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SIMULATION METHOD TO ESTIMATE THE
UNCERTAINTIES OF 1SO SPECIFICATIONS

J.M. LINARES , J.M. SPRAUEL

Aix Marseille Université, CNRS, ISM UMR 7287, 1328&3¢dille, cedex 09,
France

In this work a simplified method, dedicated to tie in industrial environments, is
proposed to evaluate uncertainties of ISO 1101isgeions. For that purpose a Delete
d-Jack-knife Method is implemented and adaptedh® éstimation of specification

uncertainties. As example, the verification undatjeof a ISO geometrical specification
will be presented. The advantages and limitatidribemethod are then discussed.

1. Introduction:

ISO/IEC 17000 Standard [1] defines accreditatiorams'Attestation issued
by a third party related to a conformity assessmmdy conveying formal
recognition of its competence to carry out spedaiaoformity assessment tasks".
ISO/IEC 1702 specifies and defines the general demaating to conformity
assessment, including the accreditation of contyrassessment bodies, and the
use of conformity assessment to facilitate tradeceRtly, the accreditation for
3D measures of ISO specifications was launchedunofiean countries [2]. This
accreditation imposes to estimate the uncertairdfesSO 1101 geometrical
specifications [3], and this even in case of meaments carried out in industrial
environments. In this work a simplified method, datkd to the use in industrial
environments, is therefore proposed to evaluateertmiaties of 1ISO 1101
geometrical specifications [4,5]. For that purpasBelete d-Jack-knife method
is implemented and adapted to the estimation ofiBpa&tion uncertainties. As
example, the verification uncertainty of ISO spieaifion will be presented. The
advantages and limitations of the method will therdiscussed.

2. Uncertainty propagation methods:

2.1. GUM:

Uncertainties are generally evaluated using clabs®lUM’s method [6]
which is based on specific laws of propagation. istforder Taylor series
expansion is also used to propagate elementaryrtairdées to the composed
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uncertainty of the measurand. This propagation atetiias nevertheless some
limitations, principally, when the model of the rsaeand is non linear. In such
case, indeed, the shape of the PDF is distortecama bias is observed for the
calculated mean value of the result.

2.2. Monte Carlo Simulation Method:

Recently, a supplement to the GUM (GUM S1) has shbew to overcome
this problem by using the Monte Carlo simulationthal (MCM) to evaluate
uncertainties. MCM is a computational algorithmttredies on repeated random
sampling to obtain numerical results and derivdistieal parameters (mean
value, standard deviation) [7-8]. MCM is a commaoltin uncertainty
evaluation of complex measurement processes.usas because of the lack or
the difficulty to express analytical solutions. Thenvergence rate of Monte
Carlo methods iso(j/m), where N is the number of simulated experiments.

Instead of using pseudo-random generators, it eaacbelerated by employing
deterministic uniformly distributed sequences knows presenting low-
discrepancy. Methods based on such sequencesiaedQuasi Monte Carlo.
Asymptotically, Quasi Monte Carlo can provide aeraif convergence of
aboutgyn)[9]. MCM needs however numerous repeated randonplézgnand

thus often leads to large Tables.

2.3. Sobol's method:

In analytical propagation approach, the sensiticibgfficient may also be
defined by Sobol's approach [10]. This method [kl variance based global
sensitivity analysis technique founded upon “ToBansitivity Indices” that
account for interaction effects of the variablebeTrotal Sensitivity Indices of
an input is defined as the sum of all the sensijtividices involving that input.
This method includes both main effect of each immutvell as the interactions
with the other variables [12]. Sobol's method cape with both nonlinear and
non-monotonic models, and provides a truly quatidgaranking of inputs and
not just a relative qualitative measure. Effort Hesen done to reduce the
computational complexity associated with the caltiah of Sobol's indices.
However, even with its most recent developmentoB® method remains
computer time consuming.

2.4. Jack-knife, Bootstrap or delete d-Jack-knife methsd

To reduce, the computing time of MCM, the Jack-&nBootstrap or delete
d-Jack-knife methods can be used to estimate thertainties of ISO standard
specifications [13, 14].
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The jack-knife was thought up by Quenouille in 19%6n years after, Tukey
has developed its use in statistics. This methaglires less computational
power than MCM. For a dataset (x, %, ..., %) of sizen and an estimatof
the Jack-knife derives estimatoég on subsamples that leave out a given
selected elememnt. The subsample is defined by this equation.

HX 18X X X X))

The size of each Jack-knife subsamgjeis p=n-1 and the total number of
datasets that can be built is No sampling method is needed to define the
subsamples. To estimate an uncertainty, the stdneiaor of the Jack-knife
replications is needed. Its estimate is definefiLBy.
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Generally, Jack-knife’'s method gives fine resuttsdmooth statistics and for
sufficiently large n. Nevertheless, it does notegaccurate estimations for non-
smooth statistic or nonlinear behavior.

The Bootstrap method was thought up after Jaclelsifnethod. B. Efron
introduced it in 1979. For a dataset (X;, %, ..., %) Of sizen and an estimator
6, the Bootstrap derives the estima#ron a resamplé of the same size.
Each resample is obtained by random sampling wéihlacement from the
original dataset. The total number of resamples ¢aa thus be built ig". A
lower numbeB of datasets is however used in practice to estimatertainties.
It is usually fixed taB=200 for standard error estimation eBrb00 for error bar
estimation. The standard error of the estimajorcan be derived from the
Bootstrap replications using the equation [13, 15]:

The delete d-Jack-knife method consists in gemegaubsamples, simply by
randomly removing a nhumber d of elements from titai dataset. The size of
each subsample is thusd. The total number of subsamples that can be Isuilt
the number of combinations dfelements removed from the original dataset of
sizen. As compared to the earlier Jack-knife schemedtiete d-Jack-knife
sub-sampling technique leads thus to a greater eunfsub-datasets. This can
improve the accuracy of the method in the caseoofsmooth statistics [16].
The standard error of the estimai@rcan be evaluated through this equation
[15]:
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To obtain an accurate estimate of the standard,édh® numbed of deleted
data elements has to be selected in the rafiged < n-1.

An overview of other potential methods that canused to estimate the
uncertainties of geometrical specification has bpeysented in this section. A
modified delete d-jack-knife method was finally ska in our study to evaluate
the measurement uncertainty of an ISO 1101 spatfic. The results of this
work will be developed in the next section.

3. Estimation of the verification uncertainty of a geometrical
specification using a modified Jack-knife method:

3.1. Geometrical specification checking:

Figure 1 shows an example of parallelism constramspecified with 1SO
standard. The tolerance zone which defines thitsliof the checked surface is
bounded by two planes parallel to the datum plani Ahe example of figure 1
which deals with the parallelism between the spatisurface and the datum
plane A, the geometrical defect to be evaluated cdretked is defined by the
distance between the two planes that bound theureghpointsM;, while being
parallel to the datum feature A characterized leydigitized coordinatel§!;. In a

given reference frameQ( X, Y, Z these requirements are expressed by the

minimisation conditions:

e ]

whilen=n,
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where:

§ =OM;n,

ej:OMjn

This equation needs two optimisation steps. Thaalnbptimisation that
corresponds to the first minimization condition pés to determine the normal



vector i, of the datum plane A. The final step which is egsed by the second
minimization condition defines the parallelism de#fdetween the specified
surface and the datum feature A. The cosines ofntivenal vectors of the
specified surface and the datum surface are impegadl. In consequence and
after best fit, the value of minimax criterion astnces between the measured
points and the specified surface describes theevaflparallelism defect. These
calculations allow thus to evaluate the parallelgfect of the checked surface.
Next section will now focus on the presentatiorttef method used to estimate
the uncertainty of this value.

—{~ [t

Tolerance
zone is free in
- translation

Tolerance zone is
e 4= oriented by the
normal  vector of

datum reference A

Figure 1. ISO Parallelism Specification.

3.2. Modified Jack-knife method:

The orientation of the datum surface A is, greatifluenced by the outlier
measured points. This fact can lead to a non smsiatistic of the searched
parallelism defect. As stated in section 2.4, thdel® d-Jack-knife permits to
accurately estimate standard errors even in the @ason-smooth statistics [16].
This method was therefore chosen to estimate thécation uncertainty of the
parallelism defect.

In the classical Delete d-Jack-knife method, theiper of deleted points is
usually fixed to a given valug that remains the same for all subsamples. In the
proposed method, on the contrary, this nuntb&as selected randomly. In order
to contain sufficient statistical information, bothe datum plane and the
specified surface were characterized by dataseds lefist 25 acquisition points.
For each sub-sampling, the modified Delete d-Jattekconsisted then in a
random generation of two subsets of the initialadane constructed with the
coordinates that define the datum plane and orsgemtenith the points acquired
to characterize the specified feature.
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Figure 3. Sample and uploading acquisition uncettai

The smallest number of pointd; or M; required to build these two sub-
samples was fixed to 4 that is one more than th@nmal number needed to
define a plane (3 points). A specific selectiongaaure was implemented to
generate the two sub-datasets. For every sub-sagngdiquence, it consisted in
randomly associating a floating number to each efdgnof the initial datasets,
that was built in the range [0,1]. A cut-off thresthp was then fixed to only
select the points with a linked value lower thais timit. A random perturbation
was finally added to each coordinate to accountHercalibration uncertainty of
the Coordinate Measuring Machine (CMM). ISO 103&hdard [17] was used
for this last operation. This standard permits oW the calibration error bat
for a measured length in the CMM volume. For a CMM, this value can be
defined by this equation:

A=%(a+b.L)

The measured length was derived from the coordinates of the acquired
pointsM; or M;. This equation was then applied to add randonugeations to
the three initial coordinates which permits to asddfor the acquisition errof
of the CMM. These calculations assume a uniformbabdity density of the
calibration errors in the ranget[-A]:
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or with £ = Rnd ()Y * andZ * definedsimilarly
jorj \/Xz 2 +72
Mior j Mior j Mior j

In these relationshipsRnd() is the random generation of a uniformly
distributed variable in the interval [0,1]. The Wd@rocedure used to build each
sub-sample is presented in figure 3. After optitmgsabased on different tests,
the value of the cut-off threshoftlwas chosen to 0.4. This value guarantees to
obtain sub-samples of sufficient number of points.

3.3. Error Bar of ISO specification:

The uncertainties of a given specification arerdfiby the standard error of
the geometrical defect to be characterized. It asedd on repeated random
generation of subsamples of the datum and spedfigfdces using the modified
d-Jack-knife procedure. After estimation of the mealue of the geometrical
defect to be checked, the initial set of pointsejglicated by the random d-Jack-
knife method already presented. At each replicastep, the geometrical defect
of the virtual surfaces associated to the genemddtabets is then computed. This
operation is repeated M times. The standard effrthieoset of values which are
thus obtained if finally calculated. It represetite uncertainty of the estimated
geometrical defect. The lower bound of the toleeamterval of orientation
specifications is always equal to 0. A test wagdftge implemented in the
calculation of the error bars of the estimated getoical defect to avoid negative
values of the confidence interval starting poiftthis check detects a negative
indicator, a unilateral distribution of probability considered to define the error
bars. The lower bound of the confidence intervahen fixed to 0. A bilateral
probability distribution is considered otherwise.

4. Conclusion:

Uncertainty calculation of ISO specifications is@mplex task. In industrial
context, the calculation time is a main constraiftie revised version of the
GUM (GUM S1) proposes to use Monte Carlo simulatifor the evaluation of
uncertainties, but this method is much computee teansuming. To avoid this
impediment, an alternative uncertainty calculatinathod was proposed. It is
based on a modified delete d-jack-knife sub-samgptechnique. The results
obtained with this method for measured surfacel wismall form defect are in
complete adequacy with ISO 1101 standard for peisih specification. The
orientation of datum surface was deduced tangentefmaterial using the
minimax criterion and the error bar of 1ISO spedifion was deduced quickly
using the modified Delete-d-jack-knife method.
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