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Abstract

Natural images follow statistics inherited by the structure of our physi-
cal (visual) environment. In particular, a prominent facet of this structure
is that images can be described by a relatively sparse number of features.
We designed a sparse coding algorithm biologically-inspired by the archi-
tecture of the primary visual cortex. We show here that coefficients of
this representation exhibit a heavy-tailed distribution. For each image,
the parameters of this distribution characterize sparseness and vary from
image to image. To investigate the role of this sparseness, we designed a
new class of random textured stimuli with a controlled sparseness value
inspired by our measurements on natural images. Then, we provide with
a method to synthesize random textures images with a given statistics for
sparseness that matches that of some given class of natural images and
provide perspectives for their use in neurophysiology.
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1 Motivation

Figure 1: Sparse coding of natural images using log-Gabor edges and
applied to “Lena”: An instance of the reconstruction of a natural image as
a sum of elementary edges using sparse coding. Parameters for each edge are
its position, orientation, scale and scalar amplitude of the coefficient. Edges
are overlaid on this reconstructed image as colored segments, length denoting
scale and hue the orientation — see SI Section 5 for a full description of the
algorithm. Edges outside the dashed circle are discarded to avoid artifacts.
Few edges (here 1024) are necessary to efficiently represent the image: the
distribution of features is sparse. The position and orientation of the set of
edges gives information about the shape of visual objects, while the distribution
of coefficients characterizes the texture content of the image.

Natural images, that is, visual scenes that are relevant for an animal, most
generally consist of the composition of visual objects, from vast textured back-
grounds to single isolated items. By the nature of the structure of the physical
(visual) world, these visual items are often sparsely distributed, such that these
elements are clustered and a large portion of the space is void: A typical im-
age thus contains vast areas which are containing little information while most
information is concentrated in a small portion of the image (see Figure 1 and
Supplementary Figure 5 ). A first formalism to quantify this sparseness is to
consider the distribution of coefficients obtained by coding such images using a
bank of filters resembling the edge-like profiles observed in the primary visual
cortex (V1) of primates (See Supplementary Figure 4). From this linear repre-
sentation, it is possible to determine a near-to-optimal coding formalism which
involves the inversion of a model of the (forward) neural transformation [22]. As
a matter of fact, a normative explanation for the coding of images into activity in
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the neural tissue is the optimal representation of visual information [1]. Inspired
by the representation in V1, a popular method requires the efficient modeling of
images as the sparsest combination of edges and such a coding strategy indeed
resembles the neural activity (that is, the spike patterns) observed in V1 [15].
Using such a method, it was previously shown that any image from a database
of static, grayscale natural images may be coded using solely a relatively few
number of coefficients (See Figure 2 and SI Section 5 for a full description of the
algorithm). Crucially, applying this sparse coding method on this database, we
observed that some images were sparser than others but that globally they all
fitted well a similar prototypical probability distribution function (pdf). The
parameters of this pdf provide with a quantitative descriptor for sparseness and
is characteristic for this property. However, it is largely unclear how this prop-
erty inherent to the structure of natural images may be used in the early visual
system or in computer vision.

The different levels of sparseness observed in images are qualitatively linked
to their textural content. Indeed, different levels of roughness in any image corre-
spond to different distributions of the coefficients corresponding to its represen-
tation. Such an analysis was previously performed for instance by characterizing
the Hurst parameter for two-dimensional fractional Brownian motion [7]. How-
ever, this analysis was done on the linear coefficients of Gabor features, while we
rather wish here to characterize sparseness in the above-mentioned biologically
inspired generative model for natural images. Compared to a linear represen-
tation, this coding is non-linear and the distribution of edges’ parameters are a
priori different from that described in [7]. In particular, while the distribution
of position, scale and orientation are well characterized, an unified theory for
the distribution of sparse coefficients is still lacking. As such, a major challenge
is to refine the characterization of sparseness in natural images such that it
conforms to the widest variety of visual scenes. Here, by using a bio-inspired
representation based on the architecture of the primary visual cortex, we will
first characterize the pdf of sparse coefficients on an image-by-image basis and
then propose a simple characterization of sparseness based on the number of
non-zero coefficients that we apply to texture synthesis.

Our first contribution is to show that while the distribution of coefficients in
natural images is stereotyped, the underlying parameters display some variabil-
ity (see Figure 2). Our second contribution is an efficient extension of a texture
synthesis model which allows to parameterize the sparseness in the texture. This
formulation is important to challenge the effects of the model’s parameters in
future neurophysiological experiments. Indeed, in neurophysiology, a popular
technique to challenge the coding hypothesis is to test the system (V1) using
complex stimuli in the form of stochastic stimuli [23]. These stimuli correspond
to instances of the generative model for natural images which most likely de-
scribe a wide range of image instances. From that perspective, we motivate the
generation of an optimal stimulation within a stationary Gaussian dynamic tex-
ture model (see Figure 3). We base our model on a previously defined heuristic
coined “Motion Clouds” [21]. These contributions show that overall, sparse-
ness in natural images is an important parameter to understand natural scenes.
Beyond the contribution to the understanding of the models underlying image
representation which may have applications to tune computer vision algorithms,
this may have applications outside computer vision, for instance for the optimal
stimulation of neurophysiological settings as for instance in a retinal implant.
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Figure 2: Coefficients from the Sparse coding of images in the pri-
mary visual cortex (V1) follows regular statistics: (A-inset) Coefficients
decrease as a function of their rank (average across images ± standard devia-
tion). This decrease is faster when using a sparse coding mechanism (Matching
Pursuit, ’MP’) than when just ordering the linear coefficients (’lin’). (A) For
the sparse coding, we controlled the quality of the reconstruction from the edge
information such that the residual energy is less than 5% over the whole set of
images, a criterion met on average when identifying 2048 edges per image for
images of size 256 × 256 (that is, a relative sparseness of ≈ 0.02% of activated
coefficients). (B) When observing on an image-by-image basis the histogram of
the coefficients’ amplitude, each follows a generic log-Normal probability den-
sity function, only controlled by two parameters (the mode and bandwidth B)
for each of natural image. While the mode parameter did not vary significantly,
higher values of B qualitatively correspond to sparser structures.(B-inset) The
distribution of these sparseness parameters shows a variety of values from the
most sparsely distributed (right, B ≈ 1.) to those containing mostly dense tex-
tures (left, B ≈ 3.).

2 Biologically-inspired sparse coding

Let us first describe the method used for efficiently extracting edges in natural
images before measuring the statistics of the edges’ parameters. The first step of
our method involves defining the dictionary of templates (or filters) for detecting
edges. In particular, we use a synthesis model for the edge representation, so
that the edges we detect are guaranteed to be sufficient to regenerate the image
with a low error. For that, we use a log-Gabor representation, which is well
suited to represent a wide range of natural images [2]. This representation gives
a generic model of edges parameterized by their shape, orientation, and scale.
We set the range of these parameters to match what has been reported for the
responses in primates’ V1. In particular, we set the bandwidth of the Fourier
representation of the filters to 1 and π/8 respectively in log-frequency and polar
coordinates to get a family of elongated and thus orientation-selective filters
(see [3] , see Supplementary Figure 4). Prior to the analysis of each image, we
used the spectral whitening filter [11] to provide a good balance of the energy
of output coefficients [2, 12].

Although orthogonal representations are popular for computer vision due
to their computational tractability, it is desirable in our context that we have
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a high over-completeness in the representation. Indeed, the representation of
edges, similar to the receptive fields in the primary visual cortex, should provide
with a relative invariance to common geometrical transformations (translation,
rotation, and scale). First, a linear convolution model automatically provides
a translation-invariant representation. Such invariance can be extended to ro-
tations and scalings by choosing to multiplex these sets of filters at different
orientations and spatial scales. Ideally, the parameters of edges would vary in a
continuous fashion, to provide relative invariance. For the set of 256× 256 im-
ages, we chose to have 8 dyadic levels (that is, doubling the scale at each level)
with 24 different orientations. Orientations are measured as an undirected angle
in radians, in the range from 0 to π (but not including π). Tests with a range of
different numbers of orientations and scales yielded similar results [15]. Finally,
each image is transformed into a pyramid of coefficients. This pyramid consists
of approximately 4/3 × 2562 ≈ 8.7 × 104 pixels multiplexed on 8 scales and 24
orientations, that is, approximately 16.7×106 coefficients, an over-completeness
factor of about 256.

This transform is linear and can be performed by a simple convolution re-
peated for every edge type. Following [3], convolutions were performed in the
Fourier (frequency) domain for computational efficiency. The Fourier transform
allows for a convenient definition of the edge filter characteristics, and con-
volution in the spatial domain is equivalent to a simple multiplication in the
frequency domain. By multiplying the envelope of the filter and the Fourier
transform of the image, one may obtain a filtered spectral image that may be
converted to a filtered spatial image using the inverse Fourier transform. We
exploited the fact that by omitting the symmetrical lobe of the envelope of the
filter in the frequency domain, the output of this procedure gives a complex
number whose real part corresponds to the response to the symmetrical part
of the edge, while the imaginary part corresponds to the asymmetrical part of
the edge (see [3] for more details). More generally, the modulus of this com-
plex number gives the energy response to the edge (comparable to the response
of complex cells in area V1), while its argument gives the exact phase. This
property further expands the richness of the representation. Overall, such a
representation is implemented in the LogGabor package of Python scripts1.

Because this dictionary of edge filters is over-complete, the linear represen-
tation would give an inefficient representation of the distribution of edges (and
thus of edge co-occurrences) due to a priori correlations between coefficients.
Therefore, starting from this linear representation, we searched for the most
sparse representation. Minimizing the `0 pseudo-norm (the number of non-zero
coefficients) leads to an expensive combinatorial search with regard to the di-
mension of the dictionary (it is NP-hard). As proposed first by [13], we may
approximate a solution to this problem using a greedy approach, namely the
Matching Pursuit algorithm. This class of algorithms gives a generic and ef-
ficient representation of edges, as illustrated by the example in Figure 1. For
the simulations presented here, sparse coding of images is implemented in the
SparseEdges package of Python scripts2 which depend on packages NumPy
(version 1.11.1) and SciPy (version 0.18.0) [10] on a cluster of Linux computing

1Available at https://github.com/bicv/LogGabor and documented at
https://pythonhosted.org/LogGabor.

2These scripts are available at https://github.com/bicv/SparseEdges and documented at
https://pythonhosted.org/SparseEdges.
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nodes. Visualization was performed using Matplotlib (version 1.5.1) [6]. Our
goal is to study how the statistics of edges’ occurrences vary across a set of
natural images. In order to perform that, wes first defined a database of 600
images3. The performance of the algorithm can be measured quantitatively by
reconstructing the image from the list of extracted edges. Measuring the ratio
of extracted energy in the images, N = 2048 edges were enough to extract on
average more than 95% of the energy of 256× 256 images on all sets of images
(see Figure 2-A). Then, we tested different hypothesis for the distribution of
coefficients and tested the synthesis of textures using this generative model well
tuned to these natural images. All these different steps are reproducible as a
set of notebooks.

3 Distribution of sparse coefficients and the de-
sign of the “DropLets” stimuli

Empirically, we observed that the distribution of sparse coefficients for any nat-
ural image fits with a log-Normal probability distribution function (see Figure 2-
B). In particular, the histogram of occurrences of the absolute sparse coefficients
for any given image follows a smooth curve in a log-log plot, suggesting a fit with
a log-Nornal distribution as parameterized by the mode and bandwidth B. We
fitted each histogram using the Levenberg-Marquardt method from SciPy [10].
In particular, this was validated by checking the goodness of fit for each image.
While the mode did not vary significantly across the database of natural images,
we observed that the bandwidth B of the distribution was significantly different
across the database. This is shown as the histogram of the B values obtained
for each image (see Figure 2-B, inset). This demonstrates that natural images
show a wide range of sparseness in their coefficients from very sparse (B ≈ 3.) to
more dense (B ≈ 1.). Qualitatively, this corresponds to images which are con-
taining respectively less to more dense textures. An interpretation for that class
of distributions comes from the fact that such pdf emerges from the mixing of
different sources with narrow bandwidths: a denser mixing produces a broader
bandwidth. As a consequence, sparseness could be simply parameterized as the
intensity of the mixing of such events, or put even more simply, to the number
of non-zero coefficients. Such knowledge can now be injected in a model for
texture synthesis.

From these observations, we propose a mathematically-sound derivation of a
general parametric model of synthetic textures. This model is defined by aggre-
gation, through summation, of a basic spatial “texton” template φ(x, y). The
summation reflects a transparency hypothesis, which has been adopted for in-
stance in [4]. In particular, this simple generative model considers independent,
transparent elementary features. While one could argue that this hypothesis is
overly simplistic and does not model occlusions, it leads to a tractable frame-
work of stationary Gaussian textures, which has proved useful to model static
micro-textures [4] and dynamic natural phenomena [25]. In particular, the sim-
plicity of this framework allows for a fine tuning of frequency-based (Fourier)
parameterization, which is desirable for the interpretation of neuro-physiological
experiments. In summary, it states that luminance I(x) for x ∈ R2 is defined

3Publicly available at http://cbcl.mit.edu/software-datasets/serre/SerreOlivaPoggioPNAS07.
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Figure 3: DropLets stimuli: We design DropLets as random phase textures
where, similarly to the variety observed in a set of natural images, the distri-
bution of coefficients is parameterized by different levels of sparseness. From
the observations in a range of natural images (see Figure 2-B, inset), we de-
fine the sparseness ε as the relative number of non-zero coefficients, from very
sparse (ε = 5e− 06) to dense (ε = 1), and with ε values chosen on a geometrical
scale between those extremes. Note that, while for ε = 1 these textures are
fully dense and correspond to a linearly filtered noise, other values correspond
to progressively sparser textures as ε tends to lower values. Moreover, while
the textons used to synthesize these textures are arbitrary in our formalism,
targetting a neurophysiological experiment on the retina, we have chosen here
for the sake of simplicity to use symmetrical Mexican-hat profiles (“drops” , see
Supplementary Figure 4) at a single scale which is optimal for retinal ganglion
cells.

as a random field [24]:

I(x) =
∑
i∈N

ai · φ(x− xi) (1)

where the respective random variables parameterize respectively each texton’s
scalar value ai and position xi ∈ R2. As was previously mentioned [21, 24], this
defines the set of “Motion Clouds” stimuli as that defined by:

I(x) = [
∑
i∈N

ai · δ(x− xi)] ∗ φ(x) (2)

where ∗ denotes the convolution operator over variable x. Noting the Fourier
transform as F and f ∈ R2 the frequency variables, the image I is thus a
stationary Gaussian random field of covariance having the power-spectrum E =
F(φ̂) (for a proof, see [24]). It comes

F(I)(f) = A · ei·Φ · E(f)

where
A · ei·Φ =

∑
i∈N

ai · e−2iπ〈f, xi〉

corresponds to an iid random phase field scaled by A ∈ R+. Such a random
texture is parameterized by the (positive-, real-valued) envelope E . To match
the statistics of natural scenes or some category of textures, the envelope E is
usually defined as some average spatio-temporal coupling over a set of natural
images. Note that it is possible to consider any arbitrary texton F−1(E), which
would give rise to more complicated parameterizations for the power spectrum.
In particular, we may use the same set of edge-like filters used in the sparse
coding algorithm above.
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The originality provided here is to introduce an explicit sparsity in equation 2
by parameterizing a sparse distribution for the coefficients ai. Mathematically,
the ai are drawn from a heavy-tailed probability distribution function pa such as
that found in natural images (See Figure 2-B). Such assumptions were previously
used for generating procedural noise in computer vision [8], but we focus here on
a definition based on a model of sparseness in images. A similar endeavor was
initiated by [20] by defining a mixture of a Dirac and a Gaussian distributions,
but here, we derive it from the sparse coding observed in a set of natural images.
First, let’s define E =

∑
i ai · δ(x − xi) the (sparse) matrix corresponding to

the textons’ coefficients at different positions. We also note that we can still
compute the image in Fourier space, but with a random phase field which by
linearity of F is simply given ∀f by :

F(I)(f) = F(E)(f) · E(f) (3)

Compared to the pure summation, a first advantage of this procedure is that
the computation time does not depend on the number of events. A further ad-
vantage of equation 3 in generating these stimuli is that for any given instance
of the noise, we know the position (x, y) of each event. When using rotationally
symmetric, Mexican-hat profiles, the resulting texture resembles the shot noise
image of drops of rain on water, such that we coined this set of stimulus as
“DropLets” (See Figure 3). In all generality, for any given texton (for instance
a choice of a given orientation θ and scale σ), the implementation of this tex-
ture generation is of the same order of complexity as that of Motion Clouds
and allows for the easy control of the sparseness in the stimulus. These differ-
ent (uncoherent) “layers” may then be summed to form a texture of sparsely
distributed edge-like features.

4 Perspectives in neurophysiology

In this paper, we have characterized the different levels of sparseness which are
present in natural images and synthesized random textures with parameterized
levels of sparseness. First, we have replicated the observation that natural
images follow a prototypical structure for the probability density function of
the coefficients that characterize them. Importantly, we have shown that on
an image-by-image basis, this structure is qualitatively well captured by using
the number of non-zero coefficients as a measure of the sparseness of a given
image, from a dense texture to a highly sparse configuration. Based on these
results, we designed random textures which replicate this parameterization of
their sparseness.

In a recent experimental project using such a set of textures, it has been
shown that the neural code as recorded in the retina responds differentially to
these different levels of sparseness [18]. In particular, we used the set of stimuli
(See Figure 3) to evaluate the response on ganglion cells on an ex vivo prepara-
tion and analyzed the response of the population of neurons as a function of the
sparseness parameter. Such analysis proved that the retinal neural code showed
differential responses with respect to the sparseness of images and preliminary
measures on efficiency suggest that it is tuned for a given level of sparseness: In
that experimental results, we have shown that there is a limit in sparseness for
which the retina can respond optimally; beyond that point, the response is more
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or less the same, meaning that the retina is still coding the features present in
the sparser sequences but is not responding to the additional features of the
more dense sequences. We can relate these results to the hypothesis of optimal
coding of natural scenes [5], in which the visual system has a limited capacity
to transmit information, it has adapted through evolution to a small subset
of all the possible images and optimally code them, discarding the irrelevant
information. Thus, the efficiency of the retina to code the stimuli reaches its
peak at a sparseness level that would be closer to what the system has evolved
to code, and when presented with stimuli containing more signals, it discards
the additional information. Much research has been performed to investigate
the relationship between natural images and optimal coding, although the focus
has been mainly on the spatiotemporal correlations [17, 19]. We have observed
that when keeping the spatiotemporal components constant, the modulation of
the sparseness of the stimuli has an effect on the retinal response, and more im-
portantly, it allows us to see the level of sparseness beyond which the efficiency
does not increase.

It is important to note that these results are the outcome of an interdis-
ciplinary convergence between image processing (to characterize sparseness in
natural images), mathematical modeling (for the synthesis of textures) and neu-
rophysiology (for the recordings and their analysis). In particular, in this orig-
inal framework, neural recordings are not analyzed post-hoc, but are instead
tuned by the design of parameterized stimuli. In particular, these stimuli are
defined from the analysis of natural images. One limit of the neurophysiological
study is that we limited ourselves to a simplistic class of textons (Mexican-hat
shaped profiles , compare to Supplementary Figure 4), both for the analysis
and synthesis but that ganglion cells in the retina are known to be selective to
a wider class of stimulations. However, we believe that this class of stimuli is
general enough to characterize a wide range of different cell types. Indeed, by
looking at local combinations of events (such as doublets), one could character-
ize different sub-types of ganglion cells, both static, oriented or even moving,
such as to characterize for instance directionally selective ganglion cells. In par-
ticular, by manipulating the statistics in the event’s matrix E, one could target
more specifically each of these sub-types. Moreover, while it was found that
such textures would be useful in characterizing the response of retinal neurons,
this should prove also very useful to characterize the response of V1 neurons. In
particular, it would be essential to tune the relation of “neighboring edges” as
characterized by how close they are in visual space space but also in orientation
and scale, as measured by the so-called “association field” [16].
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5 Supplementary material: Sparse coding algo-
rithm

In general, a greedy approach is applied when finding the best combination is
difficult to solve globally, but can be solved progressively, one element at a time.
Applied to our problem, the greedy approach corresponds to first choosing the
single filter Φi that best fits the image along with a suitable coefficient ai, such
that the single source aiΦi is a good match to the image. Examining every filter
Φj , we find the filter Φi with the maximal correlation coefficient, where:

i = argmaxj

(〈
I

‖I‖
,

Φj
‖Φj‖

〉)
, (4)

〈·, ·〉 represents the inner product, and ‖ · ‖ represents the `2 (Euclidean) norm.
Since filters at a given scale and orientation are generated by a translation, this
operation can be efficiently computed using a convolution, but we keep this
notation for its generality. The associated coefficient is the scalar projection:

ai =

〈
I,

Φi
‖Φi‖2

〉
(5)

Second, knowing this choice, the image can be decomposed as

I = aiΦi + R (6)

where R is the residual image. We then repeat this 2-step process on the residual
(that is, with I ← R) until some stopping criterion is met. Note also that the
norm of the filters has no influence in this algorithm on the choice function or
on the reconstruction error. For simplicity and without loss of generality, we
will thereafter set the norm of the filters to 1: ∀j, ‖Φj‖ = 1. Globally, this
procedure gives us a sequential algorithm for reconstructing the signal using
the list of sources (filters with coefficients), which greedily optimizes the `0
pseudo-norm (i.e., achieves a relatively sparse representation given the stopping
criterion). The procedure is known as the Matching Pursuit (MP) algorithm [9],
which has been shown to generate good approximations for natural images [14].

For this work we made two minor improvements to this method: First, we
took advantage of the response of the filters as complex numbers. As stated
above, the modulus gives a response independent of the phase of the filter, and
this value was used to estimate the best match of the residual image with the
possible dictionary of filters (Matching step). Then, the phase was extracted as
the argument of the corresponding coefficient and used to feed back onto the
image in the Pursuit step. This modification allows for a phase-independent de-
tection of edges, and therefore for a richer set of configurations, while preserving
the precision of the representation.

Second, we used a “smooth” Pursuit step. In the original form of the Match-
ing Pursuit algorithm, the projection of the Matching coefficient is fully removed
from the image, which allows for the optimal decrease of the energy of the resid-
ual and allows for the quickest convergence of the algorithm with respect to the
`0 pseudo-norm (i.e., it rapidly achieves a sparse reconstruction with low error).
However, this efficiency comes at a cost, because the algorithm may result in
non-optimal representations due to choosing edges sequentially and not globally.
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Figure 4: Filters used in this paper. To mimic the average profile of receptive
fields in the primary visual cortex, we use localized, orientation-selective filters.
These are characterized by a cone-shaped spectrum (Left) and provide with the
log-Gabor wavelets (Right)

This is often a problem when edges are aligned (e.g. on a smooth contour), as
the different parts will be removed independently, potentially leading to a resid-
ual with gaps in the line. Our goal here is not to get the fastest decrease of
energy, but rather to provide a good representation of edges along contours. We
therefore used a more conservative approach, removing only a fraction (denoted
by α) of the energy at each pursuit step (for MP, α = 1). We found that α = 0.5
was a good compromise between rapidity and smoothness. One consequence of
using α < 1 is that, when removing energy along contours, edges can overlap;
even so, the correlation is invariably reduced. Higher and smaller values of α
were also tested, and gave classification results similar to those presented here.

In summary, the whole learning algorithm is given by the following nested
loops in pseudo-code:

1. draw a signal I from the database; its energy is E = ‖I‖2,

2. initialize sparse vector s to zero and linear coefficients ∀j, aj =< I,Φj >,

3. while the residual energy E = ‖I‖2 is above a given threshold do:

(a) select the best match: i = ArgMaxj |aj |, where | · | denotes the mod-
ulus,

(b) increment the sparse coefficient: si = si + α · ai,
(c) update residual image: I← I− α · ai · Φi,
(d) update residual coefficients: ∀j, aj ← aj − α · ai < Φi,Φj >,

4. the final non-zero values of the sparse representation vector s, give the
list of edges representing the image as the list of couples (i, si), where i
represents an edge occurrence as represented by its position, orientation
and scale.
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Figure 5: Progressive reconstruction as a function of sparseness.
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