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Decisions based on sensory evaluation during single trials may depend on the collective activity of neurons distributed across brain
circuits. Previous studies have deepened our understanding of how the activity of individual neurons relates to the formation of a decision
and its storage for later report. However, little is known about how decision-making and decision maintenance processes evolve in single
trials. We addressed this problem by studying the activity of simultaneously recorded neurons from different somatosensory and frontal
lobe cortices of monkeys performing a vibrotactile discrimination task. We used the hidden Markov model to describe the spatiotemporal
pattern of activity in single trials as a sequence of firing rate states. We show that the animal’s decision was reliably maintained in frontal
lobe activity through a selective state sequence, initiated by an abrupt state transition, during which many neurons changed their activity
in a concomitant way, and for which both latency and variability depended on task difficulty. Indeed, transitions were more delayed and
more variable for difficult trials compared with easy trials. In contrast, state sequences in somatosensory cortices were weakly decision
related, had less variable transitions, and were not affected by the difficulty of the task. In summary, our results suggest that the decision
process and its subsequent maintenance are dynamically linked by a cascade of transient events in frontal lobe cortices.

Introduction
Previous studies in monkeys performing a discrimination task have
provided new insights into how cortical activity relates to sensory
evaluation, working memory, decision making, and the subsequent
maintenance of the decision output (Romo et al., 1999, 2002, 2004;
Hernández et al., 2000, 2002, 2010; Salinas et al., 2000; Brody et al.,
2003; Romo and Salinas, 2003; Luna et al., 2005; Lemus et al., 2007).
In this task, monkeys compared the frequency of two mechanical
vibrations sequentially delivered to their fingertip and report their
perceptual evaluation by pressing one of two buttons. It was shown
that, while the values of the base (f1) and comparison (f2) frequen-
cies are encoded in the primary somatosensory cortex (S1), neuronal
activity in the secondary somatosensory cortex (S2), prefrontal, pre-
motor, and motor cortices evolves to a function of f2 � f1. These
differential responses correlate with the animal’s decision and can be
maintained until a cue triggers the motor report.

These results were obtained using across-trial averages of
single-unit activities and choice probability measures (Britten et

al., 1996; Romo et al., 2002). Despite its efficiency, this approach
has the disadvantage of neglecting nonstationarities due to the
trial-by-trial variability in the time course of neuronal activity.
Dismissing this variability can overlook features of neural pro-
cesses that are not time-locked to any event or stimulus, but are
linked to internal dynamics (Seidemann et al., 1996; Renoult et
al., 2006). Here, we investigated the evolution of the collective
activity of sets of simultaneously recorded neurons, called neu-
ronal ensembles (NEs), during single trials of perceptual discrim-
ination. Specifically, we asked how decision-making and decision
maintenance processes evolve in single trials.

To address these questions, we used the hidden Markov model
(HMM) to characterize the NE activity from sensory (S1 and S2)
and frontal lobe cortices [dorsal premotor cortex (DPC); medial
premotor cortex (MPC); and primary motor cortex (M1)] dur-
ing a postponed discrimination task. In this model, a latent vari-
able, or “hidden state,” determines the firing rate of each neuron
of the NE. In each trial, the model transits through a state se-
quence with transitions that can occur at variable times from trial
to trial. The main hypothesis is that variability is shared by many
neurons, so that single-trial NE dynamics can be extracted accu-
rately and with fewer degrees of freedom (i.e., a finite number of
states). The HMM was successfully applied to describe cortical
activity during movement withholding and preparation (Seide-
mann et al., 1996; Kemere et al., 2008) and taste processing (Jones
et al., 2007).

The present work demonstrates that the state sequences can
depend on the result of the comparison between the two stimuli.
Comparison selectivity is distributed across frontal lobe cortices,
and also, albeit weakly, in S2. We show that the state transitions
are produced by rapid and coherent changes in the firing rates of
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many neurons. While single-trial dynamics are time-locked to
the comparison stimulus in sensory areas, in frontal lobe areas,
dynamics are highly variable from trial to trial in a way that
depends on the difficulty of the task.

Materials and Methods
Multiple single-neuron activity was recorded simultaneously in several
cortical areas of two male monkeys (Macaca mulatta) trained to perform
a vibrotactile discrimination task (Lemus et al., 2007; Hernández et al.,
2010). Simultaneous recordings were obtained by using a new procedure
described by Hernández et al. (2008). Monkeys were handled according
to institutional standards that meet those of the National Institutes of
Health and the Society for Neuroscience.

Postponed discrimination task. The sensory discrimination task used
here has already been described previously (Lemus et al., 2007) (see Fig.
1 A). Two monkeys were trained to discriminate the difference in fre-
quency between two consecutive mechanical vibrations delivered to one
fingertip. Monkeys were asked to report the discrimination by pressing
one of two push buttons with the nonstimulated hand, after a fixed delay
of 3 s between the end of f2 and a cue (PU) that triggered the beginning of
the motor report. Stimuli were delivered to the skin of the distal segments
of one digit of the right, restrained hand by means of a computer-
controlled stimulator. Vibrotactile stimuli were trains of short mechan-
ical pulses lasting 20 ms during a period of 0.5 s. We collected data using
the stimulus set of Figure 1 B, usually 7–10 trials per stimulus pair. Stim-
ulus amplitudes were adjusted to equal subjective intensities (Mount-
castle et al., 1990; Hernández et al., 1997). The report buttons were
located in front of the animal, 25 cm away from the shoulder and at eye
level, and 7 and 10.5 cm to the left of the midsagittal plane, respectively,
leading to a difference between medial and lateral movements of �11°.
As pointed out by Hernández et al. (2010), under these conditions some
activity related to arm motion may be expected, but should be highly
similar for the two arm movements. The animal was rewarded with a
drop of water for correct discriminations and randomly at the end of
ambiguous trials (f1 � f2).

Control task. The monkeys learned also to perform another version of
the task. In this control task, the button that has to be pushed for the
correct answer was illuminated at the beginning of the trial. Trials in this
test began exactly as described above and in Figure 1 A, except that when
the probe touched the skin, one of the target switches was illuminated.
The monkey had to respond by holding the immovable key. Then, after a
variable delay period during which the light was kept on and the two
consecutive stimuli were delivered exactly as in the vibrotactile discrim-
ination task (set 1; usually five to seven trials per stimulus pair), the light
was turned off and the probe was simultaneously lifted from the skin after
a fixed delay period of 3 s between f2 and PU. The monkey was rewarded
for pressing the previously illuminated push button. Arm movements in
this situation were identical with those in the vibrotactile discrimination
task but were cued by visual stimuli. In monkey 1, we recorded the
activity of the same cells during both the discrimination task and the
control task. The monkey completed the control bloc following the bloc
of discrimination trials, while isolation of the same cells was maintained.
In monkey 2, different cells were recorded during the control task com-
pared with the ones recorded in the discrimination task.

Recording techniques. Neuronal recordings were obtained with an ar-
ray of seven independent microelectrodes (1–3 M�) (Romo et al., 1999)
inserted into each cortical area. Recordings in S1, S2, and DPC were
made in the hemisphere contralateral to the stimulated hand, those in
M1 were made in the other hemisphere, contralateral to the responding
arm, and recordings in MPC were made either in the hemisphere con-
tralateral or ipsilateral to the responding arm. We used well established
electrophysiological and anatomical criteria to distinguish between cor-
tical areas (Salinas and Romo, 1998; Romo et al., 1999, 2002, 2004; Sali-
nas et al., 2000; Hernández et al., 2002). In S1, we recorded single neurons
with cutaneous receptive fields confined to the distal segments of the
glabrous skin of fingertips 2, 3, or 4 and had quickly adapting properties.
All neurons recorded in S2 had large cutaneous receptive fields confined
to the hand contralateral to the recording site. All neurons in MPC were

recorded in the pre-SMA, located rostral to a line passing from the mid-
line to the posterior edge of the arcuate sulcus (Matsuzaka et al., 1992).
All recordings in DPC were made in the arm region of F2 (Rizzolatti and
Luppino, 2001), located in front of M1 (F1), lateral to the central dimple,
posterior to F7 and genu of arcuate sulcus (Rizzolatti and Luppino,
2001). Recordings in M1 were confined to the arm region of M1, con-
fined to the anterior bank and crown of the central sulcus, medial to the
level of the posterior genu of the arcuate sulcus and lateral to the central
dimple (Rizzolatti and Luppino, 2001). On all recordings sessions in M1,
acceptable penetration sites were first identified. The criterion was that,
throughout the penetration track, neurons were found that responded
both during the task and to passive movements of the contralateral arm.
The passive responses had to be related to shoulder and elbow joints;
when they were associated with wrist and finger movements, the pene-
tration was discarded. If these conditions were met, other neurons with
different characteristics but recorded in the same penetration were also
studied and considered in the analysis. Recording sites changed from
session to session.

Hidden Markov model. Here, we review some aspects of the HMM
theory that provides the means for the analysis of NE spiking activity.
Under the HMM, a system of N recorded neurons is assumed to be in one
of a predetermined number of hidden firing rate states. Each state is
defined as a vector of N firing rates, one for each neuron. In each state, the
neurons are assumed to discharge as stationary Poisson processes (i.e.,
the firing of neuron j in state i is fully described by its instantaneous firing
probability Eij). The transition matrix A � {Aij} gives the probability to
move from state i to state j. The transition probabilities, Aij, are indepen-
dent of time (i.e., at any time, the probability of making a transition from
state i to state j depends only on the identities of states i and j). Thus, the
HMM model uses a discrete hidden state at time t to summarize all the
information before t. In this sense, the hidden state time sequence in an
HMM is a Markov chain. The HMM is fully described by the firing
emission and the transition matrices: � � { E, A}. To choose the model
that better explains the data, we estimated the parameters � that maxi-
mize the probability of observing the data given the model (training
step). After finding the optimal model parameters, we computed the state
sequence that maximizes the likelihood of the observed spike trains in a
given trial (testing step).

Training step. In this section, we describe how to calculate the proba-
bility of observing the data given the model and the procedure to maxi-
mize it. Assume the system has M states. Let St be the state at time bin t.
Let T be the length of the observation window. Neglecting the simulta-
neous firing of two or more of the N neurons, we build in each trial the
observation sequence O � o1o2. . . oT, with ot � 0 if any of the neurons
fired at bin t and ot � i if neuron i fired at bin t. This neglect is justified
because the size of the bin was 1 ms and neither N nor the firing rate of the
neurons were excessively high, making synchronous events rare: in the
whole dataset, the probability of finding a bin containing more than one
spike is equal to 0.0065. For bins containing spikes from more than one
neuron, the observation was chosen randomly among the firing neurons.

Let �i be the prior probability that the system starts in state i. We set
� � 1 for state 1. The HMM is fully described by the parameters � �
{ E, A}, with Eij( j) � P(Ot � j�St � i) and Aij � P(St�1 � j�St � i). To
estimate the emission matrix and the transition matrix, we used the
Baum–Welch algorithm (Baum et al., 1970; Rabiner, 1989). The goal of
this algorithm is to find the optimal model parameters �, given an obser-
vation sequence O (training data), that maximize the likelihood P(O��)
(i.e., the probability of the observation sequence given the model). For
finite observations, there is no analytical way of estimating the model
parameters. However, the Baum–Welch algorithm can locally maximize
the likelihood by using an iterative expectation maximization (EM)
procedure.

In the expectation step, we need to calculate the probability �t(i,j) of
being in state i at time t and state j at time t � 1, given the model
parameters and the observation sequence. It is defined as follows:
�t(i,j) � P(St � i, St�1 � j�O,�). To calculate this probability, we need to
define two other probabilities: the forward probability and the backward
probability. The forward probability �t(i) is defined as the probability of
the partial history of the observation sequence up to time t, noted
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O1O2. . . Ot, with state at time t being i, given the model [i.e., �t �
P(o1o2. . . ot, St � i��)]. The forward probability can be calculated induc-
tively as follows:

(1) Initialization: �1�i� � �i � Ei�o1�, 1 � i � M

(2) Induction: �t�1�i� � Ei�ot��j�1
M Aji�t� j�,

2 � t � T, 1 � i � M.

The probability of the complete history of the observation gives the like-
lihood P(O��), which can be calculated by means of the forward proba-
bility as follows:

P�O��� � �
i�1

M

�T�i�. (1)

The backward probability �t(i) is defined as the probability of the partial
observation sequence from time t up to time T, OtOt�1. . . OT, given that
the state at time t is i and given the model [i.e., �t(i) � P(otot�1. . . oT�St �
i,�)]. The backward probability can also be calculated inductively as
follows:

(1) Initialization: �T�1�i� � 1, 1 � i � M

(2) Induction: �t�i� � �j�1
M AijEj�ot�1��t�1� j�,

1 � t � T, 1 � i � M.

The probability �t(i,j) can be written in terms of the forward and back-
ward probabilities as follows:

�t�i, j� �
�t�i� AijEj�Ot�1��t�1� j�

P�O���
. (2)

Next, let �t(i) be the probability of being in state i at time t, given the
observation sequence and the model; �t(i,j) and �t(i) are related by the
following:

�t�i� � �
j�1

M

�t�i, j� �
�t�i��t�i�

P�O���
. (3)

If we sum �t(i) over time, we get the expected number of times that the
system visits state i, or equivalently, the expected number of transitions
from state i. If we sum �t(i,j) over time, we get the expected number of
transitions from state i to state j. Thus, the model parameters � � { E, A}
can be reestimated in the maximization step as follows:

Aij
new � �

t�1

T�1

�t�i, j���
t�1

T�1

�t�i� (4)

Ei� j�new � �
t�1
Ot�j

T�1

�t�i���
t�1

T�1

�t�i�. (5)

The numerator of the reestimated Aij is the expected number of transi-
tions from state i to state j, while the denominator is the expected number
of transitions from i to any state. Then the ratio is the probability of
transiting from state i to state j, which is the desired value of Aij. The
numerator of the reestimated Ei( j) is the expected number of times the
system is in state i with the observation o � j, while the denominator is
the expected number of times the system is in state i. The ratio is the
probability of observing o � j, given that the system is in state i, which is
the desired value of Ei( j).

It has been shown (Dempster et al., 1977) that the reestimated model is
more likely than the initial model: P(O�� new) � P(O��). Thus, iterations
of the reestimation leads to a maximum-likelihood estimate of the
model. In our study, we stopped the reestimations once the increase in
the log of the likelihood is less than a tolerance factor (10 �6) or if this

tolerance was not reached within a maximum number of iterations
(500). Since the algorithm converges to a local maximum likelihood that
is not necessarily the global maximum, we reran the reestimation algo-
rithm five times, each time with new initial parameters, and we chose the
model with the highest likelihood. The initial components of the emis-
sion matrix were random, while the components of the transition matrix
were initialized as in Jones et al. (2007): diagonal elements were initial-
ized in the range D � 0.99 – 0.999, and nondiagonal elements were all
equal to (1 � D)/(M � 1).

Testing step. Given the optimal parameters that were estimated in the
training step and given an observation sequence O, two useful quantities
can be obtained: the probability �t(i) of being in state i at time t and the
most likely sequence of states. The probability �t(i) is calculated with
Equation 3 by means of the forward and backward probabilities, evalu-
ated with the optimal model parameters, and gives the time-varying
probability of being in each state at any time bin. We used it to calculate
the duration of transition periods for which none of the states had like-
lihood larger than a threshold equal to 0.8. The most likely sequence of
states given the model and the observation sequence was calculated with
the following algorithm, called Viterbi algorithm (Rabiner, 1989). Let
s1s2. . . st be the state sequence until time t, and 	t(i) the sequence with
highest probability given the first t observations and with St � i, in other
words, the following:

	t�i� � maxS1S2 . . .. St�1
	P�S1S2 . . . St�1, St � i, o1o2 . . . ot���
.

By using the Markov property, we get the following: 	t�1� j� �
maxi		t�i�Aij
 � Ej�ot�1�. The Viterbi algorithm goes through the following
induction:

(1) Initialization: set 	1�i� � �iEi�o1� and 
1�i� � 0,

where 
t is a matrix of size TxM that stores the

arguments that maximize 	t�i�.

(2) Induction: 	t�1�i� � maxi		t�i�Aij
 � Ej�ot�1� and


t�1�i� � argmaxi		t�i�Aij


(3) Termination: ST
* � argmaxi		T�i�
.

At t � T, we choose the highest probability argument, and then we
backtrack from there to find the highest probability state sequence:

(4) Backtracking: St
* � 
t�1�St�1

* �, t � T � 1,T � 2, . . .,1.

Selection of the number of states. For a given ensemble of neurons, the
number of states is, in principle, determined by the number of degrees of
freedom of the ensemble activity, the level of firing rate modulation, and
the amount of available data. An important question concerns the opti-
mal number of states of a given NE. The basic problem is that the model
likelihood always increases with increasing number of states; however, a
large number of parameters might impair the ability of the model to
explain new data—thus, it would not be a “model” anymore. A classical
approach used in model selection consists of penalizing the model like-
lihood by a measure of its complexity. The most popular approach uses
the Bayesian information criterion (BIC) (Schwarz, 1978). The BIC for a
model with M states is given as follows:

BIC�M� � ln�P�O��̂M�� �
�M

2
ln�T�,

where O is the observed data, P�O��̂M� denotes the likelihood of the

model with M states and estimated parameters �̂M using the EM algo-
rithm, �M is the number of free parameters of the model, and T the length
of the observation data. For a model of M states and N neurons, the
number of free parameters is equal to M(M � 1) � MN, the first and
second terms being the contribution of the transition and emission ma-
trices, respectively (notice that the prior do not add any free parameter,
since � � 1 for state 1). For each NE, we calculated the BIC scores for
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models with different number of hidden states and selected the model
with maximum BIC score.

Generation of ideal observation sequences. We compared the distribu-
tion of transition durations obtained with the empirical dataset and the
one obtained with a set of ideal observations generated with the HMM
parameters that were estimated using the empirical dataset. We gener-
ated a long sequence of observations, O�o1o2 . . . oT, using the HMM
parameters { E, A}, as follows: at t � 1, the model is initialized at state 1, o1

is chosen according to the emission probabilities; next, the model transits
to a new state according to the transition probabilities, and so on until t �
T, where T � 10 5 ms. In these surrogate data, the model “neurons”
change their firing rate as fast as possible and in a concomitant way; thus,
the resulting distribution of transition durations represents a theoretical
lower bound.

Surrogates of gradual state transitions. We further compared the em-
pirical transition durations in the period containing the presentation of
f2, calculated with HMMs with two states, to the ones obtained using
ensembles of Poisson processes that linearly change from one state to
another. Let � be the two-state HMM that was estimated from the spiking
activity of an ensemble of N recorded neurons using trials of the same
trial type, during the period T. Here, the analysis period is delimited
between t(f2) � 0.2 s and t(f2) � 1 s, where t(f2) is the onset time of f2.
Let R1 � {r1

1, . . . ,rN
1 } and R2 � {r1

2, . . . ,rN
2 } be the two vectors containing

the firing probabilities of each neuron in state 1 and 2 of model �, respec-
tively. We constructed a surrogate dataset of linearly ramping neurons by
generating 100 realizations of nonhomogeneous Poisson processes with
underlying rate functions defined as follows:

1 � i � N

fi�t� � �
ri

1 if 0 � t �
T � 

2
ri

2 � ri
1

 �t �
T � 

2 � � ri
1 if

T � 

2
� t �

T � 

2

ri
2 if

T � 

2
� t � T

,

(7)

where  is the period of ramping. Notice that all units reach the second
state after , but their associated rate functions have different slopes,
depending on R2 � R1.

Decoding significance. To assess statistical significance of the decod-
ing performance, we calculated the probability of getting k hits by
chance, which is given by the following: ��k� � Cn

kPk�1 � p�n�k,
where n is the number of trials of the testing set and p is the proba-
bility of getting a hit by chance ( p � 1/2). The p value can be derived
as follows: Pvalue � �i � k

n ��i�. Note that the p value is a function of
both the number of hits and the number of tested trials, which can be
different for different recording sessions.

Receiver operating curve analysis. We used the receiver operating curve
(ROC) index to quantify the association between the activity of a neuron
and the animal’s response during a given time window. The ROC index
gives the probability that the neuronal response associated with one be-
havioral choice exceeds the neuronal response associated with the other
choice. It is a measure of the experimenter’s ability to predict the mon-
key’s behavior from the neuronal response. It is estimated by the follow-
ing equation:

ROC index � �P�r1 � x�P�r2 � x�dx, (8)

where P(ri) is the probability distribution of responses in condition i,
where condition f1  f2 is condition 1 and condition f1 � f2 is condition
2. This equation gives the proportion of trials in which the neuronal
responses in condition 1 and 2 can be separated using a criterion x, over
all possible values of x. This equation assumes that the variances of the
responses are the same. We used a permutation test (Siegel and Castellan,
1988) (500 shuffles), in which the neuronal responses and the monkey’s

choices were randomly associated, to assess significant ROC indices that
were different from 0.5, a value expected in the case in which the two
response distributions are equal. Finally, time windows for which the
mean firing rate of the neuron was 5 Hz were left aside.

Results
Neuronal ensemble activity during the discrimination task
Two monkeys were trained to discriminate the difference in fre-
quency between two consecutive mechanical vibrations delivered
to one fingertip (Fig. 1A). The stimulus set used for the experi-
ment (Fig. 1B) can be divided in three subsets: a first subset (set 1)
in which the difference between the base frequency (f1) and the
comparison frequency (f2) was large and equal to �8 Hz and two
other subsets in which f1 was constant while f2 was variable (set 2)
or vice versa (set 3). A trial type is defined by the values of the two
applied frequencies. The evidence of a trial type is defined as the
absolute difference between base and comparison frequencies,
given by �f � �f2 � f1�. The resulting psychometric curves are
shown in Figure 1C. Monkeys were asked to report discrimina-
tion after a fixed delay period of 3 s, called the postponed decision
period, between the end of f2 presentation and the cue that trig-
gered the motor report (PU). The reaction time is defined as the
time between PU and the moment at which the animal releases
the key (KU) to push one of the two response buttons. More than
99% of the RTs are �200 ms for both monkeys (Fig. 1D), sug-
gesting that the animals did not anticipate the appearance of the
response signal PU. During performance of the task, we recorded
the simultaneous single neuron activity from S1, S2, DPC, MPC,
and M1 (Fig. 1E). Recordings in S1, S2, and DPC were made in
the hemisphere contralateral to the stimulated hand, those in M1
were made in the other hemisphere, contralateral to the respond-
ing arm, and those in MPC were made either in the hemisphere
contralateral or ipsilateral to the responding arm, noted MPCc
and MPCi, respectively. We did not find qualitatively different
results for MPCc and MPCi; thus, throughout this study, unless
otherwise specified, these areas were analyzed together. A total of
264 NEs was analyzed (n � 64, 58, 35, 49, and 58 from S1, S2,
DPC, MPC, and M1, respectively). The number of simultane-
ously recorded neurons in each area was 3–15 neurons (median,
5 neurons).

In the present study, we first concentrated on the NE activity
during the period between t(f2) � 0.5 s and PU, where t(f2) is the
onset time of f2. This period contains the entire f2 presentation,
where the decision-making process takes place, and the post-
poned decision period during which the monkey maintains the
decision output until the movement is triggered. In Figure 1F, the
activity of an example NE, composed of eight neurons from M1,
is shown for two trials with f1 � 18 Hz and f2 � 26 Hz. The
ensemble activity revealed a temporal pattern with some neurons
increasing or decreasing their activity in a coordinated way. In-
terestingly, the coherent changes are appreciable not only in re-
sponse to the stimulus but also during the postponed decision
period. Nonetheless, the pattern is variable from trial to trial,
indicating that NE activity ran with different time courses from
trial to trial. To analyze these temporal patterns in a single-trial
basis, we used the HMM.

Sequences of firing rate states in single trials
In the HMM, the NE activity is assumed to progress through a
predetermined number of firing rate states. In each state, the
neurons are assumed to discharge as stationary Poisson processes
and the probability of going from one state to another is deter-
mined by a constant transition matrix (see Materials and Meth-
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ods). We set the number of states to 3. The reason of this choice is
justified below. Two HMMs were used to describe the activity of
a given NE. The HMM parameters (transition matrix and firing
rates in each state) of each of the two models were estimated using
15 randomly selected trials from condition f1  f2 or f1 � f2,
respectively, during the period between t(f2) � 0.5 s and PU. The
estimation of these parameters is called the training step, and the
set of trials used for the estimation is called the training set.
The set of remaining trials is called the testing set. After the train-
ing step, we obtained the sequence of states for all trials. This was
done using the Viterbi algorithm that finds the most likely sequence of
statesgiventhemodelparametersandthespiketrains(seeMaterialsand
Methods). Figures 2 and 3 show the state sequences for five trials from
each condition and the associated firing rate states for one example NE
from each sensory and frontal lobe cortices, respectively. The figures
reveal many important features. First, the state sequence was robust
acrosstrialsofthesameexperimentalcondition,but, infrontal lobeNEs,
statesequencesweredifferent fordifferentresponseconditions.Second,

in the somatosensory NEs, the activity went from a basal state to a state
that was stable for the entire stimulus presentation period, whereas NEs
of frontal lobes had a more complex, patterned, temporal dynamics
with transitions occurring during the stimulus presentation and the
postponed decision period. Importantly, the exact times of transitions
varied more from trial to trial in frontal lobe cortices compared with
transitions in sensory ones for which transitions are mainly determined
by the stimulus onset and offset. In the next sections, we further investi-
gate and evaluate these observations.

Response decoding using the neuronal ensemble activity in
single trials
In this section, we investigated how specific NE dynamics are to
the monkey’s decision (i.e., f1  f2 or f1 � f2). For this, we
measured the ability of the model to predict the monkey’s re-
sponse in a single trial given the NE activity, by using the follow-
ing jackknife cross-validation procedure. Let � be the HMM that
was trained using trials from condition f1  f2 and �� the HMM

Figure 1. Discrimination task and neuronal ensemble activity. A, Timeline of the discrimination task. The mechanical probe is lowered, indenting the glabrous skin of one digit (PD); the monkey
places its free hand on an immovable key (KD). The probe oscillates vertically, at the base frequency (f1); after a fixed delay (3 s), a second mechanical vibration is delivered at the comparison
frequency (f2); after another fixed delay (3 s) between the end of f2 and probe up (PU), the monkey releases the key (KU) and presses either the lateral or medial push button (PB) to indicate whether
the comparison frequency was higher or lower than the base, respectively. B, Stimulus set during recordings. Each trial type is defined by a base/comparison frequency stimulus pair. The number
inside the box indicates overall percentage of correct trials for each trial type, except for the ambiguous trial type, where f1 � f2 � 22 Hz, for which we plotted the percentage of trials the animal
pressed the lateral push button. C, Psychophysical performance when f1 was maintained fixed at 22 Hz and f2 was variable. The black/gray points indicate the percentage of trials in which monkey
1/2 estimated f2 higher than f1. Error bars indicate SE. D, Reaction time distributions for monkey 1/2 (black/gray traces). E, Recorded cortical areas: S1, Primary somatosensory cortex; S2, secondary
somatosensory cortex; DPC, dorsal premotor cortex; MPC, medial premotor cortex; M1, primary motor cortex (notations used in all following figures). F, The series of black ticks represent the spike
trains of 8 M1 neurons recorded simultaneously. The NE activity, during the period between t(f2) � 0.5 s and PU is plotted for two trials of the same trial type (f1 � 18 Hz and f2 � 26 Hz). The gray
area corresponds to the presentation of f2.
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that was trained using trials from condition f1 � f2. Only correct
trials were used and, to avoid variations in task difficulty, we
analyzed the NE activity during trials from stimulus set 1. For
each trial of the testing set, we compared the posterior probabil-
ities that the NE activity was generated by either model �, noted
P�, or by model ��, noted P��. These probabilities were calculated
using Equation 1 in Materials and Methods, with T being the
length of the period between t(f2) � 0.5 s and PU. If P� � P��, the
predicted response was f1  f2; otherwise, the predicted response
was f1 � f2. The decoding performance was defined as the per-
centage of correct predictions (hits) and compared with the ex-
pected chance level (see Materials and Methods). A decoding
performance that is significantly (p  0.05) above chance indi-
cates that HMM parameters were different for different response
conditions. We calculated the decoding performances for all NEs
of each area (Fig. 4A, blue distributions). We found that 4.7, 17.2,
57.1, 57.1, and 89.7% of the NEs from S1, S2, DPC, MPC, and
M1, respectively, had a significant decoding performance, rang-
ing between 62–78 and 62–100% for S2 and frontal lobe areas,
respectively. Significant decoding was found in both hemi-

spheres of MPC in similar proportions
(7 of 10 NEs from MPCc and 21 of 39
NEs from MPCi).

To preclude the possibility that the NE
activity could represent movement pa-
rameters such as movement direction in-
stead of the result of the comparison
between f1 and f2, we did the same analy-
sis (both training and testing) with trials
from a control version of the task. In this
control task, a light indicating the button
to be pressed was illuminated at the begin-
ning of the trial, whereas the same stimuli
were applied (set 1) as in the discrimina-
tion task (see Materials and Methods).
Thus, in this task, frequency compari-
son was not needed to perform the ap-
propriate motor response. The resulting
decoding performances (Fig. 4 A, gray
distributions) exceeded rarely the sig-
nificance level (�2.3%). This suggests
that NE activity carried information
about the result of the frequency com-
parison and not about the motor out-
put. The number of trials of the training
set was the same for the control and dis-
crimination tasks, but the testing set of-
ten contained fewer trials in the control
task. To test whether the different de-
coding performances were produced by
differences in the size of the testing sets,
we decoded the discrimination trials
with testing subsets of 20 randomly cho-
sen trials (10 from each condition),
equivalent to the minimal size of the
testing set among all sessions of the con-
trol task. Overall, the use of fewer test
trials reduced the percentages of signif-
icance but yielded the same qualitative
differences between decoding perfor-
mances in the discrimination and con-
trol task (Fig. 4 A, see percentages in
parenthesis). In addition, to test

whether the decoding performance depends on the number of
states, we did the same analysis by using HMMs with four
states (Fig. 4 B). We found that the use of three or four states to
decode the animal’s response yielded qualitatively the same
results.

Next, we asked whether error trials could be predicted by the
HMM. For this, we selected the S2 and frontal lobe NEs that had
significant response decoding performance and predicted the re-
sponse in error trials using the same HMM parameters that were
estimated with the training set composed of correct trials. The
decoding scheme was similar to the previous one, but with an
inverted rule: if P� � P�� (P�  P��), the predicted response was
f1 � f2 (f1  f2). Thus, with this scheme significant decoding
indicates that the NE activity during error trials resembles the
activity in correct trials, in which the animal pressed the opposite
button. Only sessions with �10 error trials were analyzed. The
resulting decoding performance was compared with the one pre-
viously obtained with correct trials (Fig. 4C). We found that sig-
nificant decoding of error trials, given significant decoding of

Figure 2. State sequences of sensory NEs. For each NE, two HMMs were estimated using 15 trials from condition f1  f2 and
f1 � f2, respectively. One example NE activity of S1 (A) and S2 (B) are shown. For each condition, the ensemble spiking activity
(black ticks) is shown together with the most likely sequence of states (each color represents a state visitation) for five trials. The
histograms below the state sequences represent the three firing rate states of each of the two models. Each state is defined as a
vector of N firing rates, one for each neuron of the ensemble (in these examples: N � 7 for both S1 and S2 NEs). Notice that, in A and
B, light blue and yellow states appeared very transiently.
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correct trials, is increasingly more likely for S2, DPC, MPC, and
M1 NEs.

Comparison-selective sequences of states
As shown above, many (�50%) NEs from frontal lobe areas pro-
gressed through different sequences of states depending on the
actual computation of the difference between f1 and f2. To fur-
ther investigate which features of single-neuron responses gener-
ate the selective sequences of states, we quantified how well the
two response conditions could be discriminated given the activity
of individual neurons. For this, we calculated the area under the
receiver operating curve (ROC index), which measures the dif-
ference between the distributions of the neuronal responses in
both conditions for both discrimination and control tasks (see
Materials and Methods). Periods during which the ROC index
was significant were defined as periods of differential activity.
Using sliding windows of 0.5 s, we calculated the percentage of
neurons with significant ROC indices (Fig. 5A, black traces),
which increased rapidly after the onset of f2. During the entire
postponed decision period, many (20 – 44%) neurons presented
a differential activity. In contrast, substantially less differential
activity was detected in the control task (Fig. 5A, gray traces).

To investigate the dynamics of differential activity, we selected
those neurons that had at least one significant ROC index at any
time window between f2 onset and PU. As shown in Figure 5B,
differential activity appeared transiently in some neurons at the
onset of f2, but this feature appeared later in the delay for many

other neurons. Note that only few neurons maintained a differ-
ential activity for a long period of time. Moreover, the heteroge-
neity was prominent in simultaneously recorded nearby neurons.
The time-varying ROC indices of an M1 ensemble (composed of
seven simultaneously recorded neurons) and an MPC ensemble
(composed of nine simultaneously recorded neurons) are pre-
sented in Figure 5, C and D, respectively. Again, significant ROC
values were reached at different moments for different neurons.
Together, this indicates that differential activity was initiated in
different groups of neurons at different times, a feature that nec-
essarily leads to different paths of ensemble firing rates for the two
different response conditions, thus giving rise to comparison-
selective sequences of states.

Single-trial ensemble activity as a Markov chain
Our results demonstrate that the HMM can be used to decode the
NE activity in single trials. However, this does not prove that the
ensemble activity truly switched between different states. To test
this, we first estimated the number of HMM states, and, second,
we studied activity at the transitions.

Up to now, we have used HMMs with three states. An impor-
tant question concerns the optimal number of states. We ad-
dressed this issue by using the BIC (see Materials and Methods),
which penalizes the likelihood of a model with M states by a
measure of its complexity (Fig. 6A). For each NE, we calculated
the BIC scores for models with different number of hidden states,
with M varying from M � 1 to M � 6, and selected the model with

Figure 3. State sequences of frontal lobe NEs. For each NE, two HMMs were estimated using 15 trials from condition f1  f2 and f1 � f2, respectively. In A–C, one example NE activity of each
frontal lobe cortical area is shown. For each condition, the ensemble spiking activity (black ticks) is shown together with the most likely sequence of states (each color represents a state visitation)
for five trials. The histograms below the state sequences represent the three firing rate states of each of the two models. Each state is defined as a vector of N firing rates, one for each neuron of the
ensemble (in these examples: N � 6, 11, 8 for DPC, MPC, M1, respectively).
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maximum penalized likelihood, in the ob-
servation window between t(f2) � 0.5 s
and PU. The frequencies of selecting a
number of states are shown in Table 1.
The BIC procedure indicated that �85%
of the NEs were optimally modeled by two
to four states, with three being the num-
ber of states most often selected (44.3%).
This number of state was most often se-
lected for frontal lobe and S2 NEs (37.9 –
57.1%), whereas most of the S1 NEs had
BIC scores peaking at two states (40.6%).

We next tested whether the states were
stable and represent different patterns of
activity. For this, we constructed a three-
state HMM for each trial type, using all
correct trials for the estimation of the
model parameters. We calculated, for
each trial, the probability of each state at
any moment in time using the corre-
sponding HMM (see Materials and Meth-
ods). In this way, the evolution of the
probability of each state can be followed
in time. These probabilities are shown in
Figure 6B for an example NE from M1.
Most of the time one state dominated
upon the others (i.e., one state had a high
probability, whereas the two other states
had a probability close to zero). We de-
fined the periods during which none of
the states had a probability �0.8 as tran-
sition periods (Fig. 6B, inset). Only tran-

Figure 5. Dynamics of differential activity. A, ROC indices were calculated in sliding windows of 500 ms, which were shifted in steps of
50ms.ThepercentagesofneuronswithsignificantROCindicesareplottedforthefrontal lobecortices, inthediscriminationtask(black)and
the control task (gray). B, For each area, we selected those neurons that had at least one significant ROC index between f2 onset (red vertical
line) and PU, and sorted them by the time at which the first significant ROC index appeared after f2 onset. C, D, ROC indices of seven
simultaneouslyrecordedM1neurons(C)andninesimultaneouslyrecordedMPCneurons(D)(coloredlines).Thecirclesrepresentsignificant
values. Time windows during which the mean firing rate of the neuron was 5 Hz were left aside.

Figure 4. Response decoding. A, The response decoding performances, using HMMs with three states, were calculated for all analyzed NEs from each cortical area in the discrimination task (blue distribution)
and the control task (gray distribution). Red vertical line, Chance level (50%). The percentage of significant performances is indicated for both the discrimination (blue) and the control task (gray). Values in
parentheses indicate the percentage of significant performances obtained using a reduced testing subset of discrimination trials (see text for details). B, Same as A, but using HMMs with four states. C, The
differentpanelscomparethedecodingperformanceinerrortrialswiththeoneobtainedincorrecttrials(seetextfordetails).OnlyS2andfrontal lobeNEsthathadsignificantdecodingperformanceincorrecttrials
and were recorded in sessions with �10 error trials were used. Gray points, Significant decoding in error trials. The percentages of significant decoding on error trials are indicated.
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sition periods separating different states were analyzed;
transitions flanked by the same state were discarded. The aver-
aged transition period was calculated for all analyzed NEs (Fig.
6C, black and dark gray bars). Generally, the mean transition
period was 85 ms. This value was practically one order of
magnitude smaller than the averaged lifetime of a state (Fig.
6C, white and light gray bars) that ranged between 538 and 890
ms. Hence, the transition periods were substantially shorter
than the epochs during which the NE was in one state.

To test whether the firing rate states were different, we calcu-
lated the percentage of neurons that had significantly different
firing rates in different states (p  0.01, ANOVA comparing the
three mean firing rates during each of the three states) in trials in
which f1 � 26 Hz and f2 � 34 Hz (similar results were obtained

using other trial types). Indeed, the firing rate of many (30 – 80%)
neurons significantly changed between states (Fig. 6D). Thus,
individual neurons increased or decreased their activity in more
than one state. These results confirm that the NE activity can be
fairly well described by a sequence of distinct states separated by
short transitions reflecting coordinated changes in the firing rates
of many neurons.

Transition density
Next, we computed the probability of finding a transition at
any moment in time in each cortical area. For all NEs, the state
sequences were computed for all trials using the Viterbi algo-
rithm. The exact times of transitions were stored and the prob-
ability of finding a transition was calculated. As shown in
Figure 6 E, transitions in somatosensory cortices were highly
time-locked to the stimulus onset/offset, indicating that NE
activity switched from a basal state to a state that was stable for
the entire stimulus presentation period. When the stimulation
was turned off, the NE activities of S1 and S2 behaved differ-
ently: that from S1 returned to the basal state, whereas that
from S2 continued after stimulus offset. Transitions in frontal
lobe NEs occurred both during the comparison stimulus and
the postponed decision period. Generally, the transitions in
frontal lobe NEs during f2 presentation were more widely
distributed than transitions in somatosensory NEs. In the next
sections, we studied in more details the speed and the trial-by-
trial variability of transitions during the comparison stimulus,

Figure 6. Ensemble activity as a Markov chain. A, The number of HMM states was estimated using the BIC procedure, which penalizes the likelihood of the model (black) by a measure of its
complexity. The estimated number of states is the one for which the BIC score (gray) is maximal. Shown are data from an example ensemble of M1 neurons. B, The spiking activity of the example
ensemble of M1 neurons is presented together with the likelihood of each state (colored lines) for four trials. Inset, The periods during which none of the states had likelihood larger than 0.8 were
defined as transition periods (gray area). The inset corresponds to the epoch framed in B. C, The bars indicate the averaged duration of transition periods and averaged state duration for all analyzed
NEs of a given cortical area and for each monkey. Error bars indicate SE. D, The Viterbi state sequences were determined for each trial with f1 � 26 Hz and f2 � 34 Hz, and the percentage of neurons
with significantly different mean firing rates in different states ( p  0.01, ANOVA) was calculated (similar results were obtained using other trial types). E, For each cortical area, the probability of
finding a transition was calculated using a sliding window of 100 ms (data from both monkeys). The shaded area represents the application of f2.

Table 1. Frequencies of selecting a number of hidden states using the BIC criterion
for correct trials with f1 � 26 Hz and f2 � 34 Hz in the observation window
between t(f2) � 0.5 s and PU

No. of states
No. of neurons
(median)1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%)

S1 (n � 64) 0 40.6 31.3 17.2 4.7 6.2 5
S2 (n � 58) 0 24.1 37.9 20.7 13.8 3.5 6
DPC (n � 35) 14.3 28.6 45.7 11.4 0 0 5
MPC (n � 49) 6.1 18.4 57.1 14.3 2.0 2.0 5
M1 (n � 58) 5.1 13.8 53.5 13.8 10.3 3.5 5
All (n � 264) 4.2 25.4 44.3 15.9 6.8 3.4 5

Maximal frequencies are indicated in bold. The last column indicates the median number of neurons in the NEs of
each cortical area. n, Number of NEs.
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emphasizing the differences between frontal lobe and somato-
sensory cortices.

Fast coherent transitions
We concentrated on the first transition after the onset of the
comparison stimulus. First, we selected all somatosensory NEs
(64 and 58 NEs from S1 and S2, respectively) and those frontal
lobe NEs that met the following criterion. Frontal lobe NEs were
kept for the analysis if they presented a significant response clas-
sification, with the same HMM decoding scheme as previously
but using the NE activity between t(f2) � 0.2 s and t(f2) � 1 s and
using two states. This criterion ensures that the kept frontal lobe
NEs underwent a decision-related transition in the analyzed pe-
riod. A total of 78 frontal lobe NEs met the selection criterion (18
of 35, 20 of 49, and 40 of 58 NEs from DPC, MPC, and M1,
respectively). Second, for all selected NEs, two-state HMMs were
estimated for each trial type of the entire stimulus set, except
those of the ambiguous trial type where f1 � f2 � 22 Hz (the
actual button the monkeys pressed at the end of ambiguous trials
(f1 � f2) was not stored. For this reason, ambiguous trials were
not analyzed). Hence, for each NE, 22 HMMs were estimated.
The choice of two states is supported by the BIC procedure,
which most of the time selected models with two states (53–75%;
Table 2). Figure 7A shows examples of the obtained state proba-
bilities and state sequences. Before the onset of f2, the NE activity
was in a first state, and then, after f2 onset, it reached a second
state. The fast transitions were produced by rapid coordinated
changes in the activity of the neurons, as demonstrated in Figure
7, B and C, with an example of two neurons from the same MPC
NE. These two neurons presented a complementary activity: one
neuron increased its activity just after the transition (red ticks in
each trial), whereas the activity of the other neuron rapidly de-
creased at the same moment. Importantly, the transition was
calculated using the activity of all neurons from the ensemble
(four in total).

To evaluate the speed and the coherency of the transition, we
first computed the averaged transition durations for all selected

NEs in trials of same evidence, given by �f � �f2 � f1� (Fig. 8A,B,
blue traces). The evidence is a measure of the difficulty of a given
trial type. In principle, the duration of transition periods is deter-
mined by (1) the firing rate differences between states, (2) the
number of neurons that changed their firing rate during transi-
tions, and (3) whether or not the neurons changed their firing
rate at the same time. To evaluate which factors determined the
speed of the observed transitions, we compared the transition
periods against the ones obtained with two sets of pseudodata.

We generated a first dataset of ideal observations by simulat-
ing Markov chains with the same HMM parameters that were
estimated with the experimental spike trains (see Materials and
Methods). The mean transition period obtained with this dataset
gives the minimum expected value, given the parameters of the
HMM. The second pseudodataset was obtained by combining
randomly, for each trial type, the responses of the neurons, called
shuffled dataset. This procedure keeps the same peristimulus
time histogram (PSTH) profile for each trial type, but washes out
the firing rate correlations that were not time-locked to the stim-
ulus, as if neurons were no more simultaneously recorded. The
HMM parameters were estimated in the shuffled dataset, and the
mean transitions period was computed. We found that averaged
empirical transition periods in frontal lobe NEs were not signif-
icantly different from the averaged ideal transition period (p �
0.01), whereas they were significantly shorter than the averaged
transition periods of shuffled data (p  0.01, differences in tran-
sition periods ranging between 11 and 19 ms; Fig. 8A); by con-
trast, in somatosensory NEs, the averaged transition periods were
similar for all datasets, with differences of 1–2 ms (Fig. 8B). This
indicates that the activity of the neurons “jumped” from one state
to another very abruptly (given their firing rates) and at the same
time; however, the jumps were time-locked to the stimulus in
sensory NEs, whereas they occurred at variable times in frontal
lobe NEs.

We further evaluated how fast were the state transitions with
respect to gradual changes of the neuronal activity. For this, we
simulated nonhomogeneous Poisson processes with underlying
rates given by a piecewise function for which two stable configu-
rations of rates are linked by a linear ramp (see Materials and
Methods). The time of ramping was controlled by the parameter
. The two rate configurations were the ones given by the HMM
states that were estimated with the experimental spike trains, for
each trial type. The state probabilities and transition periods were
calculated as previously. By varying , we get the expected transi-
tion period for linear ramps, shown in Figure 8 (color plots).
Hence, the empirical transition periods of the recorded NEs were
shorter than the expected transition periods for ramps that last at
least 50 ms. Longer ramps led to significantly longer transition
durations (p � 0.05, t test).

Easy trials versus difficult trials
We then investigated the time at which these transitions occurred
for the different degrees of task difficulty. For this, we calculated
the transition latency, defined as the time elapsed between the
onset of f2 and the time of the transition detected using the Vit-
erbi algorithm. Next, the mean latency and the SD of the transi-
tion latencies were computed. We found that both the mean
latency and the variability in frontal lobe NEs decreased for in-
creasing values of �f (Fig. 9), indicating that the transitions were
shorter and less variable for easy trials than for difficult trials.
Note that changes in variability are not trivially explained by
variability on the value of the comparison frequency; in fact,
latency variability was minimal for trials of maximal evidence,

Table 2. Frequencies of selecting a number of hidden states using the BIC criterion
in the observation window between t(f2) � 0.2 s and t(f2) � 1 s

No. of states Evidence

1 (%) 2 (%) 3 (%) 4 (%) �f (Hz)

S1 (n � 64) 3.5 69.5 22.7 4.3 2
2.3 62.9 26.9 7.8 4
2.0 57.8 32.0 8.2 6
0.8 55.8 31.4 12.0 8

S2 (n � 58) 10.8 60.3 26.3 2.6 2
5.6 62.5 23.7 8.2 4
4.3 53.0 30.6 12.0 6
3.6 53.8 35.0 7.6 8

DPC (n � 18) 33.3 56.9 9.7 0 2
19.4 68.1 12.5 0 4

6.9 75.0 16.7 1.3 6
16.7 67.2 15.0 1.1 8

MPC (n � 20) 37.5 53.8 7.5 1.3 2
26.3 65.0 8.8 0 4
18.8 70.0 11.2 0 6
18.0 68.5 10.5 3.0 8

M1 (n � 40) 33.8 56.9 6.9 2.5 2
30.0 56.9 10.0 3.1 4
20.6 63.8 10.62 5.0 6
19.8 63.0 14.3 3.0 8

Models were estimated using all correct trials from each trial type, for one to four states. The frequencies of selecting
a number of states were calculated among trials of same evidence (�f � �f2 � f1�). Maxima are indicated in bold.
n, Number of NEs.
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�f � 8 Hz, for which f2 had the wider range of variation (from 10
to 34 Hz). Thus, variability reduction depends on the combina-
tion of past (f1) and present (f2) stimuli. In contrast, both mean
latency and variability in somatosensory areas did not depend on
�f. Both the mean latency and the mean SD were significantly
(p  0.05, t test) larger for �f � 2 Hz than for �f � 8 Hz in the
three frontal lobe cortices (except for the SDs in DPC), but not in
the somatosensory areas.

Latency correlations
We next wondered whether or not the transition latencies in
different cortical areas were correlated. Indeed, we may expect
that the transitions in different cortical areas covary in single
trials, because they are governed by the same overall decision
process. Some of the previously selected NEs were recorded si-
multaneously allowing us to investigate the pairwise correlations
between transition latencies of two cortical areas (190 pairs of
NEs). For a given pair of NEs, we calculated the correlation using
the set of trials for which �f � 8 Hz. As shown in Table 3, the
correlation seldom was significant (p  0.05, Pearson’s linear
correlation). We conclude that transition latencies from different
cortical areas did not correlate.

Discussion
In this study, we demonstrated that the temporal dynamics of NE
activity can be approximated by a sequence of distinct firing rate
states separated by short transitions that can occur during both
stimulus presentation and postponed decision period. The HMM

Figure 7. Coherent transitions. A, The spiking activity (black ticks), together with the probabilities of each state (blue and green traces) and the Viterbi sequence of states (top) are
shown for one example NE from each cortical area, for three trials of the same trial type. The shaded gray region indicates the presentation of f2. B, C, The raster displays (top) represent
the spiking activity of two neurons from the same MPC NE (consisting of 4 neurons recorded simultaneously), for seven correct trials. Each black tick corresponds to a spike, and the red
ticks correspond to the time of the first transitions after f2 onset (vertical gray line). Trials were rearranged according to increasing transition times. The PSTHs of the neurons are plotted
in the bottom panels.

Figure 8. Transition duration for the empirical, ideal, and shuffled datasets. For each value of
�f, the averaged transition period between states was calculated for the empirical dataset and
the two pseudodatasets, for sensory (A) and frontal lobe NEs (B). The three averaged transition
periods were compared, for each �f (ANOVA). The red stars indicate significant differences
between empirical and ideal averaged transition periods ( p  0.01, Tukey’s test). The white
stars indicate significant differences between empirical and shuffled averaged transition peri-
ods ( p  0.01, Tukey’s test). The color plot indicates the expected transition durations for
artificial ramps with different periods of ramping . Artificial ramps were constructed using
nonhomogeneous Poisson processes that linearly changed from a constant firing rate state 1 to
a constant firing rate state 2. The two rate configurations were the ones given by the HMM
states that were estimated with the experimental spike trains, for each NE and for each trial
type.
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assumes that the dynamics of NE activity is Markovian: state
transitions depend only on the preceding state. However, cell
features, such as the refractory period, bursting, and short-term
plasticity, introduce a history dependency that makes the HMM
assumption impossible to meet. Nevertheless, as pointed by Jones
et al. (2007), temporal dependencies enhance the HMM perfor-
mance (Antón-Haro et al., 2001), and, thus, the Markov assump-
tion is rather conservative. Moreover, the HMM assumes that
neurons are independent; however, dynamic changes in correla-
tion between neurons in absence of firing rate differences have
been reported previously (Vaadia et al., 1995; Riehle et al., 1997).
A novel method for including correlations in HMMs was recently
developed (Katahira et al., 2010) and offers new promises for
investigating this fundamental question. Furthermore, the model
clusters the data into a finite number of firing rate states. An
important question concerns the optimal number of states of a
given NE. In the present study, we used a penalized likelihood
criterion, to estimate the number of statistically discernible states,
given the number of recorded neurons, the firing rates, and the
amount of data. However, the number of states should not be
confused with the “real” number of states of collective activity in
a given cortical area.

This study shows that distinct cortical areas contribute to the
sequence of the processing linking decision making and action.
One could argue that frontal lobe activity during the postponed
decision period reflects other processes, such as movement prep-
aration or time estimation. This seems unlikely, however, be-
cause (1) when the same movements were guided by visual cues
the sequences of states were no more selective (Fig. 4A,B); (2)
reaction time distributions did not show anticipations (Fig. 1D),

suggesting that the animals neither pre-
pared the movement before the response
signal PU nor anticipated its occurrence;
and (3) the two response buttons were
close to each other, so that neuronal activ-
ity related to the two arm movements
should be similar. Single-neuron delay
differential activity has been interpreted
as related to the memory of the decision
(Lemus et al., 2007; Hernández et al.,
2010), even though frontal lobe cortical
areas are not traditionally believed to be
implicated in memory (but see Ohbayashi
et al., 2003). Here, we showed that the
storage of the decision is a collective dy-
namic process: neurons present tran-
siently a differential delay activity, so that,
as a result, the NE activity goes through
two different paths depending on the an-
imal’s decision and with variable time
courses from trial to trial. Thus, the out-
put of the decision might be maintained
via a selective transient activation of
groups of neurons. Hence, the mecha-

nism sustaining the decision output could differ from the classi-
cal view of working memory (i.e., by means of a steady state of
persistent activity). Consistent with our findings, there is empir-
ical evidence that working memory can be stored by sequential
activation of neural subpopulations (Baeg et al., 2003). In this
sense, decision maintenance would be represented in a spatio-
temporal pattern or “neural trajectory,” as proposed in the con-
text of odor representation and decision making in invertebrates
(Briggman et al., 2005; Mazor and Laurent, 2005), navigation-
based decisions in mice (Harvey et al., 2012), and motor planning
in monkeys (Yu et al., 2009; Afshar et al., 2011). Indeed, in our
study, low-dimensional neural trajectories are coarsely described
by sequences of firing rate states.

Martínez-García et al. (2011) recently proposed that informa-
tion about the decision output is maintained during the post-
poned decision period in the synapses of MPC neurons, via
synaptic facilitation. This model explains the behavior of those
neurons for which differential activity vanishes during the delay.
However, some MPC neurons do maintain the differential activ-
ity during the delay (Fig. 5). Thus, possibly both subthreshold
and suprathreshold mechanisms contribute to the storage of the
decision output during the postponed decision period.

The fact that the animal’s response could be decoded in error
trials, using the same HMM parameters estimated with sets of
correct trials, suggests that the NE activity fairly represents a com-
mitment toward one response action; particularly in M1 that
represents a final step in the decision-to-action conversion.

We showed that, after presentation of f2, frontal lobe NEs
undergo an abrupt state transition occurring at variable times
from trial to trial (Figs. 7, 8). Frontal lobe areas are engaged in a
binary decision-making process, as revealed by our decoding
scheme and by previous studies on single-neuron activity
(Hernández et al., 2002, 2010). Theoretical studies have proposed
different attractor-based models of decision making, in which
two populations of neurons, each encoding one of the two possi-
ble decisions, compete in a winner-take-all fashion (Brunel and
Wang, 2001; Wang, 2002; Wong and Wang, 2006; Wong et al.,
2007). Competition leads the network to reach one of two deci-
sion states in which the activity of either one of the populations

Figure 9. Transition statistics and task difficulty. The averaged transition latency (A) and transition variability (B) were calcu-
lated for the NEs of each cortical area and for each value of �f. Error bars indicate SE. C, The transition latencies for an example NE
from MPC were grouped according to the evidence (�f, color code) of the trials in which they occurred. Each filled point represents
a trial; the squares indicate the mean latency for each value of �f. Note the decrease of both latency and variability for increasing
values of �f. The shaded area represents the application of f2.

Table 3. Number of significant ( p < 0.05) pairwise correlations between transition
latencies in simultaneously recorded NEs from different cortical areas

S2 DPC MPC M1

S1 4 of 55 1 of 15 1 of 17 0 of 24
S2 2 of 16 1 of 17 4 of 25
DPC 0 of 5 2 of 5
MPC 0 of 11
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exceeds the activity of the other. This model has two operational
modes (Deco et al., 2007, 2009; Martí et al., 2008; Miller and Katz,
2010): a bistable mode, in which the external input destabilizes
the basal state forcing the network to relax to one of the decision
states, and a multistable mode, in which the stimulus does not
destabilize the basal state but enhances the probability that large
fluctuations induce a transition toward one of the decision states.
Although these modes have been extensively studied, their pre-
dictions are difficult to test using the activity of single neurons.
Here, we used the activity of simultaneously recorded neurons to
detect the state transitions in single trials, via the HMM. This
approach was used by Miller and Katz (2010) with simulated
data, providing valuable predictions. Specifically, the multistable
mode leads to noise-driven transitions that are characterized by
abrupt changes in the firing rate of the neurons that occur at
random times. By contrast, in the bistable mode, the firing rate of
the neurons changes gradually due to the relaxation mechanism.
Hence, the observation of sharp and variable transitions reported
here favors the multistable scenario.

Smooth “ramping” activity is believed to implement an accu-
mulation over time of sensory evidence for the different choices.
Note that averaging abrupt firing rate changes can lead to an
artifactual ramping activity. This is clear in Figure 7, B and C: the
trial-averaged firing rate of a neuron can be either gradually in-
creased or decreased; but this is only due to the summation of
steps of firing rate occurring at variable times across trials, but
concomitantly among neurons. Using surrogates, we showed
that transitions following f2 presentation were indeed indistin-
guishable from ideal jumps. Furthermore, surrogates presenting
a linear ramping activity that last longer than 50 ms led to tran-
sition durations longer than the empirical ones. Our study, how-
ever, does not intend to exclude ramping activity in single trials,
which has been reported in the lateral intraparietal area during
random-dot direction discrimination (Huk and Shadlen, 2005),
but suggests that, in the present task and for the analyzed cortical
areas, single-trial dynamics are better represented by fast state
transitions. Alternatively, one could argue that the transitions
seen in frontal lobe areas after the presentation of f2 (which have
a mean latency of 280 � 49 ms, for �f � 8 Hz) may reflect the
result of the comparison rather than the decision process itself.

In addition, we found that transition statistics in frontal lobe
NEs depend on the difficulty of the task. It is known that single-
neuron responses during motion discrimination initiate earlier
on easy trials than on difficult trials (Kim and Shadlen, 1999).
Our analysis confirmed this effect and extended it: both the
latency and the variability of NE activity increased on difficult
trials. These changes in variability are expected for a decision-
making network operating in the multistable mode (Rolls et al.,
2010). Thus, our results add evidence that the underlying mech-
anism of decision making is stochastic, a view supported by psy-
chophysical and fMRI measures (Deco et al., 2007; Rolls et al.,
2010).

Our study shows that decision processes and their related out-
put are distributed over several cortical areas. The question arises
of how different cortical areas communicate to solve the overall
task. Anatomical data show that somatosensory and frontal lobe
cortices are either directly or indirectly interconnected and share
inputs (Pons et al., 1987; Luppino et al., 1993; Iwamura, 1998; Liu
et al., 2002; Boussaoud et al., 2005). Thus, one possibility is that
consistent decisions arise from correlated fluctuations among the
cortical areas. We found, however, that transition latencies in
pairs of NEs were practically uncorrelated. The lack of correlation
might be due to the small number of neurons of the NEs used in

the present study. Hence, to address the question of how distrib-
uted sensory and decision networks communicate through large-
scale interactions requires further theoretical and experimental
investigations, possibly using other neural signals such as local
field potentials.

In conclusion, our results suggest that decision-making pro-
cesses and the subsequent maintenance of the decision output in
frontal lobe cortices may be linked by a cascade of transient
events. The cascade would be initiated by a noise-driven transi-
tion toward one of two spatiotemporal patterns of activity that
maintains the output of the corresponding decision. In this view,
transient dynamics are a key feature for unraveling the mecha-
nism underlying the conversion of a decision into an action.

References
Afshar A, Santhanam G, Yu BM, Ryu SI, Sahani M, Shenoy KV (2011)

Single-trial neural correlates of arm movement preparation. Neuron
71:555–564.

Antón-Haro C, Fonollosa JAR, Fauli C, Fonollosa JR (2001) On the inclu-
sion of channel’s time dependence in a hidden Markov model for blind
channel estimation. IEEE Trans Veh Technol 50:867– 873.

Baeg EH, Kim YB, Huh K, Mook-Jung I, Kim HT, Jung MW (2003) Dynam-
ics of population code for working memory in the prefrontal cortex.
Neuron 40:177–188.

Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov
chains. Ann Math Stat 41:164 –171.
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