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Aix Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille, cedex 09, 
France 

In this work a simplified method, dedicated to the use in industrial environments, is 
proposed to evaluate uncertainties of ISO 1101 specifications. For that purpose a Delete 
d-Jack-knife Method is implemented and adapted to the estimation of specification 
uncertainties. As example, the verification uncertainty of a ISO geometrical specification 
will be presented. The advantages and limitations of the method are then discussed. 

1.   Introduction: 

ISO/IEC 17000 Standard [1] defines accreditation as an "Attestation issued 
by a third party related to a conformity assessment body conveying formal 
recognition of its competence to carry out specific conformity assessment tasks". 
ISO/IEC 1702 specifies and defines the general terms relating to conformity 
assessment, including the accreditation of conformity assessment bodies, and the 
use of conformity assessment to facilitate trade. Recently, the accreditation for 
3D measures of ISO specifications was launched in European countries [2]. This 
accreditation imposes to estimate the uncertainties of ISO 1101 geometrical 
specifications [3], and this even in case of measurements carried out in industrial 
environments. In this work a simplified method, dedicated to the use in industrial 
environments, is therefore proposed to evaluate uncertainties of ISO 1101 
geometrical specifications [4,5]. For that purpose a Delete d-Jack-knife method 
is implemented and adapted to the estimation of specification uncertainties. As 
example, the verification uncertainty of ISO specification will be presented. The 
advantages and limitations of the method will then be discussed. 

2.   Uncertainty propagation methods: 

2.1.   GUM: 

Uncertainties are generally evaluated using classical GUM’s method [6] 
which is based on specific laws of propagation. A first order Taylor series 
expansion is also used to propagate elementary uncertainties to the composed 
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uncertainty of the measurand. This propagation method has nevertheless some 
limitations, principally, when the model of the measurand is non linear. In such 
case, indeed, the shape of the PDF is distorted and some bias is observed for the 
calculated mean value of the result. 

2.2.   Monte Carlo Simulation Method: 

Recently, a supplement to the GUM (GUM S1) has shown how to overcome 
this problem by using the Monte Carlo simulation Method (MCM) to evaluate 
uncertainties. MCM is a computational algorithm that relies on repeated random 
sampling to obtain numerical results and derive statistical parameters (mean 
value, standard deviation) [7-8]. MCM is a common tool in uncertainty 
evaluation of complex measurement processes. It is used because of the lack or 
the difficulty to express analytical solutions. The convergence rate of Monte 
Carlo methods is ( )N1O , where N is the number of simulated experiments. 

Instead of using pseudo-random generators, it can be accelerated by employing 
deterministic uniformly distributed sequences known as presenting low-
discrepancy.  Methods based on such sequences are named Quasi Monte Carlo. 
Asymptotically, Quasi Monte Carlo can provide a rate of convergence of 
about ( )N1O [9]. MCM needs however numerous repeated random sampling and 

thus often leads to large Tables. 

2.3.   Sobol’s method: 

In analytical propagation approach, the sensitivity coefficient may also be 
defined by Sobol’s approach [10].  This method [11] is a variance based global 
sensitivity analysis technique founded upon “Total Sensitivity Indices” that 
account for interaction effects of the variables. The Total Sensitivity Indices of 
an input is defined as the sum of all the sensitivity indices involving that input. 
This method includes both main effect of each input as well as the interactions 
with the other variables [12]. Sobol’s method can cope with both nonlinear and 
non-monotonic models, and provides a truly quantitative ranking of inputs and 
not just a relative qualitative measure. Effort has been done to reduce the 
computational complexity associated with the calculation of Sobol’s indices. 
However, even with its most recent developments, Sobol’s method remains 
computer time consuming. 

2.4.   Jack-knife, Bootstrap or delete d-Jack-knife methods: 

To reduce, the computing time of MCM, the Jack-knife, Bootstrap or delete 
d-Jack-knife methods can be used to estimate the uncertainties of ISO standard 
specifications [13, 14].  
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The jack-knife was thought up by Quenouille in 1949. Ten years after, Tukey 
has developed its use in statistics. This method requires less computational 
power than MCM. For a dataset x = (x1, x2, ..., xn) of size n and an estimator θ̂ , 
the Jack-knife derives estimators 

iθ̂
 on subsamples that leave out a given 

selected element xi. The subsample is defined by this equation. 
 

( ) )x  ,· · · ,x ,x  ,· · · ,x ,(x  x n1i1-i21i +=                  
 
The size of each Jack-knife subsample x(i) is p=n−1 and the total number of 

datasets that can be built is n. No sampling method is needed to define the 
subsamples. To estimate an uncertainty, the standard error of the Jack-knife 
replications is needed. Its estimate is defined by [15]: 
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Generally, Jack-knife’s method gives fine results for smooth statistics and for 
sufficiently large n. Nevertheless, it does not give accurate estimations for non-
smooth statistic or nonlinear behavior. 

 
The Bootstrap method was thought up after Jack-knife’s method. B. Efron 

introduced it in 1979. For a dataset x = (x1, x2, ..., xn) of size n and an estimator 
θ̂ , the Bootstrap derives the estimator θ̂  on a resample b of the same size n. 
Each resample is obtained by random sampling with replacement from the 
original dataset. The total number of resamples that can thus be built is nn. A 
lower number B of datasets is however used in practice to estimate uncertainties. 
It is usually fixed to B=200 for standard error estimation and B=500 for error bar 
estimation. The standard error of the estimator θ̂  can be derived from the 
Bootstrap replications using the equation [13, 15]: 

 
 
 
 

The delete d-Jack-knife method consists in generating subsamples, simply by 
randomly removing a number d of elements from the initial dataset. The size of 
each subsample is thus n-d. The total number of subsamples that can be built is 
the number of combinations of d elements removed from the original dataset of 
size n.  As compared to the earlier Jack-knife scheme the delete d-Jack-knife 
sub-sampling technique leads thus to a greater number of sub-datasets. This can 
improve the accuracy of the method in the case of non-smooth statistics [16]. 
The standard error of the estimator θ̂  can be evaluated through this equation 
[15]: 
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To obtain an accurate estimate of the standard error, the number d of deleted 

data elements has to be selected in the range: 1ndn −≤≤ .  
An overview of other potential methods that can be used to estimate the 

uncertainties of geometrical specification has been presented in this section. A 
modified delete d-jack-knife method was finally chosen in our study to evaluate 
the measurement uncertainty of an ISO 1101 specification. The results of this 
work will be developed in the next section. 

 

3.   Estimation of the verification uncertainty of  a geometrical 
specification using a modified Jack-knife method: 

3.1.   Geometrical  specification checking: 

 
Figure 1 shows an example of parallelism constraint as specified with ISO 

standard.  The tolerance zone which defines the limits of the checked surface is 
bounded by two planes parallel to the datum plane A. In the example of figure 1 
which deals with the parallelism between the specified surface and the datum 
plane A, the geometrical defect to be evaluated and checked is defined by the 
distance between the two planes that bound the measured points Mj, while being 
parallel to the datum feature A characterized by the digitized coordinates Mi. In a 
given reference frame (O, X, Y, Z) these requirements are expressed by the 
minimisation conditions:   
                                    

( ) ( )[ ]
( ) ( )[ ]

















=

=

=

−
−

n.OMe

n.OMe

:where

nn while

eminemaxmin

eminemaxmin

jj

Aii

A

jj

ii

 
                                                                              

                                       
This equation needs two optimisation steps. The initial optimisation that 

corresponds to the first minimization condition permits to determine the normal 
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vector 
An
r  of the datum plane A. The final step which is expressed by the second 

minimization condition defines the parallelism defect between the specified 
surface and the datum feature A. The cosines of the normal vectors of the 
specified surface and the datum surface are imposed equal. In consequence and 
after best fit, the value of minimax criterion of distances between the measured 
points and the specified surface describes the value of parallelism defect. These 
calculations allow thus to evaluate the parallelism defect of the checked surface. 
Next section will now focus on the presentation of the method used to estimate 
the uncertainty of this value.  

Définition ISO 1101

Tolerance zone is
oriented by the
normal vector of
datum referenceA

Tolerance
zone is free in
translation

 

Figure 1. ISO Parallelism Specification. 

3.2.   Modified Jack-knife method: 

The orientation of the datum surface A is, greatly, influenced by the outlier 
measured points. This fact can lead to a non smooth statistic of the searched 
parallelism defect. As stated in section 2.4, the Delete d-Jack-knife permits to 
accurately estimate standard errors even in the case of non-smooth statistics [16]. 
This method was therefore chosen to estimate the verification uncertainty of the 
parallelism defect.  

In the classical Delete d-Jack-knife method, the number of deleted points is 
usually fixed to a given value d that remains the same for all subsamples. In the 
proposed method, on the contrary, this number d was selected randomly. In order 
to contain sufficient statistical information, both the datum plane and the 
specified surface were characterized by datasets of at least 25 acquisition points. 
For each sub-sampling, the modified Delete d-Jack-knife consisted then in a 
random generation of two subsets of the initial data: one constructed with the 
coordinates that define the datum plane and one created with the points acquired 
to characterize the specified feature.  
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Figure 3. Sample and uploading acquisition uncertainty 
 
The smallest number of points Mi or Mj required to build these two sub-

samples was fixed to 4 that is one more than the minimal number needed to 
define a plane (3 points). A specific selection procedure was implemented to 
generate the two sub-datasets. For every sub-sampling sequence, it consisted in 
randomly associating a floating number to each element of the initial datasets, 
that was built in the range [0,1]. A cut-off threshold p was then fixed to only 
select the points with a linked value lower than this limit. A random perturbation 
was finally added to each coordinate to account for the calibration uncertainty of 
the Coordinate Measuring Machine (CMM). ISO 10360 standard [17] was used 
for this last operation. This standard permits to know the calibration error bar ∆ 
for a measured length L in the CMM volume. For a CMM, this value can be 
defined by this equation: 

 
( )b.La∆ +±=             

                    
The measured length L was derived from the coordinates of the acquired 

points Mi or Mj. This equation was then applied to add random perturbations to 
the three initial coordinates which permits to account for the acquisition error ∆ 
of the CMM. These calculations assume a uniform probability density of the 
calibration errors in the range [-∆, ∆]: 
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In these relationships, Rnd() is the random generation of a uniformly 

distributed variable in the interval [0,1]. The whole procedure used to build each 
sub-sample is presented in figure 3. After optimisation based on different tests, 
the value of the cut-off threshold p was chosen to 0.4. This value guarantees to 
obtain sub-samples of sufficient number of points. 

3.3.   Error Bar of ISO specification: 

The uncertainties of a given specification are defined by the standard error of 
the geometrical defect to be characterized. It is based on repeated random 
generation of subsamples of the datum and specified surfaces using the modified 
d-Jack-knife procedure. After estimation of the mean value of the geometrical 
defect to be checked, the initial set of points is replicated by the random d-Jack-
knife method already presented. At each replication step, the geometrical defect 
of the virtual surfaces associated to the generated datasets is then computed. This 
operation is repeated M times. The standard error of the set of values which are 
thus obtained if finally calculated. It represents the uncertainty of the estimated 
geometrical defect. The lower bound of the tolerance interval of orientation 
specifications is always equal to 0. A test was therefore implemented in the 
calculation of the error bars of the estimated geometrical defect to avoid negative 
values of the confidence interval starting point. If this check detects a negative 
indicator, a unilateral distribution of probability is considered to define the error 
bars. The lower bound of the confidence interval is then fixed to 0. A bilateral 
probability distribution is considered otherwise. 

4.   Conclusion: 

Uncertainty calculation of ISO specifications is a complex task. In industrial 
context, the calculation time is a main constraint. The revised version of the 
GUM (GUM S1) proposes to use Monte Carlo simulations for the evaluation of 
uncertainties, but this method is much computer time consuming. To avoid this 
impediment, an alternative uncertainty calculation method was proposed. It is 
based on a modified delete d-jack-knife sub-sampling technique. The results 
obtained with this method for measured surfaces with a small form defect are in 
complete adequacy with ISO 1101 standard for parallelism specification. The 
orientation of datum surface was deduced tangent of the material using the 
minimax criterion and the error bar of ISO specification was deduced quickly 
using the modified Delete-d-jack-knife method. 
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