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ABSTRACT

Cognitive functions arise from the coordination of large-scale brain networks. Yet, the
principles governing interareal functional connectivity dynamics (FCD) remain
elusive. Here, we test the hypothesis that human executive functions arise from the
dynamic interplay of multiple networks. To do so, we investigated FCD mediating a
key executing function, known as arbitrary visuomotor mapping, using brain
connectivity analyses of high-gamma activity recorded using
magnetoencephalography and intracranial electroencephalography. Visuomotor
mapping was found to arise from the dynamic interplay of three partly-overlapping
cortico-cortical and cortico-subcortical FC networks. First, visual and parietal regions
coordinated with sensorimotor and premotor areas. Second, the dorsal fronto-parietal
circuit together with the sensorimotor and associative fronto-striatal networks took the
lead. Finally, cortico-cortical interhemispheric coordination among bilateral
sensorimotor regions coupled with the left fronto-parietal network and visual areas.
We suggest that these networks reflect the processing of visual information, the
emergence of visuomotor plans and the processing of somatosensory reafference or
action’s outcomes, respectively. We thus demonstrated that visuomotor integration
resides in the dynamic reconfiguration of multiple cortico-cortical and cortico-
subcortical FC networks. More generally, we showed that visuomotor-related FC is
non-stationary, and displays switching dynamics and areal flexibility over time scales
relevant for task performance. In addition, visuomotor-related FC is characterized by
sparse connectivity with density less than 10%. To conclude, our results elucidate the
relation between dynamic network reconfiguration and executive functions over short
time scales, and provide a candidate entry point towards a better understanding of

cognitive architectures.
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Visuomotor functional connectivity dynamics

SIGNIFICANCE STATEMENT

Executive functions are supported by the dynamic coordination of neural
activity over large-scale networks. The properties of large-scale brain coordination
processes, however, remain unclear. Using tools combining
magnetoencephalography and intracranial electroencephalography with brain
connectivity analyses, we provide evidence that visuomotor behaviors, a hallmark of
executive functions, are mediated by the interplay of multiple and spatially
overlapping sub-networks. These sub-networks span visuomotor-related areas,
whose cortico-cortical and cortico-subcortical interactions rapidly evolve and
reconfigure over time-scales relevant for behavior. Visuomotor-related Functional
Connectivity Dynamics (FCD) is characterized by sparse connections, non-
stationarity, switching dynamics and areal flexibility. We suggest that these properties
represent key aspects of large-scale functional networks and cognitive architectures.
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INTRODUCTION

The dynamic coordination of neural activity over large-scale networks is
thought to support cognitive functions (Varela et al., 1999; von der Malsburg et al.,
2010; Bressler and Menon, 2010). Growing evidence from fMRI has shown that
spontaneous and task-related activity is composed of multiple and spatially
overlapping sub-networks that dynamically evolve over tens of seconds to minutes
(Hutchinson et al., 2013; Yeo et al., 2013; Allen et al., 2014; Calhoun et al., 2014;
Cole et al.,, 2014; Zalenski et al., 2014; Hansen et al., 2015). Indeed, dynamic
network reconfiguration has been suggested to represent a fundamental
neurophysiological process supporting executive function (Bassett et al., 2011; Braun
etal., 2015).

A hallmark of executive function is the ability to rapidly associate arbitrary
actions to visual inputs and internal goals. This ability, known as arbitrary visuomotor
mapping, recruits a large-scale network comprising the sensorimotor and
frontoparietal circuits, in addition to medial prefrontal areas and basal ganglia (Wise
et al., 1996; Murray et al., 2000; Passingham et al., 2000; Wise and Murray, 2000;
Hadj-Bouziane et al., 2003; Petrides, 2005). In the current study, the goal was to
investigate whether visuomotor mapping results from the dynamic interplay of
multiple sub-networks. More precisely, we tested the hypothesis that multiple sub-
networks reconfigure in a dynamic fashion over time scales relevant for executive
behaviors.

To do so, we exploited the high-gamma activity (ranging from approximately
60 to 150Hz), which reflects population-level local neural activity (Ray et al., 2008;
Ray and Maunsell, 2011). In humans, power modulations in the high-gamma range
are commonly recorded using magnetoencephalography (MEG) and intracranial
electroencephalography to map task-related brain regions (Brovelli et al., 2005;
Crone et al., 2006; Vidal et al., 2006; Ball et al., 2008; Jerbi et al., 2009; Darvas et
al., 2010; Lachaux et al., 2012; Cheyne and Ferrari, 2013; Ko et al., 2013).
Additionally, high-gamma power modulations can be used to characterize functional
connectivity (FC) among brain regions supporting executive functions (Brovelli et al.,
2015).

Here, we predicted visuomotor mapping to reflect an initial activation of visual

circuits mediating the processing of sensory input, followed by fronto-parietal and



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

123
124
125
126
127
128
129
130

Visuomotor functional connectivity dynamics

motor networks for visuomotor integration and motor planning. We tested these
hypotheses in a group of healthy participants during MEG recordings by combining
FC analysis of atlas-based HGA with methods from network science and graph
theory. In particular, we investigated the presence of multiple visuomotor-related
spatiotemporal patterns through the analysis of functional connectivity dynamics
(FCD). Intracranial assessment of HGA activations from MEG was also performed in
three  epileptic patients performing the same task during stereo-

electroencephalographic (SEEG) recordings.
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MATERIALS & METHODS

Experimental procedure and data acquisition

Experimental conditions and behavioral tasks

Eleven healthy participants and three epileptic patients accepted to take part
in our study. Healthy participants were right handed and the average age was
approximately 23 years (the standard deviation was 3.8 years), 4 were females and 7
males. All gave written informed consent according to established institutional
guidelines and local ethics committee, and received monetary compensation (€ 50).
Three patients (one right-handed female aged of 29, two right-handed males aged of
29 and 43) undergoing presurgical evaluation of drug-resistant epilepsy (Epilepsy
Unit, La Timone Hospital, Marseille, France) participated in this study. They all gave
their informed consent prior to their participation. The SEEG study was approved by
the Institutional Review Board of the French Institute of Health. Healthy participants
and patients performed the same behavioral task. We asked participants to perform
an associative visuomotor mapping task, where the relation between visual stimulus
and motor response is arbitrary and deterministic (Wise and Murray, 2000; Brovelli et
al., 2015). As shown in Figure 1A, the task required participants to perform a finger
movement associated to a digit number: digit “1” instructed the execution of the
thumb, “2” for the index finger, “3” for the middle finger and so on. Maximal reaction
time was 1s. After a fixed delay of 1 second following the disappearance of the digit
number, an outcome image was presented for 1 s and informed the subject whether
the response was correct, incorrect, or too late (if the reaction time exceeded 1 s).
Incorrect and late trials were excluded from the analysis, because they were either
absent or very rare (i.e., maximum 2 late trials per session). The next trial started
after a variable delay ranging from 2 to 3 s (randomly drawn from a uniform
distribution) with the presentation of another visual stimulus. Each participant
performed two sessions of 60 trials each (total of 120 trials). Each session included
three digits randomly presented in blocks of three trials. The average reaction time

was 0.504s + 0.004s (mean *+ s.e.m.).

Anatomical, functional and behavioral data acquisition in healthy participants

Anatomical MRI images were acquired for healthy participant using a 3-T

whole-body imager equipped with a circular polarized head coil. High-resolution
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Visuomotor functional connectivity dynamics

structural T1-weighted anatomical image (inversion-recovery sequence, 1x0.75%1.22
mm) parallel to the anterior commissure-posterior commissure plane, covering the
whole brain, were acquired. Magnetoencephalographic (MEG) recordings were
performed using a 248 magnetometers system (4D Neuroimaging magnes 3600).
Visual stimuli were projected using a video projection and motor responses were
acquired using a LUMItouch® optical response keypad with five keys. Presentation®
software was used for stimulus delivery and experimental control during MEG
acquisition. Reaction times were computed as the time difference between stimulus
onset and motor response. Sampling rate was 2034.5 Hz. Location of the
participant's head with respect to the MEG sensors was recorded both at the
beginning and end of each session to potentially exclude sessions and/or participants
with large head movements. For each session and participant, we computed the
displacement between the beginning and end of a session. A supine position was
chosen to minimize head movements. This cut-off was decided by considering the
spatial distance between sources (5mm), as described in the following sections.
None of the participants moved more than 3 mm during all sessions. Thus, all

participants were considered for further analysis.

Anatomical, functional and behavioral data acquisition in epileptic patients

The surgical treatment of drug-resistant epilepsy may require direct
intracerebral recording of cortical activity IEEG in multiple brain areas in order to
localize the epileptic tissue to be removed. Before SEEG all patients had high
resolution MRI, performed with a 3T Siemens Magnetom scanner (Siemens AG,
Erlangen, Germany) including a three-dimensional T1-weighted acquisition.
Intracerebral multiple contacts electrodes (10 to 15 contacts, length: 2 mm, diameter:
0.8 mm, 1.5 mm apart) were implanted using a stereotactic method (Talairach et al,
1992). A post-operative computerized tomography (CT) scan without contrast was
used to verify the absence of bleeding and the location of each recording lead.
During this pre-surgical evaluation period, we asked patients to participate in our
behavioral protocol at the Timone Hospital. They were seated in a Faraday cage and
stimuli were presented on a display monitor at 70 cm to patient's eyes with an
angular size of 1.26°. Presentation® software was used for stimulus delivery and
experimental control during SEEG acquisition. Motor responses were acquired using

a 5-button response pad. SEEG signals were acquired on referential montage with a
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Visuomotor functional connectivity dynamics

sampling frequency of 1000 Hz and an acquisition band-pass filter between 0.1 and
200Hz.

Brain parcellation

In order to map brain activations and Functional Connectivity (FC) patterns to
specific anatomical brain networks, single-subject brain parcellation can be created
from macro-anatomical information, such as primary and secondary sulci, using
either volume-based (Lancaster et al., 2000; Tzourio-Mazoyer et al., 2002) or
surface-based (Fischl et al., 1999; Van Essen and Drury, 1997; Desikan et al., 2006)
algorithms. Recent developments now allow single-subject cortical parcellation
complying with a model of anatomo-functional gradients in the rostro-caudal and
dorso-ventral directions (Auzias et al., 2013) optimized for functional mapping using
HGA (Auzias et al., 2016). Such approach allows group-level analyses and
comparison between individual patients and healthy participants in control group. To
do so, we created a whole-brain parcellation including cortical (Figure 1B) and
subcortical (Figure 1C) regions based on macro-anatomical information. The
identification of the cortical regions requires several processing steps. After denoising
using a non-local means approach (Coupé et al., 2008), T1-weighted MR-images
were segmented using the FreeSurfer “recon-all” pipeline (http://freesurfer.net). Grey
and white matter segmentations of each hemisphere were imported into the
BrainVisa software and processed using the Morphologist pipeline procedure
(http://brainvisa.info). White matter and pial surfaces were reconstructed and
triangulated, and all sulci were detected and labelled automatically (Mangin et al.,
2004; Perrot et al., 2011). A parameterization of each hemisphere white matter mesh

was performed using the Cortical Surface toolbox (http://www.meca-

brain.org/softwares/). It resulted in a 2D orthogonal system defined on the white

matter mesh, constrained by a set of primary and secondary sulci (Auzias et al.,
2013). This parameterization naturally leads to a complete parcellation of the cortical
surface, the MarsAtlas model (Auzias et al., 2016).

MarsAtlas complies with the dorsoventral and rostrocaudal trends of cortical
organization (Régis et al., 2005; Pandya and Yeterian, 1985) and provides a good
level of both functional segregation and inter-subject matching for functional analysis

using single-trial MEG high-gamma activity (Auzias et al., 2016). The resulting
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Visuomotor functional connectivity dynamics

cortical surface parcellation was then propagated to the volume-based grey matter
segmentation, using a front propagation from the surface through the volumetric
cortex segmentation (Cachia et al., 2003), hence producing a volume-based
parcellation of the entire cortex. The parcels corresponding to the subcortical
structures were extracted using Freesurfer (Fischl et al, 2002). The subcortical
structures included in the brain parcellation were the caudate nucleus, putamen,
nucleus accumbens, globus pallidus, thalamus, amygdala and hippocampus. The
whole-brain parcellation therefore comprised 96 areas (41 cortical and 7 subcortical
areas per hemisphere) (Figure 1). All these processing steps can be performed using

the BrainVisa neuroimaging platform (http:/brainvisa.info/web/index.html). MarsAtlas

is included in the cortical surface toolbox.

Single-trial high-gamma activity (HGA) in MarsAtlas

Preprocessing and spectral analysis of MEG and SEEG signals

The preprocessing and spectral analyses steps for MEG and SEEG signals
were identical. Concerning SEEG signals, electrode’s contacts owning to the
epileptogenic zone were excluded from the analysis. SEEG contacts outside the
epileptogenic zone were chosen for analysis. In addition, epochs with signs of
epileptic activity were removed. MEG and SEEG signals were first down-sampled to
1 kHz, low-pass filtered to 250 Hz and then segmented into epochs aligned on finger
movement (i.e., button press). Epoch segmentation was also performed on stimulus
onset and the data from -0.5 and -0.1 s prior to stimulus presentation was taken as
baseline activity for the calculation of the single-trial high-gamma activity (HGA).
Artefact rejection was performed semi-automatically and by visual inspection. For
each movement-aligned epoch and channel, the signal variance and z-value were
computed over time and taken as relevant metrics for the identification of artefact
epochs. All trials with a variance greater than 1.5*10-24 across channels were
excluded from further search of artefacts. Metrics such as the z-score, absolute z-
score, and range between the minimum and maximum values were also inspected to
detect artefacts. Channels and trials displaying outliers were removed. Two MEG
sensors were excluded from the analysis for all subjects.

Spectral density estimation was performed using multi-taper method based on

discrete prolate spheroidal (slepian) sequences (Percival and Walden, 1993; Mitra

10
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and Pesaran, 1999). To extract high-gamma activity from 60 to 120, MEG time series
were multiplied by k orthogonal tapers (k = 8) (0.15s in duration and 60Hz of
frequency resolution, each stepped every 0.005s), centered at 90Hz and Fourier-
transformed. Complex-valued estimates of spectral measures X, (t, k), including
cross-spectral density matrices, were computed at the sensor level for each trial n,
time t and taper k.

MEG source analysis and high-gamma activity

Source analysis requires a physical forward model or leadfield, which
describes the electromagnetic relation between sources and MEG sensors. The
leadfield combines the geometrical relation of sources (dipoles) and sensors with a
model of the conductive medium (i.e., the headmodel). For each participant, we
generated a headmodel using a single-shell model constructed from the
segmentation of the cortical tissue obtained from individual MRI scans as described
in section 3.2 (Nolte, 2003). Leadfields were not normalized. Sources were placed in
the single-subject volumetric parcellation regions. For each region, we computed the
number of sources nSP as the ratio of the volume and the volume of a sphere of
radius equal to 3 mm. The k-means algorithm (Tou & Gonzalez, 1974) was then used
to partition the 3D coordinates of the voxels within a given volumetric region into nS
clusters. The sources were placed at the center of each partition for each brain
region. The headmodel, source locations and the information about MEG sensor
position for both models were combined to derive single-participant leadfields. The
orientation of cortical sources was set perpendicular to the cortical surface, whereas
the orientation for subcortical sources was left unconstrained.

We used adaptive linear spatial filtering (Veen et al., 1997) to estimate the
power at the source level. In particular, we employed the Dynamical Imaging of
Coherent Sources (DICS) method, a beamforming algorithm for the tomographic
mapping in the frequency domain (Gross et al., 2001), which is a well suited for the
study of neural oscillatory responses based on single-trial source estimates of band-
limited MEG signals (for a series of review see, Hansen et al., 2010). At each source
location, DICS employs a spatial filter that passes activity from this location with unit
gain while maximally suppressing any other activity. The spatial filters were
computed on all trials for each time point and session, and then applied to single-trial

MEG data. DICS allows the estimate of complex-value spectral measures at the

11
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source level, X% . ce(t, k) = A()X L, sor(t, k), Where A(t)is the spatial filter that
transforms the data from the sensor to source level and X2, (t, k) is the complex-
valued estimates of spectral measures, including cross-spectral density matrices,
computed at the sensor level for each trial n, time t and taper k (for a detailed
description of a similar approach see (Hipp et al., 2011)). The single-trial high-gamma
power at each source location was estimated by multiplying the complex spectral
estimates with their complex conjugate, and averaged over tapers k, Pl ce(t) =

(XZource (8, K)XZburce (t,K)'), , Where angle brackets refer to the average across tapers

and * to the complex conjugate. Single-trial power estimates aligned on movement
and stimulus onset were log-transformed to make the data approximate Gaussian
and low-pass filtered at 50Hz to reduce noise. Single-trial mean power and standard
deviation in a time window from -0.5 and -0.1 s prior to stimulus onset was computed
for each source and ftrial, and used to z-transform single-trial movement-locked
power time courses. Similarly, single-trial stimulus-locked power time courses were
log-transformed and z-scored with respect to baseline period, so to produce HGAs
for the prestimulus period from -1.6 to -0.1 s with respect to stimulation for
subsequent functional connectivity analysis. Finally, single-trial HGA for each brain
region of MarsAtlas was computed as the mean z-transformed power values

averaged across all sources within the same region.

SEEG localization and high-gamma activity

Electrodes were localized using the CTMR toolbox (Hermes et al., 2010).
Briefly, post-implant CT scans were coregistered and re-sliced to the MRI coordinate
scans of each subject using SPM12. A manual procedure was then carried out to
mark the electrodes in the co-registered CT space using the CTMR toolbox. The
coordinates of each electrode were transformed to MRI space (1mm resolution).
Since we used bipolar derivations, we computed the coordinates of the mid-point
between pairs of adjacent electrodes. A cube of 5mm in size was placed at these
positions (i.e., at the position of the bipolar derivation) and each voxel of the cube
(1mm resolution) was labeled according to MarsAtlas. The location of each bipolar
derivation was then labelled according to the label associated to the largest number
of voxels within the cube. Bipolar derivations labelled in the white matter were

excluded from further analyses.

12
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Similarly to MEG HGA estimation, single-trial power estimates in the high-
gamma range (60-120Hz) aligned on movement and stimulus onset were log-
transformed and low-pass filtered at 50Hz to reduce noise. Single-trial estimates of
high-gamma power were z-transformed with respect to baseline period from -0.5 and
-0.1 s prior to stimulus onset. Finally, single-trial HGA for each labelled brain region
of MarsAtlas was defined as the mean z-transformed power values averaged across

all electrodes within the same region.

Single-trial Functional Connectivity Dynamic (FCD) measures

Power modulations in the high-gamma range reflect the activity of local neural
populations (Ray et al.,, 2008; Ray and Maunsell, 2011). Here, we assume that
tracking statistical dependencies between HGA from different brain regions provides
information about how local processing units coordinate at the large-scale level
during cognitive tasks. The goal is not infer the mechanisms mediating inter-areal
communication. This would require complementary approaches based on the study
of role of neural oscillations and synchrony for inter-regional communication (e.g.,
Buzsaki & Schomburg, 2015; Fries, 2015). Rather, the aim was to map task-related
FCD onto anatomical circuits. Given the sparseness of brain regions sampled with
SEEG, FCD was exclusively performed for whole-brain MEG data.

We used linear correlation analysis to study the functional connectivity (FC)
between brain regions. To quantify the evolution of FC over time (i.e., FCD), we
computed the Pearson’s correlation coefficient between pairs of HGA signals over
sliding windows of 500msec, stepped every 10 msec. The same procedure was
performed across all pairs of brain regions and for each ftrial. This resulted in a 4-
dimentional FCD matrix (i.e., regions x regions x time points x trials) representing the
evolution of linear correction across all pairs of brain areas from -0.7 to 0.7s around
movement onset. The single-trial FCD matrix was also computed during the pre-
stimulus period, from -0.8 to -0.1s prior to stimulus onset for baseline. Statistical
analyses searched for significant modulations in movement-related FCD with respect

to those in the prestimulus interval.

Statistical analysis
Linear Mixed Effect (LME) model
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Visuomotor functional connectivity dynamics

Statistical inference of single-trial HGAs was performed using a linear mixed-
effect (LME) model approach at the group level. We used a LME model, because
they are particularly suited for the analysis of data collected from multiple subjects (or
sessions) where it is important to take into account inter-individual variability. These
models formalize the relation between a response variable and independent
variables using both fixed and random effects. Fixed effects model the response
variable in terms of explanatory variables as non-random quantities. For example,
experimental conditions related to population mean may be considered as fixed
effects. Random effects are associated with individual experimental units drawn at
random from a population, which may correspond to different participants in the study
(or experimental sessions). In other words, whereas fixed effects are constant,
random effects are drawn from a prior known distribution. A LME model is generally
expressed in matrix formulation as,

y=XB+Zb+e )
where y is the n-by-1 response vector and n is the number of observations. X is an n-
by-p fixed-effects design matrix and g is the fixed-effect vector of p-by-1, where p is
the number of fixed effects. Z is an n-by-q random-effects design matrix and 5 is a g-
by-1 random-effects vector, where q is the number of random effects; ¢ is the n-by-1
observation error. The random-effects vector, b, and the error vector, e, were
assumed to be drawn from independent normal distributions. Parameter estimation
was performed using maximum likelihood method, using the fitlme.m function in the
Statistical Toolbox of Matlab (The MathWorks, Inc.). In order to test for significant
modulations in single-trial HGA and FCD measures around movement onset with
respect to the baseline period, we used a random-intercept and random-slope LME
model, which is described by,
V() = Bo(t) + By (0)x) + by (£) + by ;(£)z; + (£ (2)
where y(t) = [yp(1), y:(2), -, Yo (D), Yo (1, £, Y (2, ), ..., Yo (00, )]

For MEG data analysis, y,;(j) was a vector containing the baseline neural
activity (i.e., the HGA from single brain regions or FCD values for single pairs of
regions) for all trials and sessions (i.e., data from both sessions were concatenated,
because they were acquired in uninterrupted succession) for subject j = 1,2,...,np,
where np is the number of participants, at time instant {. Note that t does not refer to

trials, but time within each ftrial. y,,,,(j, t) was a vector including brain activity across
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Visuomotor functional connectivity dynamics

all trials for subject j at time ¢ with respect to movement onset.

For SEEG data analysis, statistical inference was performed at the single-
participant level, due to the limited number of patients and limited sampling of
MarsAtlas regions. However, given that the SEEG experiments were composed of
two sessions acquired at different times (approximately 1 hours interval), we modeled
sessions as random effects. y,,;(j) was then a vector containing the baseline neural
activity (i.e., the HGA from single brain regions) for all trials for sessions j = 1,2, at
time instant ¢. As before, ¢ did not refer to trials, but time within each trial. y,,,(j, t)
was a vector including brain activity across all trials for session j at time ¢ with respect
to movement onset.

The following statistical analysis was similar for both MEG and SEEG data.
The design matrices contain two columns. The first column is a vector of ones to
model the intercept, and thus it was eliminated from eq. 2. The second column
contains negative ones for baseline trials and ones for event-related trials, therefore
modelling the change with respect to baseline, or slope, and it is referred as x; and z;
in eq. 2. Thus, the first and third terms in the right-hand-side of eq. 2 model the
intercepts, which correspond to the mean values between baseline and movement-
related activity. The second and fourth terms model the slopes, which are the
differences between baseline and movement-related activity. The p,(t) values are
fixed across subjects, whereas the b, ;(t) values model the random variations across
subjects (for MEG) or sessions (for SEEG). In other words, the parameter B;(t)
models the change in neural activity (e.g., HGA or FCD for MEG data) with respect to
baseline at each time point ¢ at the group level; the parameter b,;(t) models the
change in neural activity with respect to baseline for each participant (or sessions) j
and therefore explains the across-subjects (or across-session) variability for MEG
and SEEG data, respectively. The across-subject and across-session variability was
considered of no interest for the scope of the current analyses. We thus analyzed
fixed-effects. Given the structure of the fixed-effect design matrix, significant
differences in movement-related neural activity with respect to baseline can thus be
inferred by testing whether f, coefficients are significantly greater than zero. More
formally, the significance of movement-related modulations was inferred using a t-test
by testing the null hypothesis Ho: 5, < 0.

Statistical inference was performed for each time point ¢ and each brain area
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Visuomotor functional connectivity dynamics

for the analysis of HGAs. To account for the multiple comparisons problem, we
controlled the false discovery rate (FDR) (Benjamini and Yosef, 1995). For mean
HGA statistical analyses, we corrected for the number of time points and brain
regions; for FCD analyses, we corrected for the number of time points and for the
number of pairs of brain regions. To further assess the validity of our results, we
quantified the minimum number of consecutive significant time points required to
reject a null hypothesis of absence of a cluster given a chance probability pg = 0.5
(two possible outcomes, significant or non-significant), and kept only those clusters
whose duration exceeded a given significance level. Details of the calculation are
given in the appendix of (Smith et al., 2004).

The statistical analyses of MEG HGA modulations resulted in a group-level
FCD matrix containing time-evolving t- and p-values for each brain region in
MarsAtlas (whole-brain analysis). For brain regions covered by the SEEG implants,
the analysis of HGA modulations produced intracranial validation at the single-
participant level. The analysis of FCD from MEG HGA produced t- and p-value time

courses for all pairs of brain regions.

Graph theoretical analysis
Strength of Functional Link (SFL)

To gain insight into the topology of the task-related functional network arising

from group-level MEG analyses, we performed graph theoretical analyses of the FCD
matrix containing the p-values associated with the LME analysis. The weight or
strength of the evidence of a functional link was defined as the minimum Bayes
Factor (BF) associated with such p-values (Goodman, 1999b). The rationale behind
the transformation of p-values to minimum Bayes Factors is an attempt to move
towards statistical measures that can be better interpreted (Goodman, 1999a). The
BF is a convenient measure of the strength of statistical evidence and it can be
computed from p-values as BE,, < —1/(e p In(p)), if p-values satisfy the relation p <
1/e, in which e = 2.72. This estimate provides an upper bound (BF,,) on the BF, and it
can be thought as providing an ‘optimistic’ limit of the BF for a given p-value
(Goodman, 2001; Stephens and Balding, 2009). We log-transformed the BFs so to
give a measure which quantifies the strength in the evidence of the presence of a

functional link between two brain regions, Strength of the Functional Link SFL =
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Visuomotor functional connectivity dynamics

logyo BE,;,. The SFL matrix has the same dimensions of group-level FCD matrix (i.e.,
regions x regions x time points). A value between 1 and 2 can be interpreted as
providing strong to very strong evidence of a functional link (i.e., increase in
correlation with respect to baseline), whereas a value higher than 2 is interpreted as

decisive.

Analysis of time-averaged and time-dependent SFL

A caveat of FC analysis is the dependence of functional links on the threshold
chosen for statistical significance. Thus, to explore how graph theoretical measures
vary according to significance levels, we multiplied the SFL matrix with different
binary masks obtained from the FDR-correction of the FCD matrix over a wide range
from highly significant values (prpgr-corrected = 9 < 0.001) to non-significant (q <
0.99999). Note that a FDR adjusted p-value is denoted as g-value. This produced
several thresholded SFL matrices, each one associated with a given level of
significance.

As a first analysis, we computed the mean SFL matrices over time, thus giving
an adjacency matrix (regions x regions) representing the mean strength between
brain regions at different significance levels. We computed the density D (the ratio
between the number of functional links and the number of possible connections) as a
function of the g-value. In addition, to identify the most important brain regions in
average SFL graph, we computed the strength of each region (sum of functional links
of a region) and two indicators of centrality, such as the eigenvector centrality EC,
defined as the absolute value of the eigenvector associated with the largest
eigenvalue of the adjacency matrix W and it measures the importance of a region,
and the betweeness centrality BC, equal to the fraction of all shortest paths that pass
through a given region, so it measures the number of times a region acts as a
“bridge”. These measures were, however, computed only at q < 0.05. Finally, to
evaluate the evolution of density of the thresholded FCD, we computed it for each
time slice rather over the averaged FCD. Graph theoretical measures were computed
using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010).

Detection of functional sub-networks

A critical step in the analysis of brain networks is the detection of communities,

which may correspond to functional subnetworks. Subnetworks, however, may
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Visuomotor functional connectivity dynamics

overlap spatially, such that a given brain region may belong to more than one group.
Link communities, defined as groups of links rather than nodes, provide an
appropriate framework for capturing the relationships between overlapping
communities while revealing hierarchical organization (Ahn et al., 2010). To detect
time-varying link communities, we used an approach based on the analysis of the
correlation of edge weights over time, rather than nodes, similarly to previous works
analyzing "cross-links" or "hyper-edges" (Bassett et al., 2014; Davison et al., 2015).
First, we computed the Pearson linear correlation between significant (at q <
0.05) pairs of SFL time courses. This produced an adjacency matrix (number of links
in size) representing the temporal correlation between functional links. Secondly, we
searched for the optimal subdivision of such graph into groups of links. To do so, we
used the Louvain method (Blondel et al., 2008) that attempts to optimize the
"modularity” of a partition of the network. The Louvain algorithm for modularity
maximization is a non-deterministic heuristic, and therefore needs to be initialized
with random seeds. In addition, it depends on the resolution parameter y which
controls over the size and number of communities found (resolution equal to 1 leads
to the standard Louvain method, whereas higher and lower resolutions produce
larger and smaller number of clusters, respectively). We scanned different resolution
parameters from y = 0.5 to y = 1.5 in increments of 0.1. At each scale, we ran the
Louvain method 250 times to test whether the non-deterministic nature of the method
could produce non-robust results. For all pairs of partitions (250249 in total), we
computed their similarity, defined as the z-score of the Rand index (Traub et al.,
2011) and we averaged them across all pairs of partitions. The optimal resolution
parameter y was associated with the largest average similarity between partitions.
The largest similarity was observed at y = 1. For vy = 1, we studied the consensus
partition to identify a single representative partition from a set of 250 partitions, based
on statistical testing in comparison to a null model. The representative partition is
obtained by using a generalized Louvain algorithm on the thresholded nodal
association matrix (Bassett et al., 2013). We found that for our FCD matrix at y = 1,
the Louvain algorithm is extremely stable and the 250 partitions are all identical.
These graph theoretical analyses were performed using the “Consensus and
Comparison Methods” in the Network Community Toolbox

(http://commdetect.weebly.com/).
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This approach provides a subdivision of non-overlapping communities by
maximizing the number of within-group edges and minimizing the number of
between-group edges. Given that community detection was performed on links, the
detected communities represent link communities where individual brain areas may
participate in multiple overlapping networks. Finally, we computed the mean time-

course of the SFL averaged across all links comprising each link community.
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Visuomotor functional connectivity dynamics

RESULTS

Visuomotor-related functional network

The brain regions displaying a significant increase in movement-related HGA
with respect to the mean baseline (averaged from -0.5 to -0.1s prior to stimulus
onset) defined the arbitrary visuomotor-related network (Figure 2). For cortical
regions, the largest increase in HGA was observed over the left parietal lobe,
primarily over the dorsal (dorsal intraparietal cortex, IPCd, and the superior parietal
cortex, SPC) and medial (medial superior and medial parietal cortices, SPCm and
PCm, respectively) parietal regions, the dorsal somatosensory areas (Sdl and Sdm)
and the posterior cingulate cortex (PCC). The ventral regions, such as (IPCv and Sv),
displayed a smaller increase relative to the dorsal and medial territories in the left
hemisphere and were not significant in the right hemisphere. Over the motor,
premotor and prefrontal areas, the dorsolateral and dorsomedial regions (PFcdl,
PFcdm, PMdI, PMdm, Mdl and Mdm) showed the most significant increase. In
addition, the mid-cingulate cortex (MCC) showed significant response, bilaterally. The
ventral and ventromedial prefrontal and orbitofrontal cortices did not display a strong
increase in HGA, nor anterior temporal regions. These cortical modulations are
similar to those presented in a previous paper (Auzias et al., 2016), which we
replicate them here for completeness.

The novel finding, however, is the presence of significant HGA modulations in
subcortical areas. The strongest response was observed in the left hemisphere in the
dorsal striatum (caudate nucleus and putamen), globus pallidus (GP) and thalamus
(Thal). The thalamus and caudate nucleus displayed a clear bilateral activation,
whereas the GP and putamen showed primarily an activity in the hemisphere
contralateral to the motor response. A significant response was also observed in the
right thalamus and caudate nucleus. No significant increase was seen in other
subcortical areas examined such as the nucleus accumbens, amygdala and
hippocampus.

Visuomotor-related functional connectivity dynamics

The analysis of Functional Connectivity Dynamics (FCD) between all pairs of
brain regions of MarsAtlas was performed by estimating Pearson’s correlation
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Visuomotor functional connectivity dynamics

coefficients between pairs of single-trial HGA values over sliding windows of 500
msec, stepped every 10 msec. For each participant, FCD analysis resulted in a 4-
dimentional matrix (i.e., regions x regions x time points x trials) representing the
evolution of linear correlation across all pairs of brain areas from -0.7 to 0.7s around
movement onset. Significant modulations in movement-related FCD with respect to
those in the baseline period from -0.8 to -0.1s prior to stimulus onset using a linear
mixed-effect (LME) approach. Figure 3A shows the connectivity matrix of the average
SFL (i.e., Strength of Functional Link) over time. Note that p-values were thresholded
at g < 0.05 (FDR-corrected) previous to SFL computation, which corresponds to a
threshold value of SFL equal to 2.43. All significant links shows decisive evidence in
FC averaged over time among occipital areas bilaterally with strong links with parietal
regions, in addition to the fronto-parietal network. Subcortical regions, especially in
the left hemisphere, showed a strong FC with the rest of the network. Regions in the
temporal lobes, however, were not found to play a key role in the FC patterns.

To better characterize the evolution of the SFL over time, we computed the
mean SFL across pairs of brain regions displaying a significant increase in linear
correlation (Fig. 3B). The mean time course displays two peaks of decisive and
strong evidence at approximately -0.4 and 0.2s around finger movement. The time
intervals around the two peaks represent moments when FC pattern is strongest,
which correspond to the largest increase in linear correlation between HGA time
courses. Given the shape of the group-level HGA responses shown in Figure 2, the
first peak at -0.4s reflects the positive covariation in HGA across the whole network
occurring after stimulus presentation and during movement planning (as early as -
0.55 in visual areas to approximately -0.25s before finger movement). Such common
increase in HGA produces an increase in linear correlation and it reflects the
emergence of the FC network. The second peak occurring at 0.2s reflects a common
return to baseline of the HGA across the whole network after finger movement (from
approximately 0.05s to 0.35s after finger movement). Such global decrease in HGA
from maximal activity produces an increase in linear correlation, but it reflects the
dissolution of the FC network. Thus, the two peaks correspond to the emergence and
dissolution of the FC pattern. The decrease in FC occurring approximately -0.12s to -
0.03s before finger movement corresponds to the positive peak of HGA (Fig. 2). Such
decrease in FC, therefore, does not reflect an absence of HGA, but rather a

maximum of HGA. However, it corresponds to the time interval when FC lacks any
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Visuomotor functional connectivity dynamics

significant covariation. Overall, the analysis of the FCD time course reveals two key

processes such as the creation and dissolution of FC network.

Graph theoretical analysis of FC network

To gain insight into the properties of the average FC pattern, we performed
graph theoretical analyses of the average SFL matrix shown in Fig. 4A. We
investigated graph theoretical measures of the mean SFL matrices averaged over
time at different thresholds (q < 0.001) to non-significant (q < 0.99999). Figure 4A
shows the FC network density D (the ratio between the number of functional links
and the number of possible connections) as a function of threshold g-values. The
density of the functional network trivially increase as a function of the threshold, i.e.,
the more functional links, the higher is the density. The density values for significant q
< 0.05 are less than 10%, meaning that the functional network is not dense, but
sparse. We then computed the density for each time slice of the FCD. Network
density is maximal (approximately 5%) approximately 0.4 s and then displays a
second peak 0.2 after finger movement (2% in density), as shown in Figure 4B.

Finally, to identify the most important brain regions in the average SFL graph,
we computed the strength S (sum of functional links of a region), the eigenvector
centrality EC and the betweeness centrality BC at q < 0.05. The strength of a brain
area is the simplest measure to estimate the importance of a node in a network. A
natural extension of strength centrality is eigenvector centrality EC, and it stands on
the notion that a node is important if it is linked to by other important nodes. In fact, a
node receiving many links (i.e., high strength) does not necessarily have a high
eigenvector centrality, because it may be linked to node with low strength. Thus, EC
provide additional information, because it computes the centrality of a node as a
function of the centralities of its neighbors. Finally, the betweeness centrality BC is
equal to the number of shortest paths that pass through a brain region. Thus, a
region with high BC has the potential to play a key role in the network. Convergence
of these three metrics provides information about the importance of different brain
regions in the network.

Table 1 shows the brain regions sorted in a descending order according to S,
EC, and BC. The brain areas that commonly emerge as relevant across the three

measures are the dorsomedial and dorsolateral sensorimotor regions (Mdm, Mdl,
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Sdm), in addition to dorsolateral premotor area (PMdI), superior parietal regions
(SPC, SPCm) and the caudomedial visual cortex (VCcm).

Dynamic reconfiguration of functional connectivity subnetworks

To search for functional subnetworks generating the observe dynamics, we
performed link community analysis. To do so, we first computed the Pearson linear
correlation between significant (at g < 0.05) pairs of SFL time courses. Then, we
found the optimal subdivision of such link graph into communities of links using an
algorithm that attempts to optimize the "modularity" of a partition of the network,
named the Louvain method (Blondel et al., 2008). This approach provides a
subdivision of non-overlapping communities by maximizing the number of within-
group edges and minimizing the number of between-group edges. Given that
community detection was performed on links, the detected sub-networks represent
link communities, where individual brain areas may participate in multiple overlapping
networks. The analysis revealed the presence of 3 link communities (Figure 5). The
first link community (LC1) primarily included the visual and superior and medial
parietal regions, bilaterally, in addition to the left dorsomedial and dorsolateral
sensorimotor regions (Fig. 5B). These brain regions form a FC subnetwork emerging
approximately 0.5s before finger movement, roughly corresponding to the processing
of the visual cue (Fig. 5A). The second link community (LC2) included the left
dorsolateral and dorsomedial sensorimotor regions and the dorsal fronto-parietal
network. Interestingly, it included the mid and anterior cingulate cortices, the
dorsomedial prefrontal cortex and the dorstal striatum, in the caudate nucleus (Fig.
5C). LC2 emerged later during the trial and its maximum of expansion occur
approximately 100-150 msec after LC1, that is -0.35s before movement. LC3
involved a larger brain network involving the bilateral sensorimotor regions, the left
fronto-parietal network and visual areas (Fig. 5D). LC3 showed a strongest peak after
finger movement at 0.2s, but displays a peak at -0.4s. The only regions of the
temporal lobe showing significant FC were the superior and mid-temporal cortices in
the left hemisphere. However, these regions displayed a relative weak strength in the
observed networks (Figure 5B, C and D). Overall, the link community analyses
allowed us to identify multiple and spatially overlapping FC patterns that evolve

dynamically during the trial.
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We can therefore depict the involvement of key brain regions in a given link
community, such as the motor and premotor areas. Figure 6 shows the contribution
of the dorsolateral motor and dorsal premotor areas, Mdl and PMdI, respectively, in
the three subnetworks as it unfolds over time. Around the presentation of the visual
stimulus, the MdI primarily participates in the LC1, which gradually declines over time
(blue curve in Fig. 6A and B). Then, its involvement in LC2 and LC3 increases in
parallel, but peaks earlier for LC2 (red curve in Fig. 6A and B) rather than for LC3
(green curve). These curves depict the dynamic reconfiguration of the primary motor
area from stimulus onset to motor output. For what concerns the dorsolateral
premotor cortex, its contribution peaking for LC1, followed by LC3 and LC2 (Fig. 6C
and D) confirms that the dynamic engagement in different subnetworks occurs over a
short time scale.

Finally, to quantify the dynamics of reconfiguration among the three functional
subnetworks, we inferred the evolution of network “flexibility” (following the same
ideas developed in Braun and collaborators, 2015). We defined the flexibility of a
given brain region as the entropy associated to the probabilities of involvement in the
three LCs (shown in Fig. 6B and D, for Mdl and PMdI, respectively). Accordingly,
node flexibility is maximal for nodes participating with equal probability in the different
LCs and minimal for nodes participating in a single LC. Figure 7A shows the mean
dynamics of network flexibility averaged over nodes. Interestingly, it reconfiguration
shows a single peak occurring at approximately 0.4s before finger movement, which
corresponds to the moment when the three LCs overlap more strongly in time and
space. Figure 7B shows the mean flexibility averaged over time for the first five
strongest brain regions. The parietal regions (SPC, PCm and PPC) display the

largest flexibility together with the dorsal premotor cortex.

Control analyses and intracranial SEEG validation

The interpretation of FC measures from non-invasive techniques such as EEG
and MEG may suffer limitations, among which volume conduction and leakage are
potential confounds (Bastos & Schoffelen, 2016). We performed a series of control
analyses to assess the influence of such confounds.

First, we studied the relation between the mean SLF for two subcortical

regions displaying a significant increase in HGA and FC with cortical regions, as a
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function of their respective distance to cortical regions. The rationale was to check
whether volume conduction and leakage effects could have produced the observed
HGA modulations in subcortical reasons and the FC patterns between deep sources,
such as the thalamus and caudate nucleus, and cortical areas. Figure 8 shows that a
clear relation between distance and FC measures (as assessed through the mean
SFL) is lacking, neither for the thalamus (Fig., 8A) nor for the caudate nucleus (Fig.
8B).

Second, we investigated the dipole orientation of all sources within the
thalamus and caudate nucleus. The rationale was that differences in dipole
orientation of nearby regions may suggest that the estimated HGAs originate from
spatially-separable brain structures. To do so, we computed the average dipole
orientation both for the thalamus and caudate nucleus. Then, we compared the
average dipole orientations by means of the normalized inner product. This measure
equals one for identically-oriented dipoles, minus one for dipoles pointing in opposite
directions, and zero for orthogonal dipoles. The boxplot displayed in Figure 9A
depicts the distribution of normalized inner products between the thalamus and
caudate nucleus across participants. The values of normalized inner products span a
broad range from -0.45 to 0.85, with median value around 0.65. Extremely high
values of raw correlation coefficient between subcortical HGAs would also suggest
strong leakage effects. We thus plotted the Pearson correlation coefficient between
the HGA at the thalamus and caudate nucleus, averaged over sessions and
participants (Figure 9B). The value in the prestimulus interval (i.e., approximately
around -0.8s before finger movement) was 0.615. The corresponding coefficient of
determination R? was 37,8%, (i.e., R? = 0.615 x 0.615 = 0.3782), and it equals the
proportion of the variance in HGA shared by the thalamus and caudate nucleus.

Finally, to assess the relevance of cortical HGA modulations, we asked three
patients candidate for surgical treatment of drug-resistant epilepsy to perform the
same visuomotor task while recording stereotactic electroencephalography (SEEG)
in multiple brain areas. In fact, high-gamma activity from intracranial recordings in
epileptic patients is largely exploited for cognitive mapping and it represents an
optimal opportunity to validate MEG results. Results from single-patient SEEG cannot
be taken as representative of the population, contrary to group-level MEG results. In
fact, we cannot exclude that across-subject variability is due to either physiological

and/or pathological factors. However, SEEG data provide direct measures of
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intracranial HGA, free from alteration due to volume conduction or limitation of source
imaging tools. Thus, they provide important additional evidence to support the
significance of the MEG results.

Electrodes were localized by combing post-implant CT scans with pre-surgical
anatomical MRI scans, and they were labelled according to MarsAtlas (see methods
section). Single-trial HGA for each labelled brain region of MarsAtlas was defined as
the mean z-transformed power values averaged across all electrodes within the
same region. To increase the local specificity of SEEG recordings, bipolar derivations
were performed among adjacent contacts. Statistical analyses were performed
separately for each patient. Twelve brain areas across the three patients were found
to display a significant increase in HGA (Table 2) (g < 0.05). These included the
dorsomedial and dorsolateral motor cortex, the dorsolateral somatosensory region,
and the dorsal fronto-parietal network (SPC, SPCm, PMdI, PMdm). In patient 2, the
ventral portions of the motor and premotor areas were significantly active. Note that
the SEEG implant did not cover the entire brain, but selected regions in the fronto-
parietal network.

We then compared the average time course of single-patient HGA
modulations with those from the MEG group-level analyses (Fig. 10). Seven out of
twelve regions displayed a strong (larger than 0.65) linear correlation between the
group-level MEG results and the single-patient SEEG time courses. The most striking
similarity was observed for brain regions of the sensorimotor cortices and the dorsal
fronto-parietal network. Overall, these results confirm that the increase in HGA
observed in the MEG data over sensorimotor cortices and the dorsal fronto-parietal
network results from area-specific increases in HGA, rather than by leakage from

nearby regions displaying a strong response.
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DISCUSSION

Brain network and interactions of visuomotor mapping

Previous analyses of arbitrary visuomotor-related functional connectivity have
shown that parietal areas play a driving role in the network, whereas premotor areas
act as relays from parietal to medial prefrontal cortices, which participate as receivers
(Brovelli et al., 2015). Such approach, however, neither considered the time-evolving
nature of FC patterns, nor analyzed the involvement of subcortical areas. Our whole-
brain and time-dependent brain connectivity analyses showed that visuomotor
mapping resides in three distinct and partly overlapping subnetworks with time-
evolving cortico-cortical and cortico-subcortical interactions. Approximately 0.5s
before finger movement, visual and parietal regions coordinate with sensorimotor and
premotor areas (LC 1 in Fig. 5B; blue curve in Fig. 5A). Subsequently, the
sensorimotor regions, the dorsal fronto-parietal circuit, the medial prefrontal regions,
the basal ganglia and the thalamus (LC 2 in Fig. 5C) dominated the FC pattern. The
dorsal fronto-parietal circuit, known to support visuomotor transformations and goal-
directed attentional processes (Wise et al., 1996; Wise and Murray, 2000; Corbetta
and Shulman, 2002; Culham and Valyear, 2006), is tightly coupled with the
sensorimotor and associative fronto-striatal circuit for a brief period around 0.35s
prior to action (red curve in Fig. 5A). This FC network includes medial prefrontal
areas, such as the dorso-medial prefrontal cortex (PFCdm), mid-cingulate cortex
(MCC), anterior cingulate cortex (ACC) and rostro-medial prefrontal (PFrm), with a
strongest increase in HGA in the MCC and PFCdm (Fig. 2). The involvement of
medial prefrontal areas may correspond to the activation of visuomotor-related neural
populations of the rostral cingulate zone (RCZ), a key node of the human motor
system (Picard and Strick, 1996; Amiez and Petrides, 2014). At the subcortical level,
the dorsal striatum (caudate nucleus and putamen), globus pallidus and thalamus
displayed the strongest HGA, in the hemisphere contralateral to the motor response
(Fig. 2). Indeed, intracranial recordings from patients with motor disorders have
described HGA in the subthalamic nucleus (Amirnovin et al., 2004; Alegre et al.,
2005; Androulidakis et al., 2007; Lalo et al., 2008), globus pallidus (Tsang et al.,
2012a) and thalamus (Brucke et al., 2013) during different types of motor behaviors.

High-gamma oscillatory activity in the sub-thalamic nucleus (STN) and globus
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pallidus (GPi) has been found to be coherent with cortical activity during voluntary
movement (Cassidy et al., 2002; Brown, 2003). Granger causality analysis also
showed that STN drives activity in M1 (Litvak et al., 2012), thus suggesting that HGA
in motor areas is due to propagating activity from the basal ganglia through the
thalamus (Brucke et al., 2012). Our results showed that the caudate nucleus and
thalamus are coupled with the sensorimotor cortex and the dorsal fronto-parietal
networks (LC 2 in Fig. 5C), thus confirming a dynamic coordination between cortical
and subcortical regions also during visuomotor behaviors most prominently during
the planning phase prior to movement initiation.

Several lines of evidence suggest that the reported subcortical activations are
primarily local, rather than due to leakage from cortical areas. First, we observed that
the putamen significantly activated only in the left hemisphere, whereas the thalamus
was activated bilaterally (Fig. 2). If the bilateral activation in the thalamus were due to
leakage from cortical areas, we would have expected a bilateral activation also in the
putamen, given that the thalamus is deeper than the putamen. Second, no significant
correlation was found between the SFL and distance for the thalamus and caudate
nucleus (Fig. 8). Third, the average dipole orientation for the thalamus and caudate
nucleus are significantly different (i.e., the normalized inner product is less than one)
and the distribution of values covers a wide range from -0.45 to approximately 0.85.
This suggests that the thalamus and caudate nucleus lack a systematic similarity in
dipole orientation (Fig. 9A). Forth, the mean Pearson correlation values and the
corresponding coefficient of determination do not saturate at high values and show a
modulation similar to the average time course of FCD (Fig. 9B). This suggests a lack
of strong covariance, as it would be expected if leakage effects were dominating.

Nevertheless, we cannot apriori exclude that the observed subcortical
increases in HGA and FC patterns may be due to complex configurations of cortical
activations. Indeed, we suggest that HGA estimation at subcortical areas and FC
analysis should not be performed blindly. Rather, the analysis of raw correlations and
dipole orientations provide important insight into the origin of the results.
Experimentally, simultaneous MEG and subcortical measures of HGA from
intracranial recordings would be required to confirm or disprove the ability of MEG to
capture subcortical HGA and FC.

Overall, our result suggests that the basal ganglia form a dynamic functional

network, which may allow the coordination within and across different processing
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streams in the basal ganglia (Brown, 2003) and facilitate motor output (Cheyne and
Ferrari, 2013). The involvement of sensorimotor and associative fronto-striatal
circuits, classically thought to be involved in habits (Yin and Knowlton, 2006;
Graybiel, 2008; Ashby et al., 2010), also suggests that performance of arbitrary
visuomotor mappings can be viewed as a form of acquainted instrumental behavior
(Brovelli et al., 2015), whose gradual consolidation would lead to the formation of
habitual responses (Dickinson, 1985; Dickinson and Balleine, 1993). We therefore
suggest that the FCD pattern observed for LC2 depicts how motor plans circulate in
the sensorimotor and associative cortico-striatal loop in coordination with fronto-
parietal circuits.

Finally, a last subnetwork (LC 3 in Fig. 5D) primarily emerging after motor
response peaking around 0.2s (green curve in Fig. 5A), involved the bilateral
sensorimotor regions, the left fronto-parietal network and visual areas. The
involvement of bilateral sensorimotor regions indicates that this network mediates
cortico-cortical interhemispheric coordination processes via the corpus callosum.
Such interhemispheric coupling may support the selective inhibition of inappropriate
responses occurring between motor and premotor cortices across hemispheres in
situations when multiple choices are available (Duque et al., 2013; Burle et al., 2016).
Alternatively, this network may be involved in the processing of the somatosensory
reafference at the end of the movement and/or the processing action’s outcome.

To exclude potential confounds due to volume conduction or limited spatial
resolution of MEG and beamforming technique (Bastos & Schoffelen, 2016), we
showed that local field potentials derived from SEEG recordings displayed significant
increase in HGA in these regions (Fig. 10, Table 2). We confirmed invasively that
brain regions of the dorsal fronto-parietal network and the sensorimotor and/or
associative fronto-striatal circuits display local increase in HGA, which do not result

from volume conduction effects.

Towards a better understanding of cognitive architectures

We computed the density of the thresholded FC and FCD graphs as a function
of significance threshold (Fig. 4) using the FDR-controlling procedure to estimate the
relevant range of g-values. For q < 0.05, the density of the visuomotor-related FC

network is less than 10% (approximately 5% for q < 0.05). This shows that
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visuomotor-related FC is not dense, but sparse. Future work on the relation between
structural and functional connectivity may provide clues of how anatomical
connectivity between brain areas shapes how neural information flows and constrains
the dynamics of FC patterns.

A second characteristic of FC is its non-stationarity nature. Indeed, fMRI
investigations have shown that resting-state networks (RSNs) display non-stationarity
and dynamically evolve over tens of seconds to minutes (Hutchinson et al., 2013;
Yeo et al., 2013; Allen et al., 2014; Cole et al., 2014; Calhoun et al., 2014; Zalenski et
al., 2014; Hansen et al., 2015). Inter-areal phase-synchronisation is known to display
non-stationarity, and to underlie perception and executive functions (e.g., Pesaran et
al., 2008; Hipp et al., 2011; Salazar et al., 2012). Our results further support the
notion that FC is non-stationary and evolves over time scales relevant for visuomotor
integration in the order of tens to hundreds of milliseconds (Fig. 3B and Fig. 5).
Modelling studies of resting-state activity suggest that non-stationarity arises from the
out-of-equilibrium sampling of alternative dynamical modes (Deco & Jirsa, 2012;
Hansen et al., 2015; Deco et al., 2015). Switching between collective dynamical
states have the potential to induce network-wide reorganization of information
sharing and routing patterns and, thus, provides an effective mechanism for flexible
inter-areal communication (Battaglia et al., 2012; Kirst et al., 2016). We suggest that
such underlying mechanisms mediating spontaneous large-scale dynamics may also
underlie task-related activity at shorter time scale. In addition, our results may provide
the basis for linking similar patterns of FCD that have been observed, albeit over
different time scales, during visuomotor learning (Bassett et al., 2011; Heitger et al.,
2012).

A third characteristic of FCD is the presence of multiple and spatially
overlapping sub-networks. Each brain area can participate in multiple sub-networks
depending of task demands. In analogy to the concept of cell assembly, where single
neurons can participate in multiple functional populations depending on context, a
sub-network may be viewed as a brain assembly. A brain assembly would constitute
a dynamic entity, whose constituents engage in multiple sub-networks in a time-
dependent manner (Fig. 6). Spatially, areal flexibility was larger for associative
parietal regions, such as the SPC, PCm and PPC together with the dorsal premotor
cortex, which represent the core cortical network for visuomotor transformation (Fig.

7B). Temporally, network flexibility showed a maximum around 0.4s before finger
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movement, which corresponds to the moment when the three sub-networks interact
more strongly (Fig. 7A). We therefore suggest that visuomotor integration processes
occur in this time interval, when the level of interactions between multiple brain
assemblies is strongest.

To conclude, our study confirms that executive functions arise from the
dynamic coordination of neural activity over large-scale networks (Varela et al., 1999;
von der Malsburg et al., 2010; Bressler and Menon, 2010). More precisely, the results
supports the notion that functional specialization is due to the interplay of multiple
and spatially overlapping subnetworks, rather than properties of single brain regions
(Fedorenko and Thompson-Schill, 2014; Petersen and Sporns, 2015). Future work
investigating how subnetworks differently participate depending on tasks demands
may provide a better understanding of the cognitive architectures of executive

functions (Dehaene et al., 2015).
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FIGURE and TABLE LEGENDS

Figure 1. (A) Arbitrary visuomotor mapping task. (B) MarsAtlas: cortical parcellation
displaying the anatomical gradients both in the rostro-caudal and dorso-ventral directions; for
a detailed description see Auzias and collaborators (2016). (C) MarsAtlas: single-subject
exemplar volumetric representation displaying subcortical regions included in the atlas:
nucleus accumbens, amygdala, hippocampus, globus pallidus, putamen, caudate nucleus

and thalamus.

Figure 2. Statistical map displaying the brain areas associated with a significant increases in
HGA with respect to baseline (time-point and cluster-level threshold were set to q < 0.001
FDR-corrected). The anatomical labels of subcortical areas are NAc (nucleus accumbens),
Amyg (amygdala), Hipp (hippocampus), GP (globus pallidus), Put (putamen), Cd (caudate
nucleus), Thal (thalamus).

Figure 3. Strength of the Functional Link (SFL). (A) Mean SFL connectivity matrix averaged
over time. (B) SFL time course averaged over pairs of areas. The threshold for significant
SFL was equal to 2.43. Error bars correspond to 95% confidence interval.

Figure 4. Graph theoretical measures. (A) Dependence between threshold values (g-values)

and FC density. (B) Temporal evolution of density D at q = 0.05.

Figure 5. Functional Connectivity Dynamics (FCD). (A) Time course of the average SFL
(Strength of Functional Link) for the three identified Link Communities (LC). Error bars
correspond to 95% confidence interval. Spatial patterns for the three LCs are displayed in
(B), (C) and (D). The thickness of the green links is proportional to the time-averaged SFL
between areas, whereas the colour and size of nodes is proportional to the mean SFL
between each area and the rest of the network (i.e., the weight).

Figure 6. Exemplar evolution for the dorsolateral motor (A, C) and premotor (B, D) areas. (A)
and (B) show the involvement of Mdl and PMdI in the three LCs, respectively. (C) and (D)

depict the involvement in percentage value.

Figure 7. Flexibility analysis. (A) Mean evolution of network flexibility (shaded area represent

standard deviation). (B) Areal flexibility for the five most representative brain regions.
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Figure 8. Relation between mean FC and distance for the thalamus (A) and caudate nucleus

(B). Each dot corresponds to a brain area displaying significant FC with the seed regions.

Figure 9. Distribution of normalized inner products between the average dipole orientations
of the left thalamus and caudate nucleus across participants (A). The boxplot depicts
extreme values (whiskers), first and third quartile (box) and median (red line). (B) Time

course of mean correlation coefficient.

Figure 10. SEEG validation of HGA modulations. Comparison between SEEG single-
subjects t-value for HGA (blue) and group-level MEG results (red curves). Subject number,
brain areas and the correlation coefficient between the curves is indicated on the top of each
panel.

Table 1. Graph theoretical measures.

Table 2. SEEG activations
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Parcel Peak Peak Peak Time Patient

name p-value t-value time (s) interval (s) number
L Mdm 3,42E-20 11,43 -0,175 -0,28 0,125 1
R SPC 8,76E-20 11,15 -0,22 -0,44 0,2 3
R PMdm 1,41E-17 10,27 -0,34 -0,62 -0,06 2
L PMdm 5,65E-17 10 -0,29 -0,455 0,155 1
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