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The activated sludge process (ASP) is the most commonly used process for wastewater treatment.
Improving its performance is necessary from economic and environmental point of views. In this context,
dynamic optimization is a powerful tool for assisting engineers in determining optimal operations and
designs for ASPs.

However, the real optimality of the solution strongly depends on the optimization problem statement,
for which unfortunately, there is no standard or commonly accepted formulation. In a hopeful attempt to
provide a guideline for future works on the topic, this paper reviews the literature devoted to optimal
control and design of ASPs. The main issues to be addressed in order to get reliable solutions are dis-
cussed, among which: (1) Managing the inevitable mismatch between the model predictions and the real
ASP operation. (2) Dealing with the unpredictable variations in the wastewater characteristics. (3)
Accounting for the slowest dynamic processes occurring in ASPs. (4) Appropriately selecting the decision
variables and the flowsheet structure in order to simplify the problem formulation from a mathematical
perspective. (5) Conveniently choosing the cost functions expressions/correlations. (6) Successfully
selecting the mathematical constraints in order to guarantee physically relevant operations.

� 2015 Elsevier B.V. All rights reserved.
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Fig. 1. The basic ASP.
1. Introduction

A wastewater treatment plant, WWTP, is an industrial facility
where a combination of mechanical, physical, chemical and biolog-
ical processes is used to achieve pollutants removal from the
incoming wastewater. These pollutants are various, and in the case
of some industrial wastewaters, they may require specific treat-
ment strategies/techniques: this review paper will focus only on
biological nutrient removal from sewage water, i.e. domestic and
municipal wastewaters. In such WWTPs, a primary treatment
ensures the separation of particulate pollutants (debris, sand, oils,
grease and particulate wastes), in particular, thanks to gravita-
tional separation in a large settling tank (referred to as primary set-
tler). However, colloidal and dissolved wastes are not sufficiently
removed by these separation processes, and therefore, must be
eliminated by a secondary treatment stage. In the case of sewage,
characterized by a low COD (chemical oxygen demand) to BOD5

(five-day biological oxygen demand) ratio, biological secondary
treatment is the most cost-effective process. Nowadays, given its
efficiency, relatively simple operation and low cost, the activated
sludge process (ASP) is by far the most widely used for sewage bio-
logical secondary treatment.

The infrastructure of a basic ASP (Fig. 1) consists of: (1) a single
bioreactor operated continuously where suspended microorgan-
isms consume the colloidal and dissolved organic matter. The
reactor is aerated to provide dissolved oxygen (DO) for aerobic
biodegradation. Bacteria consume one part of the colloidal and dis-
solved carbonaceous compounds to satisfy their energetic needs
(catabolism), and synthesize another part – along with a small pro-
portion of ammonium and phosphorus – into new cellular tissues
(anabolism). (2) A settling tank (referred to as secondary settler or
clarifier) where activated sludge (flocculated biomass) is gravita-
tionally separated from the treated wastewater. The effluent over-
flows into the receiving waterbody, but in some WWTPs, it may
undergo additional treatments (e.g. filtration and disinfection)
before being discharged. A minimum solids retention time (SRT,
also referred as ‘sludge age’) of about 3 days is required for bacteria
to aggregate into flocs (bio-flocculation) so as to enable their grav-
itational separation. (3) A sludge recycle line returning the major
proportion of the settled sludge to the bioreactor, thus allowing



Table 1
Summary of studies dealing with the SOO of ASPs operation. ‘Discharge’, ‘TSS’, Sequences durations’, ‘DO’, ‘Alkalinity’, ‘SRT’, and ‘Reactors volumes’ refer to constraints d ussed in Sections 7.1–7.7 respectively.

[1] [2] [3] [4] [6] [7] [9] [10] [1 [14] [26]

Process
configuration

Fed-batch SBR AAS Fed-batch
SBR

4 STRs in
series

AAS Pre-denitrification AAS A2O S rstructure (5
S in series)

Superstructure (5
STRs in series)

Pre-
denitrification

Biological model ASM1 Linearized
ASM1
(calibrated)

Simplified
ASM1
(calibrated)

ASM1
(calibrated)

ASM1 ASM1 ASM3 ASM2d A 1 ASM1 ASM1

Settler model – – – Not specified Takács [31] Takács [31] Takács [31] Takács
[31]

T cs [31] Takács [31] Takács [31]

Open-/Closed-loop
problem

Open-loop Closed-
loop (RTO)

Open-loop Closed-loop Open-loop Open-loop Open-loop Closed-
loop

C d-loop Closed-loop Closed-loop

Steady/Dynamic
influent

Dynamic feed Dynamic
influent

Dynamic
feed

Dynamic
influent

Dynamic
influent

Steady influent Dynamic influent Steady
influent

Dynamic
influent

D mic influent Dynamic influent Dynamic
influent

Decision variables
type

Includes time-
varying DVs

Includes
time-
varying
DVs

Includes
time-
varying
DVs

All DVs are
continuous
and time-
independent

Includes
time-
varying and
discrete DVs

All DVs are
continuous
and time-
independent

Includes time-
varying DVs

Includes
time-
varying
DVs

Includes
time-
varying
DVs

In des discrete
D

Includes discrete
DVs

All DVs are
continuous
and time-
independent

Optimization
algorithm

Sequential
Quadratic
Programming
(SQP)

Not
specified

SQP Rosenbrock
algorithm

SQP Interior-point method Genetic
algorithm

Pattern
search

S ral algorithms
w tested

Several algorithms
were tested

Several
algorithms
were tested

Objective function Min. batch
time

Min.
aeration-
on
duration

Min. batch
time

Min. air supply
to the reactors

Min.
aeration-on
duration

Min. aeration
energy

Min. a weighted sum
of aeration energy
and pollutants
discharge

Min.
aeration-on
duration

Min.
operating
costs

M a weighted
s of operating
c and PI
c rollers’ ISE

Min. a weighted
sum of operating
costs and PI
controllers’ ISE

Min. a
weighted sum
of the PI
controllers’ ISE

Technical and
operational
constraints
(related to the
ASP)

Discharge Discharge,
sequences
durations

Min. batch
time

Discharge,
sequences
durations

Discharge,
sequences
durations

Discharge Discharge,
DO,
sequences
durations

– – – –

[30] [33] [49] [50] [51] [54] [56] [59] [60] [74] [80]

Process
configuration

Superstructure
(11 STRs in
series)

AAS AAS AAS AAS A2O Superstructure (5 STRs in
series) + Primary settler +
Sludge treatment facility

Pre-
denitrific n

Superstructure
(5 STRs in
series)

Pre-
denitrification

AAS

Biological model ASM2d
(calibrated)

ASM1 ASM1 ASM3 ASM1 (calibrated) Modified
ASM2d

PW-AS ASM1 ASM3 ASM1 ASM1

Settler model 1D reactive
settler model

Perfect point-
settler

Perfect
point-
settler

Takács [31] Point-settler Takács [31] Takács [31] for the sec-
ondary settler. Point-set-
tler for the primary settler

Takács [3 Takács [31] Not specified Takács [31]

Open-/Closed-loop
problem

Open-loop Open-loop Open-loop Open-loop Open-loop Closed-loop Open-loop Open-loo Open-loop Open-loop Open-loop

Steady/Dynamic
influent

Dynamic
influent

Dynamic
influent

Dynamic
influent

Steady
influent

Dynamic influent Dynamic
influent

Steady influent Dynamic
influent

Steady influent Steady influent Dynamic
influent

Decision variables
type

Includes
discrete DVs

Includes
time-varying
and discrete
DVs

Includes
time-
varying
DVs

Includes
time-
varying DVs

Includes time-varying
and discrete DVs

All DVs are
continuous and
time-
independent

All DVs are continuous
and time-independent

Includes
time-var g
DVs

All DVs are
continuous and
time-
independent

All DVs are
continuous and
time-
independent

Includes time-
varying and
discrete DVs
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to maintain a high bacterial concentration in the reactor so as to
intensify the biological nutrient removal. A first benefit of sludge
recycling is decoupling the hydraulic retention time (HRT) and
SRT: hence, an efficient treatment can be achieved for an HRT of
the order of ten hours only. (4) A sludge wastage line at the bottom
of the clarifier, from where a small fraction of sludge is withdrawn
in order to stabilize the biomass concentration in the bioreactor
and to fix an adequate SRT. The excess sludge withdrawn is then
treated separately.

Given the large involved expenses in wastewater treatment, a
lot of research contributions have aimed at improving the ASP effi-
ciency. As a result, numerous sophisticated processes have been
proposed as alternatives to the basic ASP (see Section 2 for details).
These modern ASPs include combinations of aerated and
non-aerated reactors, recirculation lines between these reactors,
and sludge recycle lines between the settler and the bioreactors,
etc. Compared to the basic ASP, these advanced treatment pro-
cesses allow enhancing the biological nutrient removal, especially
with respect to phosphorus and nitrogen removal, increasing the
process flexibility, and reducing the cost and footprint of the plant.

Nowadays, because of the strengthening of the environmental
regulations, it is necessary to improve ASPs operation and design,
but also from an economic point of view, to reduce their operating
costs. In addition, most of the exiting WWTPs have to undertake
major retrofitting to comply with the new regulations. However,
even for expert engineers, determining the optimal operating strat-
egy for ASPs remains quite difficult and laborious due to the high
non linearity and complexity of the underlying biochemical phe-
nomena and their potential interaction, the large number of oper-
ating and design parameters to determine (e.g. ASP configuration,
aeration rates and sludge recycle flow rate), and the variety of
objectives to deal with (e.g. enhancing the treatment efficiency
and minimizing the operating costs).

In this context, dynamic optimization reveals to be a powerful
tool for assisting and supporting designers in determining the opti-
mal operating conditions for existing WWTPs, or simultaneously
predicting the optimal design (units’ sizing) and operation for
future plants (i.e. no infrastructure built yet). Optimization refers
to the method of identifying operating conditions and/or design
parameters that make a system as effective or functional as possi-
ble with respect to a given criterion, while satisfying specified con-
straints. Optimization is formulated as follows: (1) A mathematical
model describing the process behavior is provided, e.g. a model
linking the degradation rate of organic matter in an ASP to its oper-
ating strategy. (2) The designer selects a – or many – criterion
expressing the process’s feature(s) to be optimized, e.g. minimizing
the operating costs of an ASP. This criterion is referred as ‘objective
function’. (3) The designer specifies the parameters that one can
control in order to optimize the objective function, e.g. sludge recy-
cle flow rate, aeration rate and/or reactor volume in an ASP. These
parameters are referred as decision variables, DVs. (4) The designer
chooses the constraints that should be satisfied by the optimal
solution, e.g. effluent quality must comply with regulations. (5)
Provided the optimization problem formulation explained above,
an optimization algorithm is used to systematically search for
the solution(s) (i.e. the DVs values) best meeting the designer’s cri-
teria while respecting the predefined constraints.

Numerous studies dealing with optimal control and design of
ASPs have been published in the last decade, most of them aiming
at determining the most lucrative pollutants abatement strategy.
Studies dealing with the optimal operation of existing ASPs are
summarized in Table 1, those addressing the optimal control and
design of future ASPs are summarized in Table 2, while Table 3
compiles papers devoted to the multi-objective optimization of
ASPs. These papers reveal that optimization allows finding operat-
ing conditions/designs that greatly enhance the ASP performance, a
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fact that has been confirmed experimentally in some of these stud-
ies [1–4]. Thus, the optimal control/design of ASPs addresses an
important academic-industrial research issue.

However, one should be aware that the real optimality of the
computed solution strongly depends on the optimization problem
formulation. For example, the preference between alternative
operating strategies is closely related to the objective functions
used like cost functions, for which there is unfortunately no com-
monly approved expressions. Moreover, there is no model that
can exactly predict the complex biological phenomena occurring
in ASPs. Therefore, engineers may lack confidence regarding the
reliability of the computed solution and even the true potential
of optimization.

In an attempt to settle these misgivings and to provide a general
guideline to help researchers choosing an appropriate and reliable
formulation for their optimization problem, this paper reviews the
literature dealing with the optimal control and design of ASPs.
Section 2 overviews the most common ASPs’ configurations and
their operating principles, and Section 3 presents some general
basics of optimization: this should help researchers in the field of
optimization to better understand issues related to wastewater
treatment and vice versa. Section 4 considers the formulation of
problems addressing the optimal control/design of ASPs, and dis-
cusses some important issues that should be considered in the
problem formulation in order to reduce the inevitable mismatch
between the model prediction and the real process behavior, so
as to get solutions of industrial relevance, i.e. applicable in practice
to real-scale ASPs. Section 5 reviews general aspects relative to the
choice of objective functions, flowsheets structures and DVs. It is
discussed how a convenient selection of the DVs allows to greatly
simplify the optimization problem. Section 6 critically reviews the
principal cost functions (i.e. the formulations of economic objec-
tive functions) that have been used so far in the literature. Their
limits and potentials are discussed. Finally, Section 7 summarizes
the major technical and operational constraints employed in the
literature. This review paper is hopefully expected to provide a
guideline for future works on optimal control and design of ASPs.
2. Conventional ASPs configurations

The basic ASP, described above, allows an efficient removal of
carbonaceous organics and ammonium/ammonia (SNH) from
wastewater. However, due to the increasing concerns about
eutrophication, stricter regulations forced its upgrading to improve
nitrogen and phosphorus removal. For this purpose, and thanks to
the advances in microbiology, the classical ASP has evolved into
several more sophisticated processes of which some are described
below.

Concerning the enhanced nitrogen removal, the two-steps
nitrification-denitrification process revealed to be the most eco-
nomical abatement strategy. Nitrification is carried out by nitrify-
ing autotrophic bacteria under aerobic conditions, and consists in
the oxidation of SNH into nitrate/nitrite (SNO). Since the growth
rates of nitrifying bacteria are low, they require a minimum SRT
of about 10 days to establish themselves. Denitrification is the pro-
cess of SNO reduction into nitrogen gas, and is achieved by some
heterotrophic bacteria under anoxic conditions, i.e. DO depletion
but SNO presence as a substitute terminal electron acceptor.
Carbonaceous matter is consumed by bacteria under both aerobic
and anoxic conditions.

In large-size WWTPs, anoxic and aerobic conditions are carried
out in separate reactors. The pre-denitrification (Fig. 2a) and the
post-denitrification (Fig. 2b) configurations are the most
widespread. In the pre-denitrification design, the anoxic tank(s)
is placed upstream of the aerobic reactor(s). Therefore, internal
recirculation of the nitrified liquor to the anoxic reactor is
needed, which involves additional pumping costs. In the
post-denitrification configuration, the anoxic tank(s) is placed
downstream of the aerobic reactor(s). This configuration allows a
better SNO removal efficiency than the pre-denitrification
process. However, it is possible that denitrification continues to
occur within the settler, and hinders sludge settling due to the gen-
eration of nitrogen bubbles. Moreover, since carbonaceous sub-
strates are consumed in the aerated tank(s), they may become
limiting in the anoxic reactor(s). Therefore, the addition of car-
bonaceous matter (methanol, acetate, and ethanol are the most
commonly used) may be required in order to achieve an efficient
denitrification.

In most small-size WWTPS, nitrification and denitrification are
carried out in the same bioreactor, i.e. are shifted in time by run-
ning the aerators sequentially to create periodically alternating
aerobic and anoxic conditions. This Alternating Activated Sludge
(AAS) process is the most widespread in small-size WWTPs.
Indeed, since it requests the same infrastructure than the basic
ASP, it allows a cost-efficient retrofitting of existing WWTPs: only
a modest addition of equipment such as controllers may be
needed.

Concerning phosphorous, the conventional ASP leads to a
removal efficiency around 10–30%. Enhanced phosphorus removal
can be achieved by chemical precipitation, or by exposing the bio-
mass to alternating anaerobic and aerobic conditions, which inten-
sifies phosphorus uptake by some microorganisms. The most
common ASP configuration enabling enhanced nitrogen and phos-
phorus removal is the A2O process, which consists of an Anaerobic
tank followed by an Anoxic and an Oxic (i.e. aerobic) reactor.

Finally, it is noteworthy that although most current ASPs are
run continuously, some are operated in batch mode or
semi-continuously as the Sequencing Batch Reactor (SBR) process.
Such discontinuous processes (as well as the AAS) are inherently
dynamic and require specific formulations of the optimization
problem as explained later. For details about modern ASPs
configurations, the reader is invited to consult specialized text
books, e.g. [5].

3. Optimization

3.1. Single-objective optimization

A general single-objective optimization problem, SOOP, can be
stated as follows:

Min
u;tf

Jðx;u; tf Þ ð1Þ

Subject to:

Process model equations : f ðx; _x;u; tÞ ¼ 0 ð2Þ

Initial conditions : xðt0Þ ¼ x0 ð3Þ

Equality constraints : hðx;uÞ ¼ 0 ð4Þ

Inequality constraints : gðx;uÞ 6 0 ð5Þ

Decision variables bounds : uL 6 u 6 uU ð6Þ

where t is time and tf the time horizon. x represents the set of pro-
cess state variables (and _x its time derivative). Although the above
formulation considers the state variables as differential, it is impor-
tant to notice that algebraic and integer (and binary) variables can
be handled as well. However, discrete variables give rise to differen-
tiability issues and thus, problems involving such variables are dif-
ficult to solve using deterministic techniques (Section 3.2). u is the



Table 2
Summary of studies dealing with the SOO of ASPs operation and design.

[8] [11] [13] [21] [27] [28] [29]

Process configuration Superstructure (2 STRs and 2
settlers)

Superstructure (up to 3
plug-flow reactors in
series)

Superstructure (2 STRs and 2
settlers)

A2O A2O Primary settler + Basic
ASP

Basic ASP

Biological model A simple model ASM1 A simple model ASM2d (calibrated)
simplified using a
MLA

ASM3 + EAWAG Bio-P
(calibrated) simplified
using a MLA

ASM3 ASM1

Settler model Simple 1D model Perfect point-settler Simple 1D model Not specified Not specified Point-settler model with
variable separation
efficiency

ATV

Open-/Closed-loop
problem

Closed-loop Open-loop Closed-loop Open-loop Open-loop Open-loop Open-loop

Steady/Dynamic influent Dynamic influent Steady influent Dynamic influent Dynamic influent Dynamic influent Steady influent Steady influent
Decision variables type All DVs are continuous and time-

independent
Includes discrete DVs All DVs are continuous and time-

independent
All DVs are
continuous and
time-independent

All DVs are continuous
and time-independent

All DVs are continuous
and time-independent

All DVs are
continuous and
time-independent

Optimization algorithm Several algorithms were tested Simulated annealing Several algorithms were tested Accelerating genetic
algorithm

Accelerating genetic
algorithm

GAMS software Interior-point
method

Objective function Min. a weighted sum of:
operating costs, capital costs and
PI controller’s ISE

Min. pollution
discharge

Min. a weighted sum of:
operating costs, capital costs and
PI controller’s ISE

Min. Pollutants
discharge

Min. Pollutants discharge Min. Capital +
operating + maintenance
costs

Min. Capital +
operating +
maintenance costs

Technical and
operational
constraints (related to
the ASP)

Numerous constraints were used – Numerous constraints were used – – Reactor volume,
discharge

Discharge, DO, TSS

[34] [35] [36] [38] [39] [40] [41] [57]

Process configuration Primary settler + A2O Basic ASP Basic ASP Superstructure (up to 5
STRs in series)

Superstructure (up to 7
STRs in series)

Alpha process RDN and DRDN Regional wastewater system: 3
cities, a sewer system and 3
decentralized WWTPs

Biological model ASM3 + EAWAG Bio-
P module

ASM1 ASM1 ASM3 ASM3 + EAWAG Bio-P
module

ASM1 ASM1 (calibrated) –

Settler model Point-settler model
with variable
separation efficiency

Takács [31] + ATV Takács [31] + ATV Takács [31] Takács [31] Perfect point-
settler

Point-settler
(separation efficiency
was not reported)

–

Open-/Closed-loop
problem

Open-loop Open-loop Open-loop Open-loop Open-loop Open-loop Open-loop Open-loop

Steady/Dynamic
influent

Steady influent Steady influent Steady influent Steady influent Steady influent Steady
influent

Dynamic
influent

Steady influent Steady influent

Decision variables type All DVs are
continuous and time-
independent

All DVs are
continuous and
time-independent

All DVs are
continuous and
time-independent

All DVs are continuous
and time-independent

All DVs are continuous
and time-independent

All DVs are
continuous and
time-independent

All DVs are continuous
and time-independent

All DVs are continuous and time-
independent

Optimization
algorithm

GAMS software SQP Interior-point
method

Generalized Reduced
Gradient (GRG)

GRG GRG2 GRG2 Genetic algorithm

Objective function Min. Capital +
operating +
maintenance costs

Min. Capital +
operating +
maintenance
costs

Min. Capital +
operating +
maintenance
costs

Min.
Capital +
Operating
costs

Min.
Operating
costs

Min.
Capital +
Operating
costs

Min.
Operating
costs

Min. Total reactors
volume

Min. total
reactors
volume

Min.
Capital +
operating
costs

Min. Capital + operating costs

Technical and
operational
constraints (related
to the ASP)

Reactor volume,
discharge

Discharge, DO Reactor volume,
Discharge, DO

Discharge Discharge Discharge, DO, TSS Discharge, DO, TSS –
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Table 3
Summary of studies dealing with the MOO of ASPs operation and/or design.

[18] [19] [20] [42] [43] [44]

Process configuration 5 STRs in series 5 STRs in series Prim. Settler +7 STRs in series + a
sludge treatment facility

Basic ASP Basic ASP Pre-denitrification

Biological model ASM3 ASM3 ASM3 Simple model (calibrated) ASM1 ASM1
Settler model Takács [31] Takács [31] Takács [31] Point-settler Takács [31] + ATV Takács [31]
Open-/Closed-loop problem Closed-loop Closed-loop Open-loop Open-loop Open-loop Closed-loop
Steady/Dynamic influent Steady influent Steady influent Steady influent Steady influent Steady influent Dynamic influent
Decision variables type All DVs are continuous and

time-independent
All DVs are continuous and
time-independent

All DVs are continuous and time-
independent

All DVs are continuous and
time-independent

All DVs are continuous and
time-independent

All DVs are continuous and
time-independent

Optimization algorithm Controlled Random Search
algorithm

Controlled Random Search
algorithm

A global optimizer (no details are
reported)

Method for computing the Pareto
front

– (NIMBUS interactive
method)

– (NIMBUS interactive
method)

– (NIMBUS interactive method) Multi-objective genetic
algorithm: NSGA II

Multiple-objective genetic
algorithm: MEGA

Multi-objective genetic
algorithm: NSGA II

Objective functions J1: Min. SNH discharge
J2: Min. aeration power
consumption
J3: Min. sodium
bicarbonate addition

J1: Min. SNH discharge
J2: Min. aeration power
consumption
J3: Min. sodium
bicarbonate addition

J1: Max Nitrogen removal rate
J2: Min. Aeration energy
J3: Min. External carbon addition
J4: Min. Sludge production
J5: Max. Gas production of the
anaerobic digester

J1: Max. the influent
wastewater throughput
J2: Min. BOD5 discharge
J3: Min. Operating costs

J1: Min. Operation +
Investment + Maintenance
costs
J2: Min. Pollutants discharge

J1: Min. Operation costs
J2: Min. Pollutants
discharge

Technical and operational
constraints (related to the ASP)

Alkalinity Alkalinity Discharge, TSS – Discharge, DO –

[47] [48] [52] [53] [55] [58] [81]

Process configuration Superstructure (1
STR)

Superstructure (4 STRs
in series)

Biodenipho process 5 STRs in series A2O Storm tank + basic ASP +
Sewer system + River

A2O

Biological model ASM1 ASM1 Model from the literature ASM1 Extended ASM2d ASM1 ASM2d
Settler model Takács [31] Takács [31] Not specified Takács [31] Takács [31] Takács [31] Takács [31]
Open-/Closed-loop problem Open-loop Open-loop Open-loop Open-loop Closed-loop Closed-loop Closed-loop
Steady/Dynamic influent Dynamic influent Dynamic influent Steady influent Steady

influent
Dynamic
influent

Dynamic influent Dynamic influent Steady influent

Decision variables type Includes time-
varying DVs

All DVs are continuous
and time-independent

Includes discrete DVs All DVs are
continuous and
time-independent

Includes time-varying DVs All DVs are continuous and
time-independent

All DVs are continuous
and time-independent

Optimization algorithm Single-objective genetic
algorithm

Single-objective
scatter search
algorithm

Method for computing the
Pareto front

A multi-objective
genetic algorithm

A multi-objective
genetic algorithm

e-constraint e-constraint – (Random points generation) Multi-objective genetic
algorithm: NSGA II

Multi-objective genetic
algorithm: NSGA II

Objective functions J1: Min. operation
cost
J2: Min. Nitrogen
discharge

J1: Min. operation cost
J2: Min. Nitrogen
discharge

J1: Min. Operation +
Investment + Maintenance
costs
J2: Min. Nitrogen discharge

J1: Min. Operation
costs
J2: Min. Pollutants
discharge

J1 : Min. Operating costs
J2: Min. Pollutants discharge
J3: Min. Risk of microbiology-
related solids separation
problems

Several objectives related to
the water quality in the river

J1: Min. operating costs
J2: Min. Pollutants
discharge

Technical and operational
constraints (related to the
ASP)

Discharge, SRT,
DO, Reactor
volume

Discharge, SRT, DO,
Reactor volume

Discharge – – – –
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Fig. 2. Two conventional ASP configurations for enhanced nitrogen removal. (a) The
pre-denitrification configuration. (b) The post-denitrification configuration.

Fig. 3. Schematic representation of a Pareto front: red circles represent Pareto
optimal solutions, while blues ones represent dominated solutions. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

R. Hreiz et al. / Chemical Engineering Journal 281 (2015) 900–920 907
set of DVs, and uL and uU are its lower and upper bounds respec-
tively. J is the objective function to be minimized (or maximized;
in that case, negative J is minimized). h and g represent respectively
the set of equality and inequality constraints that should be fulfilled
by the optimal solution.

The problem is qualified as nonlinear if the objective function,
and/or the process model and/or at least one of the constraints
is/are nonlinear. Obviously, non-linear problems are much harder
to solve than linear ones, and they require the use of specific algo-
rithms. Biochemical phenomena involved in ASPs (and liquid–solid
separation in the settler) are highly non-linear.

An optimization problem is considered as dynamic if time is
involved in the model, i.e. the system presents a temporal evolu-
tion. Otherwise, the problem is said to be static. Dynamic problems
are more complicated and time-consuming to solve, since the
model is to be integrated over the entire time horizon at each iter-
ation of the optimizer used. ASPs operation is naturally dynamic
since the wastewater flow rate and composition vary with time
(due to the variation of human/industrial activities during the
day, rain events, etc.): indeed, these temporal variations constitute
the main source of disturbances of ASPs operation.

In dynamic optimization problems, DVs may be considered as
constant over the time horizon (e.g. a constant aeration rate in a
reactor), or may be allowed to vary with time (e.g. aeration rate in
an AAS). The use of time-varying DVs is mandatory for handling
inherently dynamic processes, e.g. AAS or semi-continuous and
batch ASPs. However, new considerations arise from such a for-
mulation, since the dimension of the DVs vector becomes infinite
(indeed, the optimal values of the DVs are required at every
moment). To be solved, such problems must be broken into sim-
pler sub-problems of finite dimension, then, classical optimization
principles are applied. In studies dealing with the optimal control
of ASPs, the control vector parameterization (CVP) approach has
been the most used method to handle such problems (e.g. [6];
only Luo and Biegler [7] have employed another method, the
simultaneous collocation approach). The CVP approach consists
in dividing the time horizon into a finite number of intervals,
and then using simple functions (e.g. piece-wise constant func-
tions) to approximate the DVs temporal variations within these
intervals. For illustration, if we consider a problem aiming at
determining the optimal aeration rate over a day, the time hori-
zon may be split for example into 24 intervals of 1 hour each.
Using piece-wise constant functions to approximate the DVs con-
verts the original complex problem into a classic optimization
problem, involving 24 time-independent DVs, i.e. the aeration
rates at each hour.
3.2. Optimization algorithms

Optimization algorithms used to solve nonlinear problems can
be broadly classified into three categories: local-deterministic
methods, global-deterministic techniques, and stochastic/meta-
heuristics approaches. Contrary to stochastic algorithms, starting
from a particular initial point, deterministic approaches always
yield the same solution, i.e. they produce the same series of
iterates.

Local-deterministic techniques are iterative methods that pro-
ceed by successive improvements of an initial – arbitrarily guessed
– solution. They define the search direction based on information
about the neighborhood of the current solution, i.e. the evaluation
of the gradient. These methods suffer from several drawbacks: (1)
Most of them cannot efficiently handle models involving
non-differentiability. (2) When dealing with multimodal problems
(i.e. when numerous local optima exist, which is the case in most
chemical engineering problems), the provided solution will depend
on the initially guessed one. To overcome this issue, the so-called
multi-start strategy is often used: the optimization procedure is
carried out repeatedly, starting from different initial points, hence
increasing the probability of finding a better solution. However,
mathematically speaking, this procedure does not guarantee
reaching the global optimum.

Global-deterministic methods are designed to escape local min-
ima and to converge to the global optimum within a desired toler-
ance. However, as discussed in [8], to guarantee global optimality,
most of these methods have a number of requirements (e.g. twice
differentiability of the model) that are not met in many realistic
dynamic problems. Moreover, these techniques are relatively hard
to implement, and the associated computational effort increases
very rapidly with the problem’s size.

Stochastic methods are optimization techniques that introduce
randomness into the search procedure, and attempt to connect the
DVs to the objective function in a black box manner. They incorpo-
rate artificial intelligence: they mimic physical or biological phe-
nomena to guide the search into promising zones in the
solutions’ space. A primary advantage of stochastic techniques is
that, unlike most deterministic methods, they do not have much
mathematical requirements. Moreover, they are easy to imple-
ment. Stochastic methods are regarded as global optimization
techniques (since the solution procedure is not ‘trapped’ in local
optima), although they do not guarantee global optimality in finite
time. Nevertheless, they usually provide good solutions in moder-
ate computation times. Stochastic algorithms may be combined
with local-deterministic techniques: these two-stage optimization
methods are known as hybrid algorithms. First, a global search is
conducted by the stochastic algorithm to guide the solution to
the vicinity of the global optima, i.e. its attraction basin. In a second
step, the local search routine is activated to precisely locate that
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optimum. Several stochastic techniques were used in studies deal-
ing with optimal operation/design of ASPs: genetic algorithms (e.g.
[9]), pattern search (e.g. [10]), simulated annealing [11], ant colony
[12], scatter search [13], tabu search [14], etc.
3.3. Multiple objective optimization

Most real-world processes require the simultaneous optimiza-
tion of several objectives, e.g. minimizing the exploitation costs
and maximizing the treatment efficiency of an ASP. These criteria
are often conflicting and incommensurable (cannot be expressed
in the same units), therefore, they cannot be ‘instinctively’ com-
bined in a single meaningful objective function. Accordingly, han-
dling such problems using the traditional SOO approach leads to
unnecessary simplifications. Indeed, it hides the real nature of
the problem since the conflicting aspects between the different
objectives are not clearly recognized. Instead, multi-objective opti-
mization (MOO) allows accounting simultaneously and compre-
hensively for several criteria, and thus provides the designer with
information about the trade-offs involved between the different
objectives that he/she would like to optimize.

Multi-objective optimization problems (MOOPs) are formulated
similarly as SOOPs, but Eq. (1) where the objective function is a
scalar is replaced with Eq. (7) where the objective function is a
vector:

Min
u;tf

Jðx;u; tf Þ ¼ ½J1; J2; . . . ; Jn�
T ð7Þ

where T stands for the transpose, and n for is the number of
objectives.
3.3.1. The Pareto front
Since conflicting criteria are tackled together in MOO, there is

no unique solution that can simultaneously optimize the set of
defined objectives. Therefore, the notion of optimality is redefined
and the ‘Pareto dominance’ concept is used to compare solutions: a
feasible solution dominates another one only if it leads to a supe-
rior or equal performance with respect to all objective functions.
Thus, a solution is said to be – Pareto – optimal if it is not domi-
nated by any other feasible solution. Using the Pareto dominance
concept, MOO leads to a set of optimal solutions known as the
Pareto front, PF (Fig. 3). A Pareto optimal solution cannot be
improved with respect to any objective without impairing at least
another one. In other words, for a problem aiming at optimizing
the treatment quality and cost of an ASP for example, the PF repre-
sents the minimal cost enabling a given treatment efficiency.

From a mathematical perspective, all Pareto optimal solutions
are equally optimal, i.e. solution vectors cannot be ordered mathe-
matically. Therefore, a decision maker (DM) should examine these
solutions, and based on his/her ‘subjective’ preferences, selects
which one to be implemented on the real-scale ASP (this final solu-
tion is referred to as the most preferred solution). The DM is gen-
erally the project manager or an expert of the topic. Note that
he/she may rely on decision making tools that would help him/her
for ranking and comparing alternative solutions. Compared to SOO,
a primary advantage of MOO is that it allows benefiting from the
DM experience. Indeed, given his/her expertise, he/she will avoid
for example solutions that may lead to subnormal operating condi-
tions (e.g. poor sludge settleability or overgrowth of filamentous
bacteria). Moreover, it allows the DM to assess the true optimality
of each solution. If we consider for example the PF illustrated in
Fig. 3, while both points A and B represent optimal solutions, it is
clear that the DM would have preference for solution B, since for
a small increase in the operating cost, it allows an important
improvement of the treatment quality.
3.3.2. Methods for computing the Pareto front
Techniques allowing the computation of the PF can be broadly

classified into two classes, scalarization and vectorization
approaches. Scalarization techniques consist in converting the
original MOOP into a series of parametric SOOPs. The most wide-
spread approach is the weighted sum method. It consists in aggre-
gating all the objective functions within a single objective, using a
weighted sum. Hence, Eq. (7) is replaced by:

Min
u;tf

ðx1J1;þx2J2 þ � � � þxnJnÞ ð8Þ
Xi¼n

i¼1

xi ¼ 1 ð9Þ
xi P 0 ð10Þ

Thus, the MOOP is converted into a parametric SOOP: by para-
metrically varying the weights values, a set of optimal solutions is
produced, i.e. the PF can be computed. However, this approach suf-
fers from several drawbacks: it does not allow exploring the
non-convex parts of the PF, and moreover, uniformly varying the
weights does not necessarily result in equally spaced solutions
over the PF.

Contrary to scalarization approaches, vectorization techniques
directly tackle the MOOP. The most widespread vectorization
methods are based upon genetic algorithms, given that the concept
of Pareto optimality can be easily integrated within such algo-
rithms. Since they are a population-based metaheuristic, genetic
algorithms are well adapted for handling MOOPs, and moreover,
they are not – or little – susceptible to the shape and convexity
of the PF. Several variants of MOO genetic algorithms exist. They
use variant techniques (e.g. niching, fitness sharing) in order to
generate uniformly distributed solutions over the entire PF. The
interested reader may refer to [15–17] among others for details
about these algorithms.

Finally, the existence of interactive approaches is to be men-
tioned. These methods allow solving MOOPs without computing
the PF. They are computationally efficient since they focus only
on the part of the PF that interests the DM. They are iterative tech-
niques where the DM continuously interacts with the solution pro-
cedure. At each step, the DM expresses his/her opinion on how the
current solution should be improved, and then, a new solution is
computed based on his/her preferences. The procedure continues
until the DM is satisfied and believes that no better solution can
be achieved. Additional details about these methods can be found
in [18–20].
4. Optimal control/design of ASPs: problem formulation

This section surveys the formulations of problems addressing
the optimal control/design of ASPs. Mathematical models describ-
ing the ASPs dynamic behavior are first presented in Section 4.1.
Section 4.2 discusses some primary issues that should be
addressed in order to get a realistic numerical solution, applicable
in practice to the ASP. Finally, Section 4.3 reviews the effectiveness
of the various classes of optimization algorithms when applied to
such complex problems.
4.1. Process model

In WWTPs, the secondary treatment stage is the most important
process considering both performance and involved costs.
Accordingly, most studies dealing with optimal control/design of
WWTPs have restricted their flowsheet to the ASP solely.
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The main phenomena that should be accounted for in a detailed
mathematical modeling of ASPs operation are: hydrodynamics
phenomena, biochemical reactions and their kinetics, and
liquid-solid separation in the settler. However, all papers dealing
with optimal control/design of ASPs have treated the bioreactors
(and the settler) as stirred tank reactors (STRs), i.e. hydrodynamics
effects were neglected. Plug-flow reactors, e.g. carrousel type
ditches, were modeled as a series arrangement of continuous
STRs, e.g. [21]. Indeed, using such an assumption allows avoiding
partial differential equations (PDEs) in this process model: by
neglecting spatial gradients, the process behavior will be described
by a system of ordinary differential equations, ODEs. In fact,
although from a theoretical perspective, models involving PDEs
can be handled by optimization, however, they require unafford-
able computation times if industrial-scale ASPs are to be dealt
with.

4.1.1. Biochemical reactions modeling
Given their good predictive results, ASM models, developed by

the International Water Association, are nowadays established as
standards by the scientific community to model the dynamic bio-
chemical reactions occurring in ASP reactors. ASM1 [22] and
ASM3 [23] address carbon and nitrogen degradation under aerobic
and anoxic conditions, while ASM2 [24] and ASM2d [25] account
also for phosphorus removal. ASMs track the temporal evolution
of the ASP key state variables, such as the concentrations of DO,
heterotrophic and autotrophic bacteria, soluble and particulate
nitrogen and carbonaceous substrates, etc. Using the STR assump-
tion, mass balances in the reactor for each of these variables give
rise to a system of highly non-linear ODEs. ASMs model the conver-
sion processes of each variable, which represent source and sink
terms in the dynamic mass balance equations. In the case of the
biomass for example, these terms correspond to the bacterial
growth and death respectively.

However, ASMs lead to a very complex process model, making
the optimization procedure highly time-consuming. Therefore,
some authors, e.g. [13], have opted for simpler models, which are
however probably less accurate than ASMs. Nonetheless, the use
of simple models may be necessary when computation time is an
issue, i.e. in the case of real-time optimization (RTO) (see
Section 4.2.3). Therefore, Kim and coworkers [2] who considered
the RTO of an AAS have used a linearized version of ASM1.
Indeed, faster calculations of the optimal operating strategy enable
more frequent updates of the optimal trajectory.

To avoid ASMs complexity, some authors [21,26,27] have used
surrogate based models: (1) Simulations are conducted with the
original complex process model, for different sets of DVs values.
(2) The simulations inputs (i.e. DVs values) and outputs (i.e. the
objective function value and the fulfillment or not of the specified
constraints) are supplied to a Machine Learning Algorithms (MLA)
(e.g. artificial neural network). Based on these data, the MLA
derives a new model approximating the original one, while being,
computationally speaking, much cheaper to evaluate. (3)
Optimization is performed using the derived surrogate model,
hence allowing a substantial reduction in computation time.

Finally, it is noteworthy that the kinetics of the biochemical
reactions depend on the operating temperature. To the authors’
knowledge, no study has considered the temporal variability of
the ambient temperature (e.g. due to daily and seasonal cycles)
in their model. However, El-Shorbagy and coworkers [28] have
investigated the optimal design of a basic ASP at different operat-
ing temperatures, 10, 20, 30 and 40 �C. Temperature effects were
quantified by varying a number of kinetic parameters according
to the Arrhenius type of equation, while other reactions rates were
supposed to remain unchanged. Results revealed that the optimal
designs of the primary and secondary settlers were unaffected by
the operating temperature, while the optimal reactor volume
was deeply modified. The most economic ASP plant was obtained
for an operating temperature of 20 �C. Indeed, according to [28],
at low temperatures, since bacterial growth is slow, a big reactor
and a large SRT are required to achieve the desired effluent quality.
On the other hand, at high temperatures, the increase in the
microorganisms’ death rate leads to a high concentration of inert
particles in the sludge. Hence, greater HRT, SRT and aeration rates
are needed to reach the intended treatment efficiency.

4.1.2. Settler modeling
As discussed in [29], the secondary settler plays a crucial role in

ASPs: (1) As a thickener, it concentrates the sludge to be recycled to
the reactors. (2) As a clarifier, it separates sludge to produce a good
quality effluent. (3) As a storage tank, it allows conserving sludge
during peakflows. Therefore, an accurate modeling of the settler
dynamics is needed for reliable optimal results.

Most settler models have focused only on the liquid-solid sepa-
ration phenomena, and neglected the biochemical reactions that
would occur, especially in the sludge layer at the bottom of the set-
tler. However, these models may be easily coupled with a biologi-
cal model to enable characterizing bacterial activity within the
settler. Nonetheless, for simplification purposes, apart Li and
coworkers [30], all studies concerning optimal control/design of
ASPs have opted for a non-reactive settler unit.

Nowadays, the model proposed by Takács and coworkers [31] is
the most commonly employed for describing the clarification and
thickening processes in the secondary clarifier. It assumes a 1D set-
tler consisting of 10 STR layers in series. Mass balances of the state
variables are performed in each layer. Sludge settling velocity is
assumed to depend only on the local concentration of total sus-
pended solids (TSS) (Kynch theory). It is calculated through a dou-
ble exponential function, a formulation that accounts for both
hindered and flocculated settling. Clarification is considered above
the feed layer, and thickening below the inlet level and in the
sludge blanket. In layers where thickening occurs, solids sedimen-
tation flux is limited to the flux that can be handled by the layer
below (limiting flux concept).

The Takács model is generally regarded as accurate but compu-
tationally expensive since it gives rise to numerous ODEs.
Moreover, the limited flux concept is modeled using the
non-differentiable ‘Minimum’ function, which in turn can raise
issues for deterministic optimization algorithms. Therefore, many
studies have opted for simpler models, of which the point-settler
approach has been the most widely used. It considers a constant
separation efficiency regardless of the separator operating condi-
tions, e.g. incoming flow rate and TSS concentration.
Concentrations of soluble components in the effluent are generally
assumed to be the same as at the settler inlet, i.e. a nil HRT in the
settler is considered. However, delay functions (i.e. plug-flow
approximation) may be used to allow better comparison with
experimental data [32]. Obviously, the point-settler approach
underestimates the settler role and disregards the strong coupling
between the settler efficiency and the reactors operation.
Nevertheless, as pointed in [33], the ideal point-settler approxima-
tion (100% separation efficiency) may reveal sufficient in the case
of an over-designed settler.

El-Shorbagy and coworkers [24,28] have used a more sophisti-
cated point-settler model: separation efficiency was not prede-
fined as in the classic approach, but was calculated depending on
the incoming flow rate, TSS concentration, and the settler
cross-section and height.

Espírito-Santo and coworkers [35,36] have followed the ATV
(for ‘Abwasser technik verband’ in German) design guideline
[37]. ATV is a design procedure for the secondary settler, relying
on empirical engineering knowledge, and accounting explicitly
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for the influence of the settler cross-section and depth. It contem-
plates rain and storm events which may lead to sludge washing
due to the sharp increase in the incoming wastewater flow rate:
hence, a portion of the settler volume is dedicated to sludge stor-
age purposes, so as to preserve a sufficient amount of sludge fur-
ther to a peakflow event. Espírito-Santo and coworkers [35]
investigated the influence of three settler modeling approach on
the optimal design of a basic ASP: the ATV procedure, the Takács
model and a coupled ATV–Takács approach. Then, in order to eval-
uate the robustness of the three achieved designs, i.e. if they
achieve or not an efficient treatment under disturbances, simula-
tions were carried out applying a flow rate five times greater than
the one used in the design step. The design achieved using the cou-
pled ATV–Takács approach was shown to handle the best such
adverse flow rate conditions given that its effluent quality was
the less compromised.

Finally, it is noteworthy that, although newer and more accu-
rate models for sludge separation have been developed, they have
not been used yet in studies dealing with optimal operation and
design of ASPs. The relatively old Takács model remains the most
used (see Tables 1–3) as it seems to provide a good trade-off
between the model’s complexity and accuracy. Indeed, given the
numerous involved uncertainties (e.g. influent, rain events) and
the inevitable mismatch between the model and practice (see
Section 4.2), the Takács model is probably sufficient for modeling
liquid-solid separation in the settler. Moreover, the real issue when
modeling the settler operation is the evolution of the kinetic
parameters of flocs’ settling depending on the operating conditions
of the ASP and on the wastewater type. However, to the authors’
knowledge, no current model is able to predict such phenomena.

4.2. Dealing with the mismatch between the model predictions and the
real process behavior

Problems dealing with optimal control/design of ASPs are quite
interesting to address from an academic and a theoretical perspec-
tives given the complexity of the process model. Some authors
[12–14] have even considered such challenging problems with
the aim of testing the effectiveness of the optimization algorithms
that they developed. However, to be of industrial relevance, several
aspects relative to the problem formulation should be considered,
so as to achieve an optimal solution that is applicable to the
real-scale ASP. These issues are discussed in the following
paragraphs.

4.2.1. Process model mismatch
As with any process involving biological reactions, mismatches

between the model predictions and the real ASP performance are
unavoidable. They are mainly due to parameter uncertainties,
neglected model dynamics and disturbances. This disparity should
be as small as possible so to get a reliable and realistic numerical
solution. Therefore, the use of advanced models such as the
ASMs and the Takács model [31] should be promoted, since they
can follow the process behavior with a relatively good accuracy.
However, these models contain a large number of kinetic, stoichio-
metric and physical parameters (e.g. bacteria growth rates) whose
values depend on the wastewater strength and type, as well as on
the operating conditions, etc. Therefore, if the default parameters
values are used, the optimal solution will reflect a trend rather
than a precise prediction of the optimal design/operating strategy.
Unfortunately, given the complexity of the involved biochemical
processes, there are no reliable correlations to estimate these
parameters values based on given operating conditions.

Therefore, if the problem deals with a WWTP to be designed,
due to the lack of alternatives, the parameters values should be
selected conservatively. Default parameters values may be used,
but safety factors should be applied then to the selected design.
On the other hand, if the problem copes with the upgrade of an
existing facility, the process model should be calibrated from
input/output experimental data, i.e. measurement of the influent
and effluent compositions. Calibration, i.e. fitting or regression
analysis, allows estimating the actual parameters values for a given
ASP: it is an optimization procedure for determining the set of
parameters values minimizing the difference between numerical
results and experimental data. However, for practical identification
reasons, based on a sensitivity analysis, only the most sensitive
parameters are generally estimated (the reader may refer to [33]
among others); default literature values are attributed to the
remaining parameters.

Finally, it is noteworthy that once the optimal strategy is
applied to the ASP, RTO may be used to deal efficiently with dispar-
ities between the model results and the actual system behavior
(see Section 4.2.3).

4.2.2. Influent characteristics
To predict an ASP behavior, in addition to the process model, a

description of the system inputs, i.e. the influent characteristics, is
required. Indeed, the computed optimal solution closely depends
on the assumed wastewater flow rate and composition
[28,34,38,39], as well as on the temporal variations of these char-
acteristics [40], since they constitute the main source of distur-
bances of the ASP operation. While daily/weekly/seasonally
variations of the wastewater characteristics due to human activity
(the result of households’ life-cycles and/or industrial activities)
are quasi-periodic and can be reasonably estimated over the short
and middle term, weather-related perturbations such as precipita-
tion are unpredictable.

Optimal solutions based on time-varying wastewater character-
istics (referred to as dynamic influent) are more conservative (and
presumably more realistic) than those based on a steady influent
assumption [40]. Therefore, typical patterns of disturbances should
be accounted for whenever available. Dry weather influent condi-
tions or standard influent characteristics following a rain/storm
event may be used, e.g. [10]. It is noteworthy that the temporal
variations of the influent characteristics may be approximated
using Fourier series (e.g. [32]): such a simplification allows reduc-
ing the computational time necessary for integrating the model
over the time horizon.

The model integration time may be further reduced if steady
influent conditions are assumed: therefore, this simplification has
been used in numerous studies (see Tables 1–3). Moreover, if all
DVs are time-independent, with the use of such an assumption,
it becomes possible to convert the original dynamic problem into
a static optimization problem as follows: all time derivatives are
considered nil, so the process model becomes a set of equality con-
straints, and the state variables become a set of additional DVs
which values are to be determined by the optimization algorithm
[29,35,36,40–43]. Although the static optimization problem
involves additional DVs, however, it does not require model inte-
gration. Its solution corresponds to the steady-state part of the
original dynamic problem’s solution.

As noted in [40], if steady influent conditions are adopted, in
order to get a realistic solution, critical conditions as a high pollu-
tants load or a low operating temperature should be considered.
Otherwise, safety factors should be applied to the optimal solution.
Moreover, an a posteriori robustness analysis should be per-
formed: simulations using dynamic influent conditions should be
conducted to check whether or not the achieved solution ensures
a reasonable plant operation under disturbances [35,44]. In this
case, the use of MOO presents an additional benefit, since the
DM will take into account the robustness criterion when choosing
the most preferred solution.
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4.2.3. ASP controllability
Finding the real optimal operation strategy or design of an ASP

requires the perfect knowledge of the influent characteristics over
a large time horizon. Therefore, given the unpredictability of the
influent variations, running the ASP following pre-defined operat-
ing conditions does not ensure neither optimal nor adequate func-
tioning. In practice, apart in some small-size WWTPs, a control
system is used to counteract disturbances effects.

Control systems require monitoring some process
key-variables, e.g. redox potential, DO or SNH concentration in the
reactor(s). In the case of AASs for example, a widespread and sim-
ple feedback control of aeration consists in turning off the aerators
when nitrification is achieved, i.e. when the concentration of SNH or
DO in the reactor reaches a predefined threshold value.

Optimization studies dealing with ASPs can be broadly classi-
fied into open-loop and closed-loop optimization (Tables 1–3).
Open-loop problems focus on determining the ASP optimal operat-
ing strategy and/or design only: the tracking of the computed opti-
mal trajectory and disturbance rejection are not considered. Such
problems regard the process control as an independent second
step, and any interaction between control and optimal operation
is ignored. On the other hand, closed-loop problems tackle simul-
taneously the ASP optimal operation/design and the controllability
issues. In other words, they recognize the practical need to control
the process: they aim at obtaining a cost-efficient and operable
process systematically, i.e. finding the best performance that a
given control structure can achieve. For example, in the case of
an AAS process, while open-loop problems aim at selecting the
optimal aeration profile, closed-loop problems will look at deter-
mining the optimal DO concentration setpoint that triggers the
aerators turning off. It is noteworthy that solutions achieved using
a closed-loop formulation are expected to be more robust than
those obtained from an open-loop optimization; in fact, they are
likely to be less sensitive to disturbances effects which are partially
rejected by the control system.

RTO is a particularly interesting case of closed-loop optimiza-
tion. It allows dealing efficiently with the model inaccuracies as
well as with disturbances, especially if coupled with a
feed-forward control strategy. RTO works as follows: (1) An opti-
mizer is regularly supplied with measurements of the monitored
variables. (2) The optimizer recalculates then the optimal operat-
ing conditions, taking into consideration the mismatch between
the experimental measurements (i.e. the system actual state) and
the model predictions. Therefore, on-line monitoring of the process
variables enables more frequent updates of the optimal solution,
and hence, a more efficient and flexible optimal control of the
ASP. (3) The controlled variables are manipulated according to
the current optimal solution.

Despite the benefits it can achieve, to the authors’ knowledge,
only Kim and coworkers [2] have investigated the RTO of ASPs.
They focused on a bench-scale AAS process, with the aim at mini-
mizing the aeration duration, while respecting the SNH discharge
limit. Measurements of the influent composition and SNH concen-
tration in the effluent were supplied to the optimizer once each
day. The new optimal strategy was computed after adapting the
current SNH discharge constraint, according to the difference
between the calculated and measured effluent SNH concentration,
i.e. taking into consideration the model inaccuracy. The experi-
mental results revealed that RTO allowed achieving good COD
and nitrogen removal efficiencies, even under shock loads (i.e.
steep increase in the influent COD or/and SNH concentration).

4.2.4. Long-term ASP performance
The computed optimal operating strategy must guarantee a

reliable and sustainable plant operation, i.e. that the ASP function-
ing remains cost-effective over a large time horizon. Therefore, the
problem formulation should ensure that the optimal solution does
not depend on the chosen time horizon, neither on the plant initial
state since its effects should vanish with time. Otherwise, the prob-
lem initial conditions, which are often arbitrary guessed, will pro-
mote/disadvantage some operation strategies/designs over others.
Two main approaches are used to address these issues.

The first method consists in considering a large time horizon so
as to reach the steady-state if a steady influent is assumed and if
the problem involves time-independent DVs only, and a cyclic
steady-state otherwise. The considered time horizon should be
several times larger than the SRT, i.e. the characteristic time of
the slowest dynamic processes occurring in ASPs. In fact, as shown
in [33], operating strategies determined from a short time horizon
optimization (1 day in their case), if applied repeatedly over a long
time horizon (60 days in their case), reveal to be suboptimal and
may even lead to biomass washout.

When this first approach is employed, the quantities of interest
(e.g. electrical consumption, effluent quality) should be computed
during the steady-state only, i.e. after a sufficient time delay:
hence, the effects of the ASP initial state on the computed optimal
solution are mitigated. This formulation is commonly used for
computing the objective function since it has been popularized
thanks to [45,46]. Recently, it has been applied in [47,48] to con-
straints also: path constraints expressing discharge limits were
taken into consideration only after a large time delay. Indeed, acti-
vating a constraint during the transient regime makes the com-
puted solution depending on the arbitrary guessed start-up
conditions.

Although quite simple and intuitive, this first approach is com-
putationally expensive since the process model is to be integrated
over a large time horizon. An alternative approach consists in
reformulating the problem, so as to restrict its feasible solutions
space to the system possible steady-states only. If a steady influent
is assumed and all the DVs are time-independent, then all the time
derivatives should be considered nil, which leads to a static opti-
mization problem as explained in Section 4.2.2. Otherwise, if the
permanent regime corresponds to a cyclic steady-state, a more
complicated methodology is applied [40,49]. The model is inte-
grated over a single cycle only, and equality constraints are added
in order to achieve time-periodicity of the system state:

xInitial ¼ xEnd ð11Þ

where xInitial and xEnd are the state variables vectors at the beginning
and end of the cycle respectively. They are treated as a vector of
additional DVs. Although very attractive, this approach generally
leads to considerably multimodal problems [32], necessitating the
use of advanced optimization algorithms.

A third method allowing to account for the ASP slowest
dynamic processes, while using a short time horizon, was proposed
in [50]: biomass concentration in the reactor was allowed to vary
with an amount of 0.01% only over the time horizon. Hence, this
formulation guarantees that the computed solution does not lead
to biomass washout over the long term. However, this method
makes the solution very sensitive to the initial bacteria concentra-
tion. Thus, doubts may be raised concerning the true optimality of
the achieved solution.

4.3. Effectiveness of various optimization techniques

As discussed in Section 4.1, mathematical models describing
ASPs operation are highly non-linear and often
non-differentiable. Therefore, when using local-deterministic tech-
niques, a multi-start procedure is required in order to achieve a
satisfying solution. However, some studies [6,28,51] reported that,
starting from different sets of initial conditions, their
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local-deterministic algorithm returned the same solution, whence
the possibility that it might correspond to a global optimum. On
the other hand, numerous studies adopting a multi-start procedure
reported that the achieved results corresponded to a large number
of local solutions [8,12,38,39,52,53].

Several papers compared the performance of stochastic/hybrid
algorithms to local-deterministic techniques coupled with a
multi-start procedure [8,12,52,53]. Their results indicated that,
although local-deterministic techniques may achieve satisfying
solutions, they are outperformed by stochastic/hybrid algorithms.

Some studies [8,13,14] compared the efficiency of stochas-
tic/hybrid and global-deterministic algorithms. Their results
revealed that stochastic techniques generally outperform
global-deterministic solvers in terms of both objective function
value and computation time requirement. In fact, as discussed in
[8], to guarantee global optimality, global-deterministic methods
have a number of requirements that are not met in such complex
problems. On the other hand, with a moderate computation time,
stochastic/hybrid algorithms can identify sufficiently good solu-
tions that satisfy the designer in practice.
5. Optimal control/design of ASPs: objective functions,
flowsheets structures and DVs

This section reviews general aspects relative to the choice of
objective functions (Section 5.1), flowsheets structures
(Section 5.2) and DVs (Section 5.3). It is discussed how a conve-
nient selection of the DVs allows simplifying the optimization
procedure.
5.1. Objective function(s)

5.1.1. Economic criterion
When dealing with ASPs, focus is generally put on the

cost-effectiveness of the treatment. Thereby, in SOOP, a convenient
objective function must express an economic criterion: pollutants
discharge are dealt with through inequality constraints (see
Section 7.1), or are incorporated as fines into the objective function
to be minimized (see Section 6.1.6).

For existing WWTPs, the objective function should involve
operating costs, e.g. power consumption by aerators and pumps.
Some exploitation costs are independent of the operating strategy,
thus, it is not necessary to include them in the objective function
(e.g. wastewater pumping cost since it is dictated by the influent
flow rate). Equipment cost should be accounted for unless the
required material is available: in this case, the DVs bounds should
represent the equipment characteristics, e.g. the maximum flow
rate that can be delivered by the available pumps. Among papers
dealing with existing ASPs upgrading, only Ostace and coworkers
[54] have incorporated equipment related costs in the objective
function. Their study aimed at comparing the optimal performance
of several control systems, suggesting that the necessary equip-
ment was not purchased yet. Therefore, in addition to the exploita-
tion cost, their objective function integrated the necessary
equipment price (sensors, controllers and filtration units), mainte-
nance and installation charges.

For WWTPs to be built, the objective function should represent
all the costs related to the ASP operation and design, at least
exploitation and construction costs. Some authors have also
accounted for some equipment costs [19,28,34–36,38,39,41] and
for the maintenance of the constructions and equipment
[28,29,35,36]. El-Shorbagy and coworkers [28] have also consid-
ered the salaries of the staff maintaining and operating the WWTP.

As stated above, the objective functions representing an eco-
nomic criterion involve several contributions (e.g. aerators power
consumption, reactors construction costs) that must be expressed
in the same units, generally monetary units, in order to be com-
mensurable. This is achieved using cost functions which are
expressions/correlations linking the costs of each equipment/unit
to its operating parameters, capacity or size. The solution of an
optimization problem is closely dependent on the used cost func-
tions since they determine the preference between alternative
designs or operating strategies. Therefore, in order to get realistic
and relevant solutions, reliable cost functions are required.
Unfortunately, as detailed in Section 6, for the same operating con-
ditions, cost functions used in the literature often provide very dif-
ferent estimates of the costs involved. Indeed, costs may depend on
the executing engineering firm and its standards in term of design
and equipment. Therefore, instead of relying on literature data, it is
advisable to collaborate with local wastewater engineering
companies in order to formulate reliable cost functions.
5.1.2. Other criteria
Obviously, cost is not the unique worthy criterion to be

improved and optimized when dealing with ASPs. However, since
economic aspects may not be neglected, non-economic criteria
should not be considered alone, but simultaneously with the ASP
operating/total costs: both objectives can be gathered using a
weighted sum, or handled together in a MOOP.

The most used non-economic objective is the minimization of
pollutants concentration in the effluent (e.g. [51]). Studies [1]
and [3] who dealt with a semi-continuous SBR considered mini-
mizing the batch time, i.e. maximizing the ASP productivity.
Iqbal and Guria [42] investigated the maximum wastewater flow
rate that the ASP can treat efficiently, i.e. the maximum plant
throughout/capacity. Guerrero and coworkers [55] considered
minimizing the risk of microbiology-related solids separation
problems, i.e. bulking, foaming and rising sludge. Among papers
addressing the closed-loop optimal control of ASPs, several ones
(e.g. [8]) aimed at maximizing the process controllability. This
objective is generally stated as the minimization of the controllers’
integral square error (ISE).
5.2. Flowsheet structure/process configuration

Numerous ASP configurations have been addressed in the liter-
ature: semi-continuous SBR (e.g. [1]), AAS (e.g. [2]), A2O (e.g. [10]),
alpha-process [40], RDN and DRDN [41], etc. Some studies have
included the primary clarifier within their flowsheet
[20,28,34,52,56].

Conventional flowsheets represent a single ASP configuration
whose operation/design is to be optimized. However, for the con-
sidered influent characteristics, it is very likely that a different
ASP configuration allows a more cost-efficient treatment. Using a
conventional flowsheet, finding the best process structure
requires: (1) Determining which ASP configurations are interesting
to investigate. (2) Computing the optimal solution for each of these
options. (3) Comparing the optimal solutions to identify the best
one. However, this procedure may be simplified by the use of a
superstructure flowsheet.

A superstructure is a general flowsheet embedding all the inter-
esting process configurations. The most used superstructures con-
sist of several reactors in series. However, contrary to conventional
flowsheets, the environmental conditions in the reactors are not
specified in advance: aeration is allowed in all reactors, and the
optimal solution determines if a reactor should operate under aer-
obic, anoxic or anaerobic conditions. In some superstructures, even
the number of reactors is considered as a DV [11]. Hence, optimiz-
ing a superstructure allows determining simultaneously the opti-
mal operation/design and the most appropriate ASP configuration.
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Given their generality, superstructures have more degrees of
freedom than conventional flowsheets; thereby, the corresponding
optimization problems are more complex to solve. For example, in
a conventional flowsheet, aeration is allowed only in aerobic reac-
tors, while in a superstructure, aeration must be allowed in all
reactors, which increases the number of DVs. Therefore, the size
of a superstructure should be chosen carefully so as to ensure a
good trade-off between the generality of the flowsheet and the
required computational effort.

Finally, it is noteworthy that some authors have considered
flowsheets comprising other processes in addition to the ASP.
Descoins and coworkers [56] and Hakanen and coworkers [20]
integrated a sludge treatment facility comprising an anaerobic
digester (for biogas production) in their flowsheet. Using such a
general formulation, the entire WWTP may be considered as a sin-
gle unit: compared to the optimization of the ASP and the sludge
treatment facility separately, this plant-wide control approach
allows identifying better operating policies for the WWTP since
the interactions between the two processes are accounted for.

A few works have even considered a flowsheet larger than the
WWTP. Indeed, Brand and Ostfeld [57] incorporated in a single
flowsheet, 2 cities (i.e. wastewater sources), 3 decentralized
WWTPs and a pipeline network. Fu and coworkers [58] considered
a flowsheet covering the urban wastewater system: it comprises a
sewer network, a WWTP consisting of a basic ASP and a storm tank,
and a river, i.e. a receiving waterbody.

5.3. Decision variables

5.3.1. Continuous time-independent decision variables
In open-loop optimization problems, the most often selected

DVs are the aeration rate (generally expressed in terms of achieved
kLa, DO concentration or injected air flow rate) and the flow rate of
the external recycle, internal recirculation and sludge wastage.
Indeed, these operating parameters have a great impact on both
treatment cost and quality. Other commonly used continuous
DVs include the external carbon dosage and the influent flow frac-
tioning among the reactors in the case of a step-feed. When dealing
with ASPs to be built, the reactors’ volumes and the settler design
are added to the DVs set. In closed-loop optimization problems, the
setpoints of the manipulated variables and the controllers tuning
parameters are often taken as additional DVs.

5.3.2. Continuous time-varying decision variables
The use of time-varying DVs is necessary to perform open-loop

optimizations of discontinuous processes such as AASs and SBRs. In
the case of reactors in series, aeration rates and other DVs are gen-
erally treated as time-independent. Nonetheless, time-varying
operating parameters allow to better handle large load variations.
For example, aeration can be increased under high loads to handle
the incoming pollution, and decreased during low loads to save
energy.

Some studies dealing with large-size WWTPs have considered
time-varying aeration rates [7,53,59]. Guerrero and coworkers
[10,55] used time-varying setpoints for the manipulated variables,
to allow identifying different optimal setpoints during weekdays
and weekends. Hreiz and coworkers [47] considered the sludge
wastage flow rate as a time-varying DV. Hence, the optimizer
was allowed to adapt the TSS concentration in the reactors so as
to avoid the settler overload under peakflows for example. Egea
and Gracia [53] treated the internal recycle flow rate as a
time-varying DV. On the other hand, Hreiz and coworkers [47,48]
considered the external recycle and internal recirculation flow
rates as time-independent DVs. They argued that, in practice, recy-
cle flows are lifted by screw pumps which are generally operated at
constant capacity.
5.3.3. Integer and binary decision variables
Integer variables used in studies addressing optimal con-

trol/design of ASPs include the position of the feed layer among
the 10 layers of the Takács [31] model (e.g. [12,14]), the number
of daily aeration cycles of an AAS (e.g. [6]) and the number of reac-
tors in a superstructure [11]. Doby and coworkers [52] employed a
binary DV to choose whether or not a primary clarifier should be
used. Mussati and coworkers [60] used binary DVs to select the
process configuration: the pre-, post- or pre-post-denitrification
ASP.

Problems involving discrete and binary DVs are known to be
extremely difficult to solve using deterministic techniques because
of differentiability issues. In that case, the use of such DVs should
be avoided as discussed in the following paragraphs.

5.3.3.1. Optimal number of reactors in a superstructure. To determine
the optimal number of reactors in a superstructure while avoiding
the use of integer DVs, Alasino and coworkers [38,39] treated the
reactors volumes as continuous DVs: if the optimal volume of a
reactor is almost nil, this means that the reactor in question can
be deleted from the optimal design.

It is noteworthy that, as discussed in [61], reactors staging
allows better treatment efficiencies. Therefore, if the reactors
construction costs are calculated according to Eq. (19) instead of
Eq. (18) (see Section 6.2 for details), then the optimal solution will
probably correspond to an infinite number of reactors in series.

5.3.3.2. Optimal number of daily aeration cycles in a AAS. Studies
dealing with AASs (see Table 1) aimed at determining the optimal
durations of the aeration-on and aeration-off sequences, allowing
to minimize the total aeration time, while fulfilling the discharge
limits as well as other technical constraints. In all these papers, it
has been assumed that aeration is on/off controlled, i.e. that the
aerator operates at a constant capacity only (fixed rotation speed
for a surface aerator or fixed air flow rate for a diffused aerator).

In their general form, such problems involve an integer DV, Nc,
the number of aerations cycles per day, and 2� Nc continuous DVs,
the durations of the aeration-on and aeration-off periods (a cycle
refers to the duration between two consecutive starts of the aera-
tors, i.e. consecutive aerator-on and aerator-off periods). To avoid
using discrete DVs, Chachuat and coworkers [6,33,51] determined
the optimal Nc value by enumeration: (1) The problem was solved
for different predefined values of Nc: hence, only 2� Nc continuous
DVs were involved. (2) The achieved solutions were compared so
as to identify the optimal one.

It is noteworthy that Chachuat and coworkers [6,33,51] have
limited the maximum duration of aeration-on and aeration-off
periods to 2 hours (see Section 7.3). Without the use of such
constraints, the optimal solution would correspond to an infinite
value of Nc. Indeed, mathematically speaking, increasing the num-
ber of cycles per day would obviously result in better treatment
efficiencies.
6. Cost functions formulation

As mentioned earlier, cost functions are expressions/correla-
tions allowing to calculate the costs related to the construction/o
peration/maintenance of a unit, according to its operating param-
eters, capacity or size. The solution of an optimization problem is
closely dependent on the used cost functions since they determine
the preference between alternative ASP designs or operating
strategies. Unfortunately, there are no commonly accepted formu-
lations for the cost functions, and the expressions proposed in the
literature often lead to diverging results, sometimes different of
several order of magnitude.
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In this section, cost functions provided by the literature are crit-
ically reviewed: their limits and potentials are discussed, hoping to
provide a general guideline to assist designers selecting appropri-
ate and reliable formulations.

6.1. Exploitation costs

6.1.1. Aerators power consumption
According to [56,62], the aerators power consumption accounts

for about 60–80% of the WWTP operating costs. Aeration is
achieved by circulating the mixed liquor using a rotating turbine,
or by injecting air bubbles through diffusers placed near the bot-
tom of the reactor. Oxygen, the species of interest in the context
of ASPs, is sparsely soluble in water: resistance to mass transfer
is much more important in the liquid than in the gas side of the
interface. Therefore, according to the double film model, the oxy-
gen mass flow rate transferred from the gas to the liquid phase, F
[Mt�1], is given by:

F ¼ kLaVLðDO� � DOÞ ð12Þ

where DO* [ML�3] is the oxygen saturation concentration in the liq-
uid phase, VL [L3] the aerated liquid volume, kL [LT�1] the liquid-side
oxygen mass transfer coefficient, and a [L�1] the specific interfacial
area. The mass transfer rate is generally characterized through the
kLa factor, since kL and a are very difficult to access individually in
complex flows such as those occurring in activated sludge reactors.

Wastewater and mixed liquors are more complex than pure air–
water systems. Indeed, they contain many pollutants having an
important impact on kLa [63]. Moreover, activated sludge exhibit
a complex non-Newtonian behavior depending mainly on their
TSS concentration, wastewater strength and type, as well as on
the reactors performance [64]. The activated sludge viscosity sig-
nificantly influences kLa since it impacts the DO convective trans-
port rate. All the effects of this complex environment on the
mass transfer rate are gathered together into an a factor, generally
lower than one in the case of wastewater and mixed liquor, and
that is expressed as:

a ¼ kLaMixed Liquor

kLaPure Water
ð13Þ

In addition to the numerous factors mentioned before, a also
depends on the aerator type (which influences the interfacial
areas). a may be estimated using correlations, however, since it
varies from an ASP to another, it is preferable to determine it
experimentally when dealing with existing WWTPs.

If the aeration system is operated at a constant capacity only,
which is generally the case in AASs, then the aerator power con-
sumption is proportional to the aeration time. Indeed, the electrical
consumption of diffused aerators is almost independent of the fluid
rheological behavior. On the other hand, in the case of surface aer-
ators, as shown in [32], for the commonly encountered designs and
operational speeds and typical TSS concentrations in the mixed
liquor, the flow around the impeller is fully turbulent; hence, the
aerator energy input is independent of the TSS concentration in
the medium. Therefore, when dealing with AASs, if the aerator
energy input is to be minimized, it is unnecessary to calculate its
equivalent monetary costs since the problem reduces to minimize
the duration of the aeration-on periods [2,6,9,32,33,49,50].
However, it is noteworthy that fully turbulent flow conditions do
not imply that the achieved kLa is independent of the TSS concen-
tration, although this assumption was implicitly made in all these
studies.

Except the specific case mentioned above, aeration power con-
sumption needs to be estimated using cost functions. Aeration
charges can then be calculated simply by multiplying the power
input by the actual cost of a kWh. In the case of surface aerators,
some studies Dey and coworkers [65] and Li and coworkers [30]
adopted a constant specific power per kg of DO equal to 0.7 kg
O2/kWh [66] and 1.48 kg O2/kWh [67] respectively. However, this
approach assumes that aeration costs are proportional to F (Eq.
(12)), i.e. the aerator efficiency depends on the DO concentration
in the reactor, which is obviously incorrect.

For the case of diffused aerators, Copp [45] considered aeration
costs in a 1333 m3 aerobic reactor to be a quadratic function of kLa.
However, such an expression assumes aeration charges to be inde-
pendent of the aerated liquid volume. Therefore, it should abso-
lutely not be used when dealing with reactors of different
volumes, and especially when investigating the optimal design of
ASPs since it will mistakenly promote large aerobic reactors. Alex
and coworkers [46] considered the aeration requirement of a fine
bubbles diffuser to be a linear function of (kLa � VL), which is valid
only over a restricted range of air flow rates. In fact, it is well
known that the mass transfer efficiency decreases at increasing
air flow rates. It is noteworthy that for the same ASP and operating
conditions considered in their papers, the aeration power as calcu-
lated in [45] is about two times greater than that calculated in [46]
(N.B.: these two formula are the most commonly used in litera-
ture). Stare and coworkers [68] and Alasino and coworkers
[38,39] expressed the aerator power consumption as a quadratic
function of (kLa � VL): such a formulation combines the merits of
both expressions used in [45,46].

Instead of estimating the aeration power requirement based on
the achieved kLa, some authors used a more rigorous approach:
they expressed the aeration costs (as well as the achieved kLa) as
a function of the injected air flow rate, QAir, i.e. the variable actually
manipulated by the ASP control system. The blower electrical con-
sumption can be calculated then knowing the device efficiency
(generally assumed constant for simplifying purposes), the diffuser
immersion depth, and assuming an adiabatic compression for
example [69]. Espírito-Santo and coworkers [29,35,36] considered
a linear relationship between kLa and QAir, and a 7% oxygen transfer
efficiency. El-Shorbagy and coworkers [28,34] calculated the DO
demand of the ASP as the sum of the DO required for the removal
of carbonaceous matter, plus the DO required for nitrification [66].
QAir was calculated then assuming 10% oxygen transfer efficiency.
Hreiz and coworkers [47,48] used the empirical formula derived
by Gillot and Héduit [70] from on site measurements in ASPs:

kLa ¼ 1:477h�0:136S�1:175S0:042
p S0:145

a Q1:037
Air ð14Þ

where h is the water column height in m, Sa the surface covered by
the diffuser modules in m2, Sp the total membrane surface in m2, kLa
is in h�1 and QAir in Nm3 h�1. This formula has been derived from
measurements in aerobic reactors, and therefore, is valid for impor-
tant aeration rates only (whence the quasi-linear relation between
kLa and QAir). In [47,48], thanks to the used DO-related constraints
(see Section 7.4), Eq. (14) was expected to provide realistic results
over the feasible solutions space.

To account for the effects of the mixed liquor characteristics on
the mass transfer rate, Hreiz and coworkers [47,48] corrected Eq.
(14) using the a factor. a was supposed to depend mainly on the
TSS concentration in the mixed liquor, and the corrective formula
was deduced from experimental results [71] (valid for
0 g L�1

6 TSS 6 10 g L�1; TSS concentration in ASPs typically lies
in the range 3–5 g L�1):

a ¼ �0:072� TSSþ 1 ð15Þ

It is noteworthy that a is independent of the air flow rate [71].
Their results (Fig. 4) proved the usefulness of accounting for the
detrimental effect of the TSS concentration on oxygen transfer
rate: neglecting this phenomenon leads to a significant underesti-
mation of the ASP exploitation costs.



Fig. 4. Effect of the reduction of the oxygen transfer rate on the Pareto front [47].
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6.1.2. Pumps power consumption
Pumps account for about 25% of WWTPs total electrical

consumption [56]. Pumping power consumption includes several
contributions: influent pumping, sludge recycling, internal recircu-
lation of the nitrified liquor and sludge wastage. Influent pumping
costs are generally not included in the objective function since they
are dictated by the incoming wastewater flow rate, i.e. they are
independent of the ASP design and operation.

Pumping charges depend on the type of pumps used, the fluid
rheological properties and the flow Reynolds number, etc. For sim-
plification purposes, most authors dealing with optimal con-
trol/design have computed pumping costs according to Eq. (16),
assuming a constant differential head:

Pumping power ¼ qQDH
gP

ð16Þ

where q [ML�3] is the fluid density, Q [L3T�1] the volume flow rate,
g [LT�2] the acceleration due to gravity, DH [L] the differential head
and gP the pump efficiency. Literature survey reveals a great dis-
crepancy among the differential head values that have been
employed in different studies (Table 4). However, it is not possible
to judge if one is better than the other: each one may reveal more
convenient for a given plant design and pump type. Nonetheless,
the differential head of 10 bar used in [42] for the raw sewage pump
seems unrealistic.

Concerning sludge wastage, most studies have associated it
with an important differential head, probably to account for some
further sludge treatment and pumping charges, e.g. sludge dewa-
tering in a filter press. Hreiz and coworkers [47,48] considered
sludge purge to be cost-free since it is gravity-driven. Sludge thick-
ening and dewatering costs were accounted for separately than
sludge wastage in their model.
6.1.3. Mixing power consumption
Activated sludge reactors are mechanically mixed to achieve

homogenization, and most importantly, to maintain the biomass
in suspension: otherwise, sludge would settle, which reduces the
Table 4
Pumping differential head values according to literature studies.

Raw sewage Internal
recirculation

Sludge recycling Sludge wastage Re

DH(m H2O) gP DH(m H2O) gP DH(m H2O) gP DH(m H2O) gP

[45] – 14.7 – 14.7 – 14.7 –
[46] – 1.5 – 2.9 – 18.4 –
[42] 100 – – – ⁄ – – *A
[28,34] – – 10 0.6 10 0.6 W
[47,48] – – 1 0.7 4 0.5 0 –
reactor capacity and may lead to undesired anaerobic conditions
in the sludge blanket.

In aerobic reactors, for economic reasons, the aeration system is
generally designed to satisfy mixing requirements, while in anoxic
and anaerobic reactors, mixing is usually carried out by a
slow-rotating submersible mixer. According to Rittman and
McCarty [72] (cited in [65]), a minimum power input of 10 W/m3

is necessary to ensure a completely mixed flow regime. Alex and
coworkers [46] and Zakkour and coworkers [73] estimated the
mixing energy requirements to 5 W/m3 and 14 W/m3 respectively.

In sequentially aerated reactors (e.g. AAS), mixing and aeration
are decoupled: the mixer is operated during the aeration-off peri-
ods, while the aerator provides the necessary mixing during the
aeration-on periods. However, the use of a mixer is not necessary
(thus enabling equipment savings) provided that the duration of
the aeration-off periods are not too large (see Section 6.3).

6.1.4. Additives costs
Chemicals addition is widespread in WWTPs. It aims at enhanc-

ing the treatment efficiency (e.g. chemicals for phosphorus precip-
itation) or ensuring a satisfying operation of the process (e.g.
chemicals for pH control), etc. However, in studies dealing
with optimal operation/design of ASPs, only the additions of car-
bonaceous matter and of chemicals for pH control have been
considered.

The addition of external carbonaceous substrates aims at bal-
ancing the COD deficiency in the wastewater, i.e. enhancing bacte-
rial growth/activity when carbon becomes limiting (which is often
the case in post-denitrification ASPs as explained in Section 2).
Alex and coworkers [46] used an external carbon source having a
concentration of 400 kg-COD m�3: one cubic meter of this additive
(whose nature was not specified) was considered to cost as much
as 1200 kWh of electrical energy. Mussati and coworkers [60] used
an additive costing 0.3 € kg-COD�1, but mentioned neither its nat-
ure nor its concentration. Ostace and coworkers [54] used acetate,
having a price of 0.5 € kg�1 and a concentration of
400 kg-COD m�3. Samuelsson and coworkers [74] used ethanol,
and estimated its price and concentration to 550 € m�3 and
1200 kg-COD m�3 respectively. They have also investigated the sit-
uation where carbonaceous matter would be provided free of
charge, for example if industrial by-products are available.

The biomass involved in ASPs requires a pH in the range of 6–8
to survive and proliferate. However, many industrial wastewaters
have a high or a low pH (e.g. food process wastes), which necessi-
tates chemicals additions (e.g. lime or acids) to adjust their pH. On
the other hand, sewage water has generally a convenient pH, typ-
ically in the range of 7–8. Nevertheless, since some biochemical
reactions occurring in ASPs consume alkalinity (especially nitrifica-
tion), the addition of buffering agents for pH control may reveal
necessary. However, among studies dealing with optimal con-
trol/design of ASPs, only [18,19] have accounted for such chemicals
costs (probably because of the moderate involved costs). They con-
sidered sodium bicarbonate addition to maintain alkalinity within
a suitable range, between 1.5 and 2 mol m�3 according to these
marks

quadratic function is used to estimate the sludge recycling energy requirement
astage flow concerns both primary and secondary sludge
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authors. The sodium bicarbonate dosage was not expressed in
monetary units, but considered as an objective function to be min-
imized in a MOOP.

6.1.5. Sludge disposal/valorization
Sludge produced by WWTPs contains pathogen microorganisms

and may produce offensive odors. Therefore, for a long time, the
wastewater industry has considered it as a hazardous waste that
should be processed properly before being used as soil amendment
or deposited in landfills, depending on its toxic content. Sludge
treatment includes thickening and dewatering to dehydrate the
watery sludge in order to facilitate its transport, and stabilization
to reduce its evolution and the number of pathogen microorgan-
isms. Sludge may be stabilized by anaerobic or aerobic digestion,
and/or by chemical or thermal sterilization. Sludge treatment
charges reported in the literature vary from about 0.2 € kg�1 of
dry sludge [38,54,60] to around 0.5 € kg�1 [36,45,46,68].

However, nowadays, with the growing concerns about global
warming and fossil fuel depletion, the actual trend is to consider
sludge as a renewable raw material to be valorized through differ-
ent energetic sectors. Some studies [41,47,48] have investigated
sludge incineration for electricity production. Rivas and coworkers
[41] did not report their cost functions. Hreiz and coworkers
[47,48] estimated sludge thickening, dewatering and drying costs
about 0.1 € kg�1. The dry sludge calorific value was taken as
15 MJ kg�1, and the efficiency of the in-site incineration engine
was considered to be 30%. Sludge incineration was shown to be
of a high energetic profit, especially when a high nitrogen dis-
charge is tolerated (Fig. 5). Descoins and coworkers [56] and
Hakanen and coworkers [20] have integrated a sludge treatment
facility comprising an anaerobic digester within their flowsheets.
Hakanen and coworkers [20] handled the biogas production as
an objective function to be maximized in a MOOP. Descoins and
coworkers [56] considered burning the produced biogas for elec-
tricity production. They found that, unless the discharge limits
are very tight, anaerobic digestion of the sludge allows the
WWTP to be electrically autonomous, and even to produce impor-
tant surplus of electricity. However, such surprising result may be
due to the problem formulation (e.g. the used cost functions), espe-
cially the steady influent assumption made in [56].

6.1.6. Effluent fines
In SOOPs aiming at minimizing ASPs costs, two main

approaches are used to guarantee an efficient treatment strategy.
The first method, discussed in Section 7.1, consists in imposing
inequality constraints to the pollutants concentrations in the efflu-
ent, so as the feasible solutions achieve a treatment complying
with the applicable regulations. The second approach, discussed
in this paragraph, consists in penalizing pollutants discharges by
Fig. 5. Effect of sludge disposal and valorization on the Pareto front [47].
applying fines relative to the effluent quality. The treatment level
is hence ‘converted’ into monetary units. Thus, it can be combined
with the treatment cost in a single economic objective function to
be minimized.

In some countries/federations, e.g. Denmark and Flanders,
authorities charge according to the total amount of discharged pol-
lution [75]. In such situations, converting the effluent quality into
fines provides more realistic results than dealing with the treat-
ment requirements through inequality constraints. Almost all
studies adopting this approach (e.g. [10,55]) have used fines func-
tions inspired from the Danish or the Flemish legislation as pre-
sented in [75]. However, it is noteworthy that the ‘‘converting
into fines’’ approach emphasizes on economic interests rather than
on environmental concerns. Indeed, it allows selecting the most
lucrative abatement strategy among two alternatives: achieving a
treatment complying with the specified discharge limits, or par-
tially treating the wastewater and paying fines. In the latter case,
a significant discharge of some species can be allowed. To remedy
this issue, both above-mentioned approaches (i.e. using effluent
fines and constraining pollutants concentrations) may be used
simultaneously [38,39].

In some countries, e.g. France, the WWTP operator is taxed only
when pollutants concentrations in the effluent exceed the specified
limits. In situations where such a regulation applies, effluent fines
should be calculated on the basis of the regulation violations rather
than the amount of pollutants discharged. Such a formulation of
the effluent fines has been used only in [30].

6.2. Investment/capital costs

When addressing ASPs optimal design, since design and opera-
tion are interlinked, the objective function should integrate invest-
ment (i.e. construction and equipment) and exploitation (i.e.
operation and maintenance) costs so as to permit a rigorous
economic evaluation of the facility over its life span.
Purchase/construction costs can be generally expressed as a power
law function of the prime attribute of the unit [76]:

Cost ¼ aZn ð17Þ

where a and n are cost parameters, and Z the equipment cost attri-
bute. Z is related to the unit capacity or size: for example, it corre-
sponds to the volume of a reactor or to the maximum flow rate that
a pump can deliver. n is generally less than one: the ‘‘larger’’ the
equipment is, the lower its cost per unit capacity will be.

Numerous capital/investment cost functions have been
reported in literature. The correlations presented in [77] (cited in
[69]) were developed for municipal WWTPs in Flanders. Those pre-
sented in [28,34,78] are a compilation from literature.
Espírito-Santo and coworkers [29] developed their cost functions
based on data from a Portuguese company. Alasino and coworkers
[38,39] did not mention their data source.

In the case of ASPs consisting of reactors in series, following Eq.
(17), Alasino and coworkers [38,39] formulated the reactors con-
struction costs as:

Total construction cost ¼ a
Xm

i¼1

ðViÞn ð18Þ

where m is the total number of reactors and Vi the reactors volumes.
On the other hand, Rivas and coworkers [40,41] considered mini-
mizing the reactors total volume in order to reduce the construction
charges. Hence, they implicitly assumed that constructions costs are
expressed as:

Total construction cost ¼ a
Xm

i¼1

Vi

 !n

ð19Þ
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Eq. (18) is expected to be more appropriate when dealing with
ASPs consisting of single reactors in series, while Eq. (19) is likely
to be more relevant when dealing with plug-flow ASPs, which
are generally modeled as a series arrangement of continuous
STRs, as explained in Section 4.1.

When using cost functions from literature, the variability of the
money time value must be taken into consideration, especially
when appraising such long-term projects: the actual money value
is not the same than at the time of the correlation development. In
fact, on one hand, inflation erodes the money purchasing power,
while on the other hand, there is an opportunity to invest money
and earn interests [76]. Since investment/capital cost functions
express prices in the monetary units of the year they were devel-
oped, when relying on past records, these costs should be updated
to reflect the changes in the economic conditions:

Costðyear 1Þ
Costðyear 2Þ ¼

Iðyear 1Þ
Iðyear 2Þ ð20Þ

where I is the cost index. Various cost indices are commonly used
by the chemical industry engineers to adjust for the effects of infla-
tion [76]. Costs updating is not performed for the sole purpose of
calculating the current ASP design charges, but also to make invest-
ment and exploitation costs commensurable, i.e. expressed in the
same monetary units. Indeed, capital costs are generally invested
as a lumped sum, while operating costs are paid on an annual or
monthly basis. To take into consideration the variation of the
money value (i.e. accounting for inflation and returns), all cash flow
should be brought forwards or backwards to the same point in time
so that they can be compared. Thereby, the ASP total costs should be
formulated as a net present value or in equivalent annual worth.
The economic life of WWTPs is commonly estimated to 20 years
[28,29,35,36,38,39,41]. The effective interest rate is generally sup-
posed in the range of 5–8% [28,29,34–36,38,39,41]. Rivas and
coworkers [41] have also accounted for the expected inflation, con-
sidering a 6% inflation rate.

6.3. Maintenance costs

When addressing ASPs optimal design, maintenance costs
should be integrated in the objective function since they depend
on the capacity and size of equipment and constructions.
Espírito-Santo and coworkers [29] estimated the reactors mainte-
nance charges to 1% of the investment costs during the first
10 years, and 2% the following years. They also reported a mainte-
nance cost function for the secondary settler. They neglected the
maintenance expenses of equipment, but their life span was
assessed at 10 years. El-Shorbagy and coworkers [28,34] used pub-
lished cost functions to evaluate the maintenance costs of the set-
tlers and the sludge pump. Ostace and coworkers [54] estimated
the yearly maintenance costs of sensors and controllers to 20% of
their purchasing cost.

In addition to the required material, maintenance requires
human intervention. However, only El-Shorbagy and coworkers
[28,34] have accounted for such expenses. They used cost functions
from literature, expressing the settlers, aerators and sludge pumps
charges in person-hour requirement per unit time. These costs
were then multiplied by the wage rates in order to get monetary
units.
7. Constraints

This section reviews the constraints used in the literature
devoted to optimal control/design of ASPs. Constraints are
generally employed to impose a minimum process performance,
guarantee a physically relevant operation, or ensure that the
mathematically feasible solutions remain within the limits of
validity of the model, etc.

7.1. Discharge constraints

As noted previously, to ensure that the optimal solution pro-
vides an efficient treatment, constraints may be imposed on the
pollutants concentrations in the effluent. Discharge constraints
have been most commonly applied to COD, BOD5, TSS, SNH, SNO,
total nitrogen and total phosphorus, etc. Since environmental reg-
ulations vary from a country to another, and even within the same
country, depending on the receiving waterbody, different dis-
charge limits values have been reported in literature.

In the case of continuous ASPs, discharge limits are generally
handled through inequality path constraints: instantaneous pollu-
tants concentrations are constrained below the specified limits.
This approach promotes environmental issues rather than eco-
nomic concerns. However, in some studies (e.g. [40,79]), discharge
limits were applied to the average rather than the instantaneous
pollutants concentrations in the effluent. Thus, mathematically
speaking, discharge limits were formulated as end-point rather
than path constraints. This approach enables a more flexible and
economical operation of the ASP, since pollutants concentrations
are allowed to exceed the prescribed limits during peakflows.
Additionally, it is more convenient in cases where compliance with
discharge limits is assessed over long time frames, e.g. in Sweden
and Spain [79].

In the case of batch and discontinuous ASPs such as the SBR pro-
cess, since considerations are only about the system final state, dis-
charge limits are always formulated as end-point constraints.

7.2. Concentration of suspended solids in the bioreactors

Many authors have imposed constraints to the TSS concentra-
tion in the bioreactors. While the lower bound constraint aims at
ensuring an acceptable treatment efficiency, the upper bound con-
straint was used for different operational purposes.

Hakanen and coworkers [18,19] who considered an ASP consist-
ing of reactors in series, have constrained the TSS concentration in
the last reactor to be below 6000 g m�3. Hakanen and coworkers
[20] has restricted its variation range between 2000 and
6000 g m�3. In fact, these authors have considered steady influent
conditions. Thereby, such upper bound constraints allow obtaining
a robust optimal solution: maintaining a low TSS concentration in
the bioreactors allows avoiding the settler overload in case of
peakflows.

Rivas and coworkers [40,41] limited the TSS concentration in
the final reactor to 3500 g m�3. In fact, the sludge settling rate in
the settler decreases for high TSS concentrations. However, the
perfect point-settler approach used by these authors does not
account for this effect (contrary to the Takács and coworkers’
model [31]). Therefore, in this case, the use of this constraint is
very relevant since it ensures that the mathematically feasible
solutions do not result in an overload of the settler, a situation that
is not taken into account in their settler model.

Guerrero and coworkers [10,55] and Ostace and coworkers [54]
controlled the TSS concentration using a feedback PI-controller
manipulating the sludge wastage flow rate. They set its setpoint
value to 4500, 2500 and 3850 g m�3 respectively. These three stud-
ies aimed at determining the optimal ASP operating strategy that
could be achieved using different control systems (closed-loop
optimization). According to these authors, fixing the TSS concen-
tration allows a better comparison of the performance achieved
by each control strategy.

Many other studies have also imposed constraints on the TSS
concentration in the bioreactors, however without justifying the
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reasons. Espírito-Santo and coworkers [29] constrained it between
800 and 6000 g m�3, Iqbal and Guria [42] between 2000 and
9000 g m�3, El-Shorbagy and coworkers [34] between 3000
and 5000 g m�3, and Descoins and coworkers [56] between 1000
and 9000 g m�3.

7.3. Duration of the aeration-on/aeration-off periods in sequentially
aerated bioreactors

Kim and coworkers [2], dealing with the optimal control of an
AAS, have constrained the duration of the aeration-on and
aeration-off periods between 0.5 and 4 h. They argued that a min-
imum air-on period of 0.5 h is necessary to avoid the washout of
nitrifying bacteria. Their strategy proved convenient since their
bench-scale AAS achieved good COD and SNH removal efficiencies,
even under shock loads.

Chachuat and coworkers [6,33,51], focusing on the optimal con-
trol of an AAS, have used similar constraints. They imposed a max-
imum aeration-on duration of 1 or 2 h in order to prevent the
propellers from early wear or damage. The maximum
aeration-off duration was set at 2 h. In fact, a too large
non-stirring period leads to the sedimentation of the bacterial
flocs, and hence, invalidates the STR assumption by reducing the
reactor capacity. Moreover, the sludge blanket may develop anaer-
obic conditions that are not accounted for in the ASM1 model that
they have used. Minimum aeration-on and aeration-off periods of
15 min were used to avoid too frequent cycling of the turbines,
which increases the operational life of the aeration equipment.
Moreover, the minimum aeration-on duration ensures a conve-
nient re-mixing of the activated sludge after a large air-off period.
Further studies focusing on AASs have used similar constraints as
Chachuat and coworkers [9,49,50,80].

7.4. Dissolved oxygen concentration in the bioreactors

When optimizing ASPs operation/design, unless if suitable con-
straints are used, the optimal solution could correspond to condi-
tions of low DO concentration in the aerobic reactor(s), about
0.2–0.4 g m�3 [11,47]. In fact, in the framework of ASM models,
such conditions allow simultaneous nitrification and denitrifica-
tion at low aeration costs, i.e. an excellent treatment at low oper-
ating charges. Although the results are mathematically correct,
they are physically irrelevant since in practice, ASPs cannot achieve
an efficient treatment in this range of DO concentrations. In fact, as
discussed in [11], the accuracy of ASM1 in this range of DO condi-
tions is questionable. Thereby, many authors have imposed con-
straints on the DO concentration in the reactors so as to restrict
the solutions space to physically relevant operating conditions.

Some studies [29,35,36,50] held the DO concentration in the
classic ASP above 2 g m�3. Balku and Berber [9] and Balku [50]
who investigated the optimal control of AASs, have constrained
the average DO concentration during the aeration-on periods to
be above 2 g m�3 and 3 g m�3 respectively. They argued that such
high DO concentrations are necessary to limit the growth of fila-
mentous bacteria, which may cause serious operating problems
such as bulking. Rivas and coworkers [40,41], dealing with ASPs
configurations consisting of reactors in series, have fixed the DO
concentrations in the aerobic reactors to 2 g m�3. Hreiz and
coworkers [47] considered time-varying aeration rates in their
superstructure consisting of a single reactor. They constrained
the average DO concentration to be higher than 2 g m�3 (aerobic
conditions) or lower than 0.1 g m�3 (anoxic conditions) during
every cycle. Hreiz and coworkers [48] dealt with a superstructure
encompassing four reactors in series. Similar constraints than pre-
viously were applied to DO concentrations, apart the last reactor
upstream of the clarifier, where only aerobic conditions were
allowed. In fact, if anoxic conditions occur in the last reactor, it is
possible that denitrification continues to occur within the settler,
and hinders sludge settling due to the generation of nitrogen bub-
bles. To the authors’ knowledge, no current settler model allows
accounting for this phenomenon, i.e. for the effects of the operating
conditions on sludge settleability.

7.5. Alkalinity

The biomass involved in ASPs requires a pH in the range of 6-8
to survive and proliferate. Moreover, low pH may lead to corrosive-
ness problems and bulking, while high pH favors scale occurrence
in pipes. Some of the biochemical processes occurring in ASPs have
an impact on pH, especially nitrification which leads to an impor-
tant decrease in the medium alkalinity. According to ASM1 [22], if
alkalinity drops below 1 mol m�3, the pH may become unstable
and decreases to low values. Thereby, Hakanen and coworkers
[18,19] considered adding sodium bicarbonate to maintain the
medium alkalinity within a suitable range, between 1.5 and
2 mol m�3 according to these authors. Espírito-Santo and cowork-
ers [29] constrained alkalinity in the reactor to be in the range of
6–8 mol m�3, although no chemicals addition was considered for
its regulation.

7.6. Sludge retention time

For an efficient gravity settling in the clarifier, bacteria must be
flocculated, i.e. aggregated into enough large units. The
bio-flocculation is partly due to the production of extra-cellular
polymers which fix the bacteria together. In ASPs, biomass requires
a minimum solids retention time (SRT) of about 3–4 days to
develop a sticky slime layer. On the other hand, too large SRTs lead
to poorly settleable flocs for different reasons among which the
overgrowth of filamentous bacteria. Therefore, El-Shorbagy and
coworkers [34] constrained SRT between 4 and 27 days, and
Descoins and coworkers [56] between 5 and 35 days. Hreiz and
coworkers [47,48] imposed a sludge age between 4 and 30 days.
In addition to guaranteeing good floc settleability, the most impor-
tant purpose of the upper bound was to limit the sludge mineral-
ization since it alters the sludge calorific value. Indeed, a
constant calorific value of the sludge (i.e. independent of its con-
tent in organic matter) of 15 MJ per kg of dry sludge was assumed.

7.7. Reactors size

When addressing the optimal design of ASPs, the reactor(s) vol-
ume(s), taken as a DV(s), is generally constrained by simple upper
and lower bounds. In order to restrict the feasible solutions space,
large values of lower bounds can be used, since small reactors do
not allow attaining good treatment efficiencies. However, in some
studies, more physical constraints were applied to the reactors
size. El-Shorbagy and coworkers [28,34] (following [66]) imposed
three restrictions to the bioreactor size:

VL P
Oxygen requirement

0:1
ð21Þ

VL P
1000 QAir

LimU
ð22Þ

VL 6
1000 Q Air

LimL
ð23Þ

where VL is expressed in m3, Qair in m3 min�1 and the oxygen
requirement in kg-O2 h�1. Eq. (21) expresses the fact that the
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maximum volumetric oxygen transfer rate that can be economically
achieved by actual aerators is around 0.10 kg-O2 m�3 h�1. Eq. (22)
limits the aeration rate so as to prevent bioflocs shearing (a LimU

value of 90 m3/(min.1000 m3) was used). Eq. (23) indicates the min-
imum air flow rate to be injected in order to ensure mixing (a value
of LimL of 20 m3/(min.1000 m3) was used). For similar reasons, Dey
and coworkers [65] have restricted the power input of the surface
aerator between 10 W m�3 [72] and 90 W m�3 [66]. Hreiz and
coworkers [47,48] used Eq. (24) to set the upper bound for the air
flow rate. However, they assumed a LimU value of 50 m3-
/(min.1000 m3), so as the maximum air flow rate represents the
capacity of aerators typically used nowadays.
8. Conclusion

Nowadays, the activated sludge process (ASP) is the most com-
monly used biological secondary treatment for nutrient removal
from sewage water. Given the strengthening of the environmental
regulations, it is necessary to improve ASPs operation and design,
but also from an economic point of view, to reduce their operat-
ing costs. However, even for expert engineers, determining the
optimal operating strategy for ASPs remains quite difficult and
laborious given the complexity of the underlying biochemical
phenomena and their interaction, the large number of operating
parameters, and the variety of objectives to deal with (e.g.
enhancing the treatment efficiency, minimizing the exploitation
charges). In this context, dynamic optimization reveals to be a
powerful tool for assisting and supporting designers in determin-
ing the optimal operating conditions for existing WWTPs, or
simultaneously predicting the optimal design and operation for
future plants.

However, the real optimality of the computed solution strongly
depends on the optimization problem formulation. For example,
the preference between alternative operating strategies is closely
related to the objective functions used like cost functions, for
which there is unfortunately no commonly approved expressions.
Moreover, there is no model that can exactly predict the complex
biological phenomena occurring in ASPs. The temporal variations
of the wastewater characteristics, which constitute the main dis-
turbance for the ASP operation, cannot be precisely known or esti-
mated, since it depends on weather-related phenomena such as
rainfall. For these reasons, engineers may lack confidence regard-
ing the reliability of the computed solution, and even the true
potential of optimization. In an attempt to settle these misgivings
and to help engineers choosing appropriate and reliable formula-
tions for their optimization problem, this paper has reviewed the
literature devoted to optimal control and design of ASPs. The most
important issues that should be addressed in the order to get reli-
able and realistic solutions have been discussed: (1) Managing the
inevitable mismatch between the model predictions and the real
ASP plant. (2) Dealing with the unpredictable variations in the
wastewater characteristics. (3) Accounting for the slowest dynamic
processes occurring in ASPs, of which the characteristic time is of
the order of several days, so as to get a solution guaranteeing a sus-
tainable plant functioning. (4) Appropriately selecting the decision
variables and the flowsheet structure in order to simplify the prob-
lem formulation from a mathematical perspective: hence, the
chances that the optimizer determines a satisfying solution are
increased. (5) Conveniently choosing the cost functions correla-
tions. The limits and potentials of the expressions used in literature
are discussed, so as to help designers selecting appropriate and
reliable correlations. (6) Successfully selecting the mathematical
constraints in order to guarantee physically relevant operations,
and ensure that the feasible solutions remain within the limits of
validity of the model.
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