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Gyrification index (GI) is an appropriate measure to quantify the complexity of the cerebral cortex. There is, however, no universal
agreement on the notion of surface complexity and there are various methods in literature that evaluate different aspects of cortical
folding. In this paper, we give two intuitive interpretations on folding quantification based on the magnitude and variation of the
mean curvature of the cortical surface. We then present a local spectral analysis of the mean curvature to introduce two local
gyrification indices that satisfy our interpretations. For this purpose, the graph windowed Fourier transform is extended to the
framework of surfaces discretized with triangular meshes. An adaptive window function is also proposed to deal with the intersubject
cortical size variability. The intrinsic nature of the method allows us to compute the degree of folding at different spatial scales.
Our experiments show that while more classical surface area-based GIs may fail at differentiating deep folds from very convoluted
ones, our spectral GIs overcome this issue. The method is applied to the cortical surfaces of 124 healthy adult subjects of OASIS
database and average gyrification maps are computed and compared with other GI definitions. In order to illustrate the capacity
of our method to capture and quantify important aspects of gyrification, we study the relationship between brain volume and
cortical complexity, and design a scaling analysis with a power law model. Results indicate an allometric relation and confirm the
well-known observations that larger brains are more folded. We also perform the scaling analysis at the vertex level to investigate
how the degree of folding varies locally with the brain volume. Results reveal that in our healthy adult brain database, cortical
regions which are the least folded on average show an increased folding complexity when brain size increases.

Index Terms—Brain folding, gyrification index, spectral analysis, mean curvature, windowed Fourier transform, allometric relation

I. INTRODUCTION

The process of folds appearing on the cerebral cortex is
called gyrification. It occurs mostly during the second half
of fetal life but continues changing slightly the shape of the
folds during post-natal life [1]–[4]. Morphometric parameters
of the cerebral cortex such as volume, surface area, sulcal
depth, curvature and gyrification index (GI) are commonly
used to quantify this gyrification process. Among these, GI is
a direct measure that attempts to quantify the degree of folding
of the cerebral cortex. It provides valuable information about
changes occurring on a brain surface during development,
aging, and disease [4]–[10]. In this paper, we propose two
new GIs that take into account two different aspects of folding
quantification.

Existing GI definitions in the literature, from a general
point of view, may be categorized in two classes: surface area
(perimeter)-based methods [5]–[7], [11]–[14] and curvature-
based methods [10], [15]–[17].

Methods in the first category compute the gyrification index
as a ratio between the local area (perimeter) of the cortical
surface and that of a reference surface. For instance, Toro et
al. [5] defined a local GI as a ratio between the area of the pial
surface contained in a spherical neighbourhood of each cortical
point and the area of the great disc of the sphere. Schaer et al.
[6] proposed a ratio between the area of a region of interest,
determined by intersection of a sphere with the convex hull
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of the cortical surface, and that of the corresponding patch on
the pial surface as a local GI. The locality of results of those
methods depends on the radius of the spherical neighbourhood.
In order to deal with the size variability in a database (e.g. fetal
brains), the radius would have to be adapted for each subject
but no intrinsic strategy exists to choose an appropriate one.
To tackle this issue, Lefèvre et al. [4] proposed to adapt the
radius r so that it equals a fraction of the brain length in the
rostro-caudal direction. Another drawback of those methods is
that if there are two cortical regions with equal areas inside the
sphere, one contains deep folds and the other one is formed
by shallower but more oscillating folds, these methods give
equal GI value to both regions. This means that they may
not distinguish between deep folds and oscillating folds with
equal surface areas. For instance, Schaer’s and Toro’s methods
both give high GI values to deep folds like the insula and the
central sulcus. In a more general way, both methods tend to
produce similar GI maps; see [5, Fig. 5a-c] and [6, Fig. 4].

Methods in the second category rely on the curvature and
its derivatives e.g. the mean curvature. The mean curvature
is a geometric tool that measures locally how a surface is
deviated from being flat. It defines a function on the cerebral
cortex and assigns positive values to points on gyri and
negative values to points on sulci [18]. The mean curvature
map, however, is too local to deliver a helpful insight into
the surface folding [15]. Moreover, as Shimony et al. [10]
have recently shown, the curvature and its derivatives (e.g.
the mean curvature, Gaussian curvature, shape index etc.) by
themselves may not be able to discriminate between normal
and aberrant cortical development. Nevertheless, the curvature
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contains useful information about the surface bending. Luders
et al. [15] defined a local GI by smoothing the magnitude of
the mean curvature. Kim et al. [16] has recently proposed a
new GI by quantification of the shape index variance in a local
region. Due to the heat kernel smoothing procedure used in
these methods, they are likely to miss some folding features
at fine scales.

Recently, the spectral analysis of mean curvature based
on the spectrum of Laplace-Beltrami operator has been used
to study cortical folding. By binning the global frequency
distribution in several frequency bands and computing the
dominant and the determinant bands, Germanaud et al. [19]
derived two metrics of folding that can discriminate primary,
secondary and tertiary folds. In a work by Shishegar et al.
[17], a new GI has been proposed by computing the weighted
differential mean curvature along the level sets of the first non-
trivial Laplace-Beltrami eigenfunction. This method focuses
mainly on sulcal bending and assigns the lowest values to
points on gyri.

The above-mentioned methods have different implicit in-
terpretations of the concept of ”surface complexity” that
underlies GIs and sometimes their findings lack consistency
[20]. In this paper, we propose an explicit interpretation of this
notion in an intuitive way that relies on the surface bending
properties :

In a neighbourhood around each point of the cerebral
cortex, the surface complexity is quantified by

I. the magnitude of sulcal/gyral bending, or
II. the spatial frequency of sulcal/gyral bends.

Due to the natural link between the surface bending and
the mean curvature, the above interpretations mean that in a
highly folded region, (I) the magnitude or (II) the variations of
the mean curvature are higher in comparison to other regions.

Given those interpretations, we propose two novel local GIs,
called spectral gyrification index (sGI) and weighted spectral
gyrification index (wGI) based on a local spectral analysis
of the mean curvature. These GIs are scale invariant and
are computed directly on the cortical surface with neither of
them requiring a reference surface nor a smoothing procedure.
While sGI gives information about the magnitude of the mean
curvature in a neighbourhood around each point on the cortical
surface (Interpretation I), wGI takes into account the spatial
frequency of folds in that neighbourhood (Interpretation II).
The intrinsic nature of the method enables us to compute the
surface complexity at different spatial scales. Moreover, in
contrast to the surface area-based GIs, the proposed indices
are able to disentangle the effect of depth on folding quantifi-
cation. Finally, the issue of inconsistent analysis arising from
the inter-subject brain size variability is also addressed by in-
troducing an adaptive neighbourhood. To our best knowledge,
the GIs proposed by Li et al. [7] and Kim et al. [16] are the
only ones that tried to tackle this issue before.

In the following, we present in Section II a local spectral
analysis method based on the graph windowed Fourier trans-
form of the mean curvature. This analysis is used to define
the two gyrification indices, sGI and wGI, together with their
properties. The method is applied to some synthetic surfaces

and real data in Section III. Finally, we discuss the results and
the specificities of our method, followed by a conclusion.

II. METHOD

In this section, we use a local spectral analysis of the
cortical surface mesh to define the mesh windowed Fourier
transform of the mean curvature function and we show that
it can be used to define two new gyrification indices. Spec-
tral methods for surface analysis rely mainly on eigenvalues
and/or eigenfunctions of an operator defined on the surface.
For example, for a Riemannian surface, the eigenfunctions
of the Laplace-Beltrami operator serve as bases for Fourier
transforms. The idea has been extended to triangular meshes
modelling surfaces to analyse their structural properties; see
[21] for a comprehensive survey on this topic. Here, we
use such eigenfunctions to define a mesh windowed Fourier
transform and provide an explicit access to the local frequency
components of the mean curvature of the cortical surface.

A. Mesh Fourier Transform

For a compact Riemannian manifold S as a surface in
IR3, one can consider a set of square integrable functions
defined on the surface: L2(S) = {u ∶ S → IR∣ ∫S u

2 < ∞}.
The Laplace-Beltrami operator ∆, associated with the surface
S , is defined as a generalization of the Laplacian operator
in Euclidean space to Riemannian manifolds. The spectrum
of this operator {(λi, ui) ∈ IR+ × L2(S), i = 1,2, . . .} is
generated by solving the differential eigenvalue problem of ∆:
∆ui = −λiui in which λi and ui are called the ith-eigenvalue
and eigenfunction of ∆ [22]. The spectral theory based on
the Laplace-Beltrami spectrum can be used to obtain a new
representation of the space L2 in the so called spectral domain.
In practice, the differential eigenvalue problem of ∆ is usually
solved on a triangulated surface by numerical methods.

Formally, let G = {V,E} be a triangular mesh mod-
elling the surface S where V is the set of vertices, V =
{P1, P2, . . . , PN}, ∣V ∣ = N <∞ and E is the set of edges. By
using the linear finite element method (FEM) [23], the above-
mentioned differential eigenvalue problem is discretized to the
following algebraic generalized eigenvalue problem

Aχ = λBχ, (1)

where A and B are N ×N sparse matrices with the following
elements:

A(i, j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

cotαij+cotβij

2
if (i, j) ∈ E,

−∑k∈N (i)A(i, k) if i = j,
0 o.w.

(2)

and

B(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣t1∣+∣t2∣
2

if (i, j) ∈ E,
∑k∈N(i) ∣tk ∣

6
if i = j,

0 o.w.
(3)

where αij and βij are the angles opposite to the edge PiPj

in two triangles t1 and t2 sharing this edge, ∣tk ∣ indicates the
area of the triangle tk and N (i) denotes the index set of all
vertices of the 1-ring neighbourhood of Pi. The matrix B is
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positive definite and defines the so called B-inner product in
IRN :

∀f, g ∈ IRN , ⟨f, g⟩B = f tBg. (4)

Solutions of the discrete eigenvalue problem (1) are nonneg-
ative real eigenvalues 0 = λ1 < λ2 ≤ . . . ≤ λN and a set of
eigenvectors {χj , j = 1,2, . . . ,N} in IRN which are orthonor-
mal with respect to B-inner product i.e. ⟨χi, χj⟩B = δij where
δij is Kronecker delta.

The bases of the Fourier transform in continuous domain are
complex exponential functions which are the eigenfunctions
of the Laplace-Beltrami operator. Inspired by this fact, the
eigenvectors of the discretized Laplace-Beltrami operator serve
as Fourier atoms on the triangulation [24]. Given a function
f defined on the vertices of triangulation, Fourier transform
coefficients of f are given by the set {f̂(l) ∶= ⟨f,χl⟩B, l =
1,2, . . . ,N}. This set is a representation of function f in the
spectral domain and gives the frequency distribution of this
function. In this setting, the Parseval’s identity is

⟨f, g⟩B = ⟨f̂ , ĝ⟩, (5)

where ⟨., .⟩ denotes the Euclidean inner product. It yields
∥f∥B = ∥f̂∥2 where ∥.∥B is the norm induced by the B-inner
product.

B. Local Mesh Fourier Transform

The mesh Fourier transform described in Section II-A gives
a global frequency distribution of a function f . In other words,
it is not able to provide information about the frequencies
of f in a spatial neighbourhood. In continuous domain, the
windowed Fourier transform was introduced in order to find
the local frequency distribution of a function [25]. This trans-
form gives local information about a function simultaneously
in spatial and frequency domains.

Shuman et al. [26] have recently extended this transform
to graph setting which enables us to do a ”vertex-frequency
analysis”. The general idea of this method is to localize a
function defined on the vertices of a graph around a vertex
by a translated window function and then, compute the graph
Fourier transform of this localized function. In this paper, we
extend the method to the mesh framework by using the mesh
Fourier transform that is aware of the surface geometry.

Since a mesh is a special kind of a graph, embedded
in a surface, one may argue that the graph spectral theory
tools can be applied on a mesh without any adaptation. In
general, it is true but unlike the graph Laplacian in which
only the connectivity of vertices are considered, the geometric
(FEM) Laplacian takes into account geometric properties of
the surface. Equations (2) and (3) show how the geometry of
neighbouring triangles on the mesh contributes to the defini-
tion of Laplacian operator. More discussions and comparisons
between the graph Laplacian and the geometric Laplacian can
be found in [21], [23], [24], [27]–[29].

1) Window function and translation operator
Let f ∶ V → IR be a function defined on the vertices

of a triangulation (e.g. the mean curvature). To localize this
function around a specific vertex, we need a window function
with local support and a translation operator to move the

window function to that specific vertex. Following [26], we
consider the window function

ĝ(l) = C exp(−τλl), (6)

defined in the spectral domain. In this formula, τ is a pa-
rameter which determines the size of the window, λl is the
l-th Laplace-Beltrami eigenvalue and C is chosen such that
∥ĝ∥2 = 1.

The window size parameter τ sets a locality trade-off
between the frequency and spatial domains [26], [30]. By
increasing the window size, we will have a wider window
in the spatial domain and the function f will be localized
in a larger neighbourhood around each vertex. On the other
hand, more local frequency distribution of the function in that
neighbourhood is obtained. The spread of window function
in spatial and frequency domains is measured by the area of
the Heisenberg box [31, Section 4.2], [26, Section 6.6]. It
is proved that the Gaussian function is the unique window
that minimizes the area of the Heisenberg box [31, Theorem
2.5]. Since λl is proportional to the square of the spatial
frequency [32], [33], i.e. λl ∝ ω2

l , the window function (6)
corresponds to a Gaussian function in the frequency domain
ĝ(l)∝ exp(−τω2

l ).
The fact that there is no canonical origin and direction on

a triangulated mesh makes it difficult to define a translation
operator on this mesh. Inspired by the properties of the
generalized Fourier transform in continuous domain and the
mechanism proposed in [26] for graph setting, the translation
operator is defined on a triangulation as (see Appendix A for
the details of derivation):

Ti ∶ IRN → IRN i = 1,2, . . . ,N,

(Tig)(n) ∶=
√
N

N

∑
l=1

N

∑
m=1
(ĝ(l)B(i,m)χl(m)χl(n)). (7)

The translation operator Ti shifts the center of the window
function to a vertex Pi. Now, by multiplying the function f
by the translated window function Tig, it is localized around
the vertex Pi:

f̃i(n) = (Tig)(n)f(n), n = 1,2, . . . ,N. (8)

2) Mesh windowed Fourier transform
The mesh windowed Fourier transform coefficients of a

function f ∈ IRN are defined as the modulation of the localized
function f̃i by Fourier atoms {χk, k = 1,2, . . . ,N}:

Sf(i, k) ∶= ⟨f̃i, χk⟩B , (9)

where i = 1,2, . . . ,N is the index of vertex and k is the
index of frequency. This gives us a frequency spectrum
{∣Sf(i, k)∣2, k = 1,2, . . . ,N} for every vertex Pi of the mesh
which can be seen as the frequency distribution of the function
f in a local neighbourhood around the vertex Pi.

3) Adaptive window function
It is easily seen from Eqs. (1)–(3) that if the surface area

is scaled by a factor q2, the eigenvalues are scaled by 1/q2.
In this case, due to the definition of the window function (6),
the relative spread of window (i.e. the ratio between the region
area covered by the window and the surface area) is affected by
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(a) (b) (c)

Fig. 1. The spread of the adaptive window function (10) with 3 different
window sizes around the yellow vertex on a cortical surface by thresholding
the values of the window functions at the same percentage of their maximal
values. The red color highlights the window spread around the vertex. (a) A
narrow window, with τ = 2e − 4, covers about 1.5% of the surface. (b) A
medium window, with τ = 1e−3, covers about 8% of the surface. (c) A wide
window, with τ = 5e − 3, covers about 36% of the surface.

the size of the surface. In other words, given a fixed window
size τ for the original and the scaled surfaces, the window
covers relatively larger space on the smaller surface and vice
versa. This leads to an inconsistent large and small scale
spectral analysis for small and large surfaces, respectively (see
Fig. S1a of supplementary figures).

To keep the relative spread of window constant automat-
ically across surfaces (Fig. S1b), we introduce an adaptive
window function in which the surface area is incorporated:

ĝ(l) = C exp(−τ ∣S ∣λl), (10)

where ∣S ∣ denotes the surface area of surface S . Note that by
this definition, a dimensionless parameter is obtained inside
the exponential. As we will see in Section II-C1, the adaptive
window function also plays an important role to derive scale
invariant gyrification indices.

In Fig. 1, the spread of the adaptive window function (10)
with 3 different window size parameters, τ = 2e − 4,1e − 3
and 5e − 3 is plotted on a cortical surface around a specific
vertex shown as a yellow point on the precentral gyrus. As τ
increases, the spread of window in spatial domain increases
as well. While the narrow window, τ = 2e − 4, covers a part
of a gyrus and/or sulcus, the medium window, τ = 1e − 3,
covers several folds and the wide window, τ = 5e−3, covers a
big portion of the cortical surface equivalent to a lobe. Tuning
the window size parameter τ changes the spatial scale of the
analysis.

C. Gyrification Indices

To define gyrification indices that fulfill our interpretations
on the surface complexity, stated in Introduction section, we
take the mean curvature as a function defined on the vertices
of a mesh. By applying the mesh windowed Fourier transform
to this function, we will have a frequency spectrum at each
vertex Pi of the mesh which consists of the so called ”fre-
quency powers” ∣Sf(i, k)∣2, k = 1,2, . . . ,N . The summation
of the frequency powers is called the total power (TP) of
the frequency spectrum [31]. We proved that the TP of the
frequency spectrum of the vertex Pi equals to the norm of the
localized mean curvature around this vertex (see Proposition
1 in Appendix B):

N

∑
k=1
∣Sf(i, k)∣2 = ∥f̃i∥2B . (11)

Due to our first interpretation, in a more folded region, the
magnitude of the mean curvature increases. This interpretation,
together with Eq. (11), leads to the definition of the first GI:

I. Spectral Gyrification Index (sGI):

sGI(i,S) =
N

∑
k=1
∣Sf(i, k)∣2. (12)

In this equation, sGI(i,S) denotes the spectral gyrification
index of vertex Pi of surface S .

On the other hand, based on our second interpretation,
the variation of the mean curvature increases in more folded
regions. Since the high variation of a function is encoded in
the high frequency band of its frequency spectrum, we give
larger weights to higher frequency powers to take into account
this interpretation. It brings us the second GI:

II. Weighted Spectral Gyrification Index (wGI):

wGI(i,S) =
N

∑
k=1
(λk
λ2
)
2

∣Sf(i, k)∣2. (13)

In this equation, the weights are the normalized eigenvalues of
the Laplace-Beltrami operator that contain information about
the shape of surface [34], [35]. The normalization by the first
nonzero eigenvalue λ2 removes the effect of the size of surface
on weighting [36]. In this definition, both Laplace-Beltrami
eigenvalues and eigenvectors are involved.

We proved that

wGI(i,S) = 1

λ22
∥Lf̃i∥2B , (14)

where L = B−1A is the Laplace-Beltrami operator (see
Proposition 2 in Appendix B). Since this operator measures
how much a function differs at a point from its average value
at neighbour points, (Lf̃i)(m) measures the variation of f̃i at
vertex Pm and so, wGI(i,S) sums up all of these variations
of localized f around vertex Pi.

1) Geometric invariance
We now provide some important properties of the proposed

GIs. The Laplace-Beltrami spectrum is invariant under isomet-
ric transformations. It makes sGI and wGI isometry invariant.
Moreover, as demonstrated in Proposition 3 of Appendix B,
sGI and wGI are both scale invariant by their constructions.

2) Global GIs
Given a surface mesh with M triangular faces S =
{t1, t2, . . . , tM}, GI defines a function on the vertices of this
mesh. We define the global GI of surface S as the mean value
of this function:

GI(S) = 1

∣S ∣

M

∑
j=1

1

3

3

∑
i=1

GIj(i,S)∣tj ∣, (15)

where GIj(i,S) denotes the GI value (sGI or wGI) of the i-th
vertex of the face tj and ∣tj ∣ is the area of tj . It is noteworthy
that the global GI is scale invariant as the local ones.
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III. EXPERIMENTS AND RESULTS

A. Synthetic data

In order to illustrate the efficiency of sGI and wGI for
measuring the degree of folding of a surface, and to show
the effect of sulcal depth on surface area-based methods,
we computed our GIs and Toro’s GI [5] on some synthetic
surfaces for which we control the degree of folding.

1) Wavy rectangle
A wavy rectangle in IR3 is created by the equation z =

2 sin(60πx2)/(60πx) where −0.7 ≤ x ≤ 0.7 and 0 ≤ y ≤ 1 with
geodesic length equals to 4. This surface is triangulated with
N = 40,000 equidistant vertices and is shown in Fig. 2a. The
intersection of this surface with the plane y = 0.5 is indicated
on the surface by green points and is plotted in Fig. 2b. As we
go far from the center to the left or right side of this surface,
it becomes more folded i.e. the surface becomes more bended
and the spatial frequency of the folds increases. The windowed
Fourier transform is applied on the mean curvature of this
surface and the spectrogram that consists of the frequency
powers ∣Sf(i, k)∣2 is shown in supplemental Fig. S2a (see
supplementary figures).

In Fig. 2b, the neighbourhoods of two vertices Pm and Pn

are shown. Obviously, the surface is more folded around Pm

than Pn while there are deeper folds around the latter. The
local frequency spectrums of these vertices are plotted in the
supplemental Figs. S2b and S2c that show clearly how higher
frequency powers increase in regions with high oscillating
folds. The values of sGI, wGI and a surface area-based GI
defined by Toro et al. [5] for those vertices are given in Table I
for comparison. While sGI and wGI give appropriately higher
values to vertex Pm, Toro’s GI gives equal values to both
vertices. It shows that surface area-based GIs may not be able
to discriminate between deep folds and complex folds with
the same area.

sGI, wGI and Toro’s GI values of the vertices along the
green middle line of the wavy surface are plotted in Fig.
2c. The observations clarify that sGI and wGI discriminate
efficiently deep folds from complex ones with a clear increase
from the center towards the borders whereas Toro’s GI shows
high values on the center where there are deep folds.

TABLE I
DIFFERENT GIS FOR VERTICES Pm AND Pn OF THE WAVY RECTANGLE

DEPICTED IN FIG. 2B

vertex sGI wGI Toro’s GI
Pm 8.5561e2 2.8090e10 2.2268
Pn 1.8487e2 3.8802e9 2.2271

To elucidate more the effect of the fold depth on the surface
area-based GIs, two other surfaces are constructed; see Figs.
S3 and S4 of the supplementary figures. These surfaces are
designed to study the effect of fold depth and oscillation
frequency separately.

B. Real Data

In this section, the proposed method is applied to a real
database of cortical surfaces. The gyrification maps of an

(a)

(b)

(c)

Fig. 2. (a) Wavy rectangle in IR3. The ”middle line” on the surface is formed
by the vertices lie on the surface with the the same y-coordinate 0.5. (b) The
middle line along with zoom on two neighbourhoods around vertices Pm

and Pn. (c) Values of Toro’s GI, sGI and wGI of the vertices located on the
middle line.

individual subject as well as group average maps across all
subjects are presented. The relation between the proposed GIs
and the brain volume is also studied.

1) Data and preprocessing
We applied the method to 124 healthy adult subjects

from the Open Access Series of Imaging Studies (OASIS)
database1. For each subject, three or four T1 anatomical
Magnetic Resonance Images (MRIs) had been acquired at in-
plane resolution of 1mm × 1mm, slice thickness = 1.25 mm,
TR = 9.7 ms, TE = 4 ms, flip angle = 10u, TI = 20 ms,
TD = 200 ms. Images of each subject were motion corrected
and averaged to create a single image per subject with a high
contrast-to-noise ratio.

1http://www.oasis-brains.org/
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(a) sGI (b) wGI

Fig. 3. The map of gyrification indices (a) sGI and (b) wGI of the left
hemisphere of an individual subject from our database at 3 different scales.
In the first row τ = 2e− 4, in the second row τ = 1e− 3 and in the third row
τ = 5e − 3. The blue and red colors indicate the extremes of low and high
degree of folding respectively.

The resulting anatomical MR images were segmented using
BrainVISA2. The white matter surface of each hemisphere was
then meshed using this software which resulted in triangular
meshes with spherical topology and approximately 50,000
nodes depending on the subjects. The Hip-Hop algorithm
[37] in BrainVISA was then applied to compute the spherical
interindividual correspondence between cortical surfaces.

2) Gyrification maps
The maps of sGI and wGI of a subject from the database

are shown in Fig. 3 for 3 different window sizes, τ = 2e −
4,1e − 3,5e − 3 associated to very local, medium and wide
windows, respectively (see Fig. 1 for window sizes). On this
figure, it is shown that the window size parameter τ can be
used to control the scale of observations. At τ = 2e − 4, the
spatial scale is fine and high values are located mostly on the
ridge of complex gyri, while low values are located on the
walls of regular sulci. As the window size increases, a more
regional effect becomes visible, with a very smooth and low
variation map at value τ = 5e − 3, which gives a coarse scale
observation of the gyrification.

As it has been discussed in Section II-C, the indices sGI and
wGI, based on their constructions, measure complementary
properties of surface folding. This is shown in Fig. 4 where
the mean curvature of the same cortical surface of Fig. 3 is
depicted. Two regions on this surface, R1 and R2, have been

2http://brainvisa.info/

Fig. 4. Zoom on 2 regions, R1 and R2, of the cerebral cortex. The colormap
of the cortex encodes its mean curvature (the blue and red colors indicate
the extremes of negative and positive values respectively). sGI and wGI (τ =
2e−4) of the regions R1 and R2 are also represented (the blue and red colors
indicate the extremes of low and high degree of folding respectively).

chosen. R1 is a sharp spike located on the postcentral gyrus
and R2 is a very shallow fold located on the superior parietal
lobe. The mean curvature of the region R1 is very high while
that of the region R2 varies a lot between positive and negative
values. The maps of sGI and wGI of R1 and R2 are shown
in this figure (τ = 2e−4). As expected theoretically from Eqs.
(11) and (14), sGI gives high value to R1 while wGI assigns
high value to R2.

The group average of both GIs in the medium scale (window
size τ = 1e − 3) have been computed by using the cortical
surface inter-subject matching method, Hip-Hop [37]. Results
are depicted on the template cortical surface hiphop1383 in
Fig. 5 for the left hemisphere. The average patterns of sGI and
wGI represented in this figure are similar to those observable
on an individual subject (Fig. 3) which shows that the spatial
patterns of the proposed GIs are reproducible across subjects.
As Fig. 5a shows, sGI gives higher values to vertices on the
prefrontal and occipital lobes, inferior parietal lobe, inferior
temporal sulcus and the medial area of the superior parietal
cortex. wGI, as shown in Fig. 5b, assigns higher values to
the prefrontal lobe, medial part of the occipital lobe and the
posterior cingulate gyrus. Some folding is also captured by
high wGI values in the insula. We also computed the average
GIs of the right hemispheres and by visual inspection, we
observed no remarkable difference in gyrification patterns
of the left and right hemispheres in the medium scale (see
Supplemental Fig. S5).

To compare with our results, the average map of Toro’s
GI across all subjects in the database is presented in Fig 5c.
This method gives high GI values to deep folds like the central
sulcus, the insula, the superior temporal sulcus and the parieto-
occipital sulcus.

3) Scaling analysis
Recent studies show that larger brains are more folded [5],

[9], [19], [38]. To investigate this phenomenon, the global sGI
and wGI of each hemisphere are modelled by the following
power law

G = kV α, (16)

where G denotes the global gyrification index (sGI or wGI) of
a hemisphere computed through Eq. (15), V is the hemispheric
volume and k and α are coefficients to be determined. Since

3The hiphop138 template is available at http://www.meca-brain.org/
softwares/hiphop138-cortical-surface-group-template/
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(a) sGI

(b) wGI

(c) Toro’s GI

Fig. 5. Average of gyrification indices: (a) sGI and (b) wGI derived from the
medium window (τ = 1e−3), and (c) Toro’s GI with spherical neighbourhood
radius r = 20 across the left hemispheres of all 124 subjects on the hiphop138
template surface 3. The blue and red colors indicate the extremes of low and
high degree of folding respectively.

gyrification indices, sGI and wGI, are scale invariant (Propo-
sition 3), the scaling exponent coefficient α of the power law
(16), under the isometric scaling of brain volume, should equal
0. The hemispheric data along with the fitted power law model
in logarithmic scale are represented in Fig. 6. The positive
exponent coefficient reveals a positive allometric scaling of
gyrification indices with volume. Moreover, it confirms that
the larger brains are more folded. The values of the exponent
coefficient α of wGI is more than that of sGI (0.67 > 0.37
and 0.66 > 0.36 for left and right hemispheres, respectively)
while the proportion of the variance of sGI explained by the
volume is higher than that of wGI (0.44 > 0.36 and 0.47 > 0.34
for left and right hemispheres, respectively). The results also
suggest that in the global hemispheric scale, the degree of
folding of the left and right hemispheres increase with volume
symmetrically.

The above-mentioned results support this hypothesis that
the larger brains are more folded but they do not illustrate
which cortical regions get more folded in larger brains. To
address this question, we perform the allometric analysis (16)
at the vertex level. Thanks to the inter-subject matching by
Hip-Hop method [37], we are able to find the corresponding

12 12.35 12.7
7.4

7.6

7.8

log(V)
lo

g
(s

G
I)

22.5

23

23.5

lo
g

(w
G

I)

Left hemi.

Right hemi.

Fig. 6. Up: Relationship between the volume (mL) of the left/right hemi-
spheres and global wGI (τ = 1e − 3). The fitted line for the left hemisphere
is y = 0.67x + 14.57, R2 = 0.36, p < 0.001. The fitted line for the right
hemisphere is y = 0.66x+14.74, R2 = 0.34, p < 0.001. Down: Relationship
between the volume (mL) of the left/right hemispheres and global sGI (τ =
1e−3). The fitted line for the left hemisphere is y = 0.37x+3.03, R2 = 0.44,
p < 0.001. The fitted line for the right hemisphere is y = 0.36x + 3.2,
R2 = 0.47, p < 0.001.

vertices across all subjects. Our method naturally allows us to
monitor the changes of the degree of gyrification at different
spatial scales. The maps of the significant exponent coefficient
α (p < 0.05, corrected for multiple comparisons using False
Discovery Rate (FDR) [39]) for sGI and wGI of the left
hemispheres derived from the medium window (τ = 1e − 3)
are represented in Fig. 7. In this figure, the vertices for which
α is not significant are masked by the gray color. Fig. 7 shows
that in the adult population, as brain size increases across
subjects, deep folds with low gyrification (represented in blue
in Fig. 5a and 5b), such as the central sulcus, the insula,
the superior temporal sulcus, or the parieto-occipital sulcus,
show the largest increase in folding complexity. We have
not observed any vertex with significant negative exponent
except in the right hemisphere with the most local window
(τ = 2e − 4). In this case, for sGI map, we observed about
0.04% of vertices with significant negative α exponent located
on the anterior cingulate and the superior parietal cortices. For
wGI, there are only 0.02% of vertices with significant negative
α exponent located on the isthmus cingulate cortex. The α-
maps of the right hemisphere (τ = 1e−3) are given in Fig. S6
(see supplementary figures).

IV. DISCUSSION AND CONCLUSION

In this study, we interpreted the cortical surface complexity
in two ways that are consistent with the intuitive concept of it.
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(a) sGI

(b) wGI

Fig. 7. The colormaps encode the significant exponent α (p < 0.05, corrected
for multiple comparisons using FDR) of vertex-wise allometric analysis (16)
of gyrification indices (a) sGI and (b) wGI of the left hemisphere derived from
the medium window (τ = 1e − 3). The magenta and red colors indicate the
extremes of low and high values of α. The regions where α is not significant
(n.s.) are masked by gray color. The higher the value of α, the higher the
variation of folding with respect to volume.

Based on these assumptions and by applying the local spectral
analysis of the mean curvature, we developed a method to
estimate locally the degree of folding of the cerebral cortex.
The method was applied to a database of 124 healthy adult
brains and the results demonstrate that the primary folds like
the central sulcus and the insula are less folded than other
regions. The central sulcus is a good example since it is a
very deep fold but with a high regularity and straight shape
where we expect a low measure of folding whereas surface
area-based methods usually show high gyrification values (see
Fig. 5).

Through some experiments on synthetic surfaces, we clar-
ified that surface area-based methods such as Toro’s [5] and
Schaer’s [6] GIs may fail to discriminate between deep and
complex folds. Indeed, these GIs give higher values to deep
folds; see the similar gyrification maps of Toro’s GI [5, Fig.
5a-c] and Schaer’s GI [6, Fig. 4]. To address this issue, Su
et al. [14] proposed to weight the GI by the geodesic sulcal
depth. Nevertheless, we believe that this weighting strategy is
in contradiction with the notion of folding. In fact, if a cortical
region with deep sulci and another region with shallow sulci
have equal areas, the latter region should be more folded to
keep the same area as the former one.

As an illustrative example to show how our method dis-
criminates between deep and oscillating folds of a cortical
surface, the medial face of a subject is considered and its
sGI and wGI maps are shown in Fig. 8a and 8b respectively

(a) sGI (b) wGI

(c) Manual lines

(d) Depth map of Line 1 (e) Depth map of Line 2

Fig. 8. Medical view of the map of (a) sGI and (b) wGI of a subject. The
blue and red colors indicate the extremes of low and high degree of folding
respectively. (c) Two lines with almost equal geodesic length are drawn on
the medial prefrontal region (Line 1, red, geodesic length=35.35 mm) and the
medial central region (Line 2, blue, geodesic length=34.63 mm). The depth
maps of (d) Line 1 and (e) Line 2 show that the frequency of folds in the
medial prefrontal region is double of that in the medical precentral region
while the depth of folds on the medial prefrontal region is almost half of that
in the medial precentral region.

(the lateral maps are shown in the middle row of Fig. 3).
Two lines with equivalent geodesic length were drawn on the
medial side: line 1 in the medial prefrontal region (red line,
geodesic length 35.35 mm) where both GIs show high values,
and line 2 in the medial precentral region (blue line, geodesic
length 34.63 mm) where both GIs have low values (Fig. 8c).
Geodesic sulcal depth on the cortical surface was computed
[38] in order to get depth values at each point of both lines and
produce depth curves along these lines. These depth curves,
plotted in Fig. 8d and 8e, show that the frequency of folds in
the medial prefrontal region (Line 1) is double of that in the
medial precentral region (Line 2), while the depth of folds on
the medial prefrontal region (Line 1) is almost half of that in
the medial precentral region. This explains the high values of
our gyrification index in the medial prefrontal region: despite
an apparent smoothness due to the low sulcal depth, the folding
frequency is high.

Another difference between our method and surface area-
based methods is that the latter may be not localized enough
for some applications. For example, in Fig. 4 of [6], for a
small spherical neighbourhood, the most folded region of the
cortex is around the Sylvian Fissure and as the size of the
neighbourhood increases, the same pattern propagates across
the cortex. Therefore, it may fail to catch other folded parts
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of the brain, thus affecting the reliability of findings. In our
method, by tuning the neighbourhood size, we get the results
at different spatial scales, ranging from a very local scale (in
order of a part of a sulcus/gyrus) to a more global scale (in
order of a lobar cortex); see Figs. 1 and 3.

Despite the differences we highlighted between our method
and previous GI definitions, we do think that these previous
gyrification indices are still valid but should be considered
in the light of their specific interpretations of the notion of
”surface complexity”. Our experiments on synthetic surfaces
show that how different interpretations of this notion may lead
to different results. Accordingly, a message of this paper is
to point out that one should pay attention to this notion and
interpret results based on it. Another work on this topic has
been done by Awate et al. [20] discussing about the different
meanings of surface complexity and categorizing GIs based
on their responses to different situations like surface scaling
and increased spatial frequency of folds.

An important matter that has been mostly neglected so far is
the effect of brain size on the relative neighbourhood spread.
Due to inter-subject size variability, analysis of the cerebral
cortices with a fixed neighbourhood size may cause inconsis-
tency. To address this issue, we introduced a neighbourhood
which is adapted for each hemisphere by its surface area.
In longitudinal/developmental studies, however, a more local
adaptation is needed to deal with the non-uniform changes
of local surface area. To quantify the changes of folding com-
plexity of infants within 6 months to 24 months of age, Kim et
al. [16] introduced a two-phase adaptation of neighbourhood.
First, for each 6-month-old subject, a fixed neighbourhood size
is adapted globally by the ratio of the subject’s hemisphere
surface area to the average hemisphere surface area. Then, for
older subjects, the normalized neighbourhood size is scaled by
the changes of local surface area. In a developmental study of
local cortical gyrification in infants from birth to 2 years of
age, Li et al. [7] used the so-called N -ring neighbourhood
around each mesh vertex. By resampling all cortical meshes
to have equal number of vertices, they took into account the
local intra- and inter- subject brain size variability. Although
out of the scope of this paper, a similar approach could be
employed in our method.

To investigate the relationship between the volume and the
degree of folding of the cerebral cortex, we considered a
power law to model the GI as a response to the volume. The
resulted positive exponent coefficient α indicates a positive
allometric relation. It implies that if the brain volume is
doubled, the GI is multiplied by factor 2α. Moreover, it
supports the well-known hypothesis in literature that larger
brains are more folded. This observation is in accordance with
some mechanical models of cortical folding process [40], [41]
and deserves further investigations, in particular in longitudinal
databases. The relative low coefficient of determination, R2,
clarifies that there is still enough room for other covariates,
beyond the volume, to explain the degree of gyrification. One
interesting direction for future studies is to take into account
some biological factors like age, sex, genetic conditions etc.
or cognitive and behavioural ones like special skills, IQ etc.
in the scaling model.

We also fitted the power law model to GIs at the vertex
level to investigate how the degree of folding changes locally
with the hemispheric volume. The results illustrate that the less
folded cortical regions, in terms of either the magnitude of the
mean curvature or its variation, like the walls of the precentral
and postcentral gyri and the insula, are more convoluted in
larger brains. Regarding the allometric relation between the
brain volume and the cortical surface area [5], one may
conclude that the cerebral cortex of a larger brain is twisted
in less folded regions to accommodate the additional surface.

We believe that the two new gyrification indices we pro-
posed, sGI and wGI, will be useful to investigate various
aspects of cortical folding complexity and variability, such
as the link between brain size and gyrification but also the
search for biomarkers of developmental pathologies, or the
understanding of cortical development.

APPENDIX A
TRANSLATION OPERATOR

The translation operator in the mesh setting is inspired
by that in continuous and graph settings [26]. More pre-
cisely, let {ψl, l = 1,2, . . .} be the basis of the generalized
Fourier transform in continuous domain and assume that those
functions are orthonormal with respect to a function ϕ i.e.
∫ ψlϕψk = δkl. From the properties of the generalized Fourier
transform, translation in spatial domain causes modulation in
Fourier domain:

h(x) = f(x − x0) ⇔ ĥ(k) = ψk(x0)ϕ(x0)f̂(k). (17)

In other words, the translation of function f to point x0 can
be given by the inverse Fourier transform of the modulated
Fourier coefficients f̂ :

(Tx0f)(x) ∶= f(x − x0)
= F−1{ψk(x0)ϕ(x0)f̂(k)}, (18)

where F−1 denotes the inverse Fourier transform.
In mesh setting, the Fourier basis is the set of Laplace-

Beltrami eigenvectors which are orthonormal with respect to
the matrix B. If g is a function defined on vertices of mesh,
inspired by Eq. (18), the translation of g to vertex Pi is defined
as following

(Tig)(n)
(18)
∶=
√
NF−1{B(i, ∶)χlĝ(l)}

=
√
N

N

∑
l=1

N

∑
m=1

χl(n)(B(i,m)χl(m)ĝ(l)),

where B(i, ∶) denotes the i-th row of B. Another derivation of
the translation operator through convolution in graph setting
can be found in [26].

APPENDIX B
THEORETICAL COMPUTATIONS OF SGI AND WGI

Proposition 1. For gyrification index sGI at vertex Pi of
subject S we have sGI(i,S) = ∥f̃i∥2B .
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Proof:
N

∑
k=1
∣Sf(i, k)∣2 =

N

∑
k=1
∣⟨ ̂̃fi , χ̂k⟩∣2 (19)

=
N

∑
k=1
∣ ̂̃fi(k)∣2 (20)

= ∥f̃i∥2B, (21)

where (19) and (21) are derived by Parseval’s identity (5) and
(20) is based on the fact that χ̂k = δk (δk is Kronecker delta).

Lemma 1. Let f ∈ IRN be a function defined on the vertices
of a triangulation and L ∈ IRN×N be the discrete Laplace-
Beltrami operator i.e. L = B−1A. Then, the Fourier coefficients
of the function y = Lf are ŷ(l) = λlf̂(l), l = 1,2, . . . ,N .

Proof: The Fourier coefficients of y are as

ŷ(l) ∶= ⟨Lf,χl⟩B = f t(B−1A)tBχl

= f tλlBχl (22)
= λl⟨f,χl⟩B (23)
= λlf̂(l),

where Eq. (22) is given by Eq. (1) and the symmetry of
matrices A and B, and the definition of B-inner product (4)
gives (23).

Proposition 2. For gyrification index wGI at vertex Pi of
subject S we have wGI(i,S) = 1

λ2
2
∥Lf̃i∥2B .

Proof: Lemma 1 and the Parseval’s identity give the first
and the second equality, respectively:

N

∑
k=1
(λk
λ2
)
2

Sf(i, k)2 = 1

λ22
∥ L̂f̃i ∥22 =

1

λ22
∥Lf̃i∥2B .

Proposition 3. The gyrification indices sGI and wGI are scale
invariant.

Proof: Assume that the surface S2 is the scaled version
of the surface S1 by a factor q2 i.e. ∣S2∣ = q2∣S1∣. Then the
Laplace-Beltrami eigenvalues are scaled by 1/q2 while the
eigenvectors and the mean curvature are scaled by 1/q.

Thanks to the adaptive window function (10), the translation
operator and the mesh windowed Fourier coefficients Sf(i, k)
remain unchanged because

Sf(i, k)S2 = ⟨f̃i,S2 , χk,S2⟩BS2 = q
2⟨1
q
f̃i,S1 ,

1

q
χk,S1⟩BS1

= Sf(i, k)S1 .

It implies that sGI and wGI remain unchanged under scaling.
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