tail dependence between
individual stocks and the market and compare their roles
in determining stock returns. If the lower tail dependence
coefficients can explain stock returns but upper tail depen-
dence coefficients cannot, itmight provide further supporting
evidence for the conjecture put forward in this paper.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The first author appreciates the financial support by EST
Marie Curie fellowship for a long stay (from September
2008 to September 2009) at GREQAM (Groupement de
Recherche en Economie Quantitative d’Aix-Marseille); dur-
ing this period this paper was started and partly completed.
The authors also appreciate the financial support by theMOE
(Ministry of Education in China) Project of Humanities and
Social Sciences (no. 13YJC790024) and the Natural Science
Foundation of China (no. 71301130).

Endnotes

1. Shanghai and Shenzhen Exchange markets began to
accept the declaration of Margin Trading and Short
Selling fromMarch 31, 2010, and the first financial future,
CSI 300 Stock Index Future, was listed on April 16, 2010.

2. Copula is defined by Nelsen [16] as “functions that
join or couple multivariate distribution functions to
their one-dimensional marginal distribution functions.”

Copulas can measure the nonlinear dependence struc-
ture, and, with the parameters of many stylized Copulas,
the tail dependence, which refers to the relationship
between randomvariables resulting fromextreme obser-
vations in the upper and lower quadrants of the joint dis-
tribution function, can be calculated by certain formulas.
We will provide more explanations in Section 2.

3. The authors appreciate an anonymous referee reminding
them of this literature.

4. For the simple bivariate case in this paper, denote the
individual stocks’ returns and the market returns by 𝑋
and 𝑌. Then, formula (2) can be simplified as 𝐹(𝑥, 𝑦) =
𝐶(𝐹(𝑥), 𝐺(𝑦)), where 𝐹(𝑥, 𝑦) is the joint distribution of
𝑋 and 𝑌, and 𝐹(𝑥) and 𝐺(𝑦) are their marginal dis-
tributions, respectively.

5. In order to assure we have sufficient data for the
following asset pricing analysis, eachmonth, we use only
the recent two years’ observations to estimate the Copula
parameters and calculate the lower tail dependence coef-
ficients. Therefore, we employ the empirical marginal
distributions for individual stocks and the market to
avoid the estimation of marginal distributions’ param-
eters. And also, due to the scarcity of data, we choose the
Clayton Copula instead of Student’s 𝑇 Copula, since the
Student’s𝑇Copula has onemore parameter.TheClayton
Copula has lower tail dependence and thus already
allows us to capture the extreme downside market risk
that the individual stocks crash together with the whole
market. Although the Student’s𝑇Copula has both upper
and lower tail dependences, the dependence degrees
in two tails are symmetric. However, it is well-known
that the dependence structure of financial returns is
asymmetric. So, we cannot say which one is better than
the other for the two Copulas. The Clayton Copula is
chosen only from the operational perspective.

6. Using weekly returns instead of monthly returns to cal-
culate the tail dependence is because the Clayton Copula
is a complex nonlinear model which requires more
observations to estimate. In order to retain sufficient data
for the following regression analysis on asset pricing,
we employ the minimum sample size of two years to
estimate the tail dependence coefficients. However, we
have implemented robust test, that is, changing the
sample size from two years to five years, and the results
show that the rank of stocks’ tail dependence coefficients
would almost not change, which is also indicated in the
subsequent portfolio analysis (the postranking TDC is
indeed increasing as with the increase in the preranking
TDC).

7. From formula (11), we can exactly see that, in the
definition of downside beta, the distribution is divided
into two parts, and the downside beta is calculated based
on the left part. Differently, the tail dependence coef-
ficient is not calculated based on the entire left part, but
only based on the extreme left tail. So, it is quite possible
that the tail dependence coefficient and downside beta of
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one stock are of different rank, as they contain different
information.

8. The positive relation between beta and TDC here is
probably because the extreme comovements in tails can
be viewed as a part of the overall relations, so two vari-
ables with strong tail dependence may also present a
strong overall linear relation, provided that their rela-
tions in other parts of the distributions are not too weak.
Nevertheless, we will show in the following that, despite
their positive relations, the role of tail dependence in
affecting the stock returns is rathermore significant than
linear beta.
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