
HAL Id: hal-01464166
https://amu.hal.science/hal-01464166

Submitted on 10 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ISA -AN INVERSE SURFACE-BASED APPROACH
FOR CORTICAL FMRI DATA PROJECTION

Lucie Thiébaut Lonjaret, Christine Bakhous, Timothé Boutelier, Sylvain
Takerkart, Olivier Coulon

To cite this version:
Lucie Thiébaut Lonjaret, Christine Bakhous, Timothé Boutelier, Sylvain Takerkart, Olivier Coulon.
ISA -AN INVERSE SURFACE-BASED APPROACH FOR CORTICAL FMRI DATA PROJEC-
TION. IEEE International Symposium on Biomedical Imaging ISBI 2017, 2017, Melbourne, Australia.
�hal-01464166�

https://amu.hal.science/hal-01464166
https://hal.archives-ouvertes.fr


ISA - AN INVERSE SURFACE-BASED APPROACH FOR CORTICAL FMRI
DATA PROJECTION

Lucie Thiébaut Lonjaret?,†,◦ Christine Bakhous? Timothé Boutelier?

Sylvain Takerkart† Olivier Coulon†,◦

? Olea Medical, La Ciotat, France
† Aix-Marseille Univ., CNRS, Institut de Neurosciences de la Timone, Marseille, France

◦ Aix-Marseille Univ., CNRS, LSIS, Marseille, France

ABSTRACT
Surface-based approaches have proven particularly rele-
vant and reliable to study cortical functional magnetic re-
sonance imaging (fMRI) data. However projecting fMRI
volumes onto the cortical surface remains a challenging
problem. Very few methods have been proposed to solve
it and most of them rely on a simple interpolation. We
propose here an original surface-based method based on
a model representing the relationship between cortical
activity and fMRI images, and a resolution through an
inverse problem. This approach shows interesting pers-
pectives for fMRI data processing as it is highly robust to
noise and offers a good accuracy in terms of activations
localization.

Index Terms— fMRI, surface-based method, in-
verse problem, signal reconstruction

1. INTRODUCTION

FMRI datasets are commonly analyzed in their ac-
quisition space with volume-based methods. However, to
hurdle the poor contrast to noise ratio (CNR) of fMRI
data, these techniques usually apply a smoothing in the
voxels space with very little consideration to the un-
derlying brain anatomy, thus mixing informations that
should not be (e.g. signals coming from opposite sides of
a sulcus). Surface-based methods overcome this issue by
studying the cortical signals in a domain approximating
their original space : the cortical surface, hence keeping
track of more relevant neighborhoods. Among those ap-
proaches, two classes of techniques can be distinguished.
The conceptually simplest ones rely on interpolation me-
thods, such as the trilinear interpolation [1], to transpose
the 3D data onto the cortical surface. The more sophis-
ticated processes embed anatomically informed models.
Those models are then fitted to the fMRI 3D data [2] or
used to interpolate the 3D data onto the cortical surface
[3, 4, 5]. Because the acquisition system is responsible
for transposing the cortical blood oxygen level dependent

(BOLD) signal onto a cartesian voxel grid, we propose an
Inverse Surface-based Approach (ISA) to reconstruct the
cortical activity onto the cortical surface through solving
the corresponding inverse problem. ISA requires several
inputs : a cortical mesh of the white matter / grey mat-
ter interface registered to the functional volumes, and
the functional volumes corrected for head motion and
slice timing. In this paper, we detail the construction of
the forward model, introduce the corresponding inverse
problem and present the methods to solve it. Several
experiments are then conducted on both simulated and
real datasets, that demonstrate the robustness of ISA to
noise and its accuracy in terms of localization.

2. METHODS

2.1. From cortical activity to fMRI volume : for-
ward model

The first step towards recovering the original cortical
signal from MR images consists in defining the forward
model (i.e. modeling how the acquisition process led the
original cortical signals to the 3D images). This model
should include both brain physiology and MR physics
considerations, such as the shape of the BOLD signal,
the partial volume effect (PVE), and the geometrical and
architectural features of the cortex. We therefore started
from the model exposed by Operto et al. [5]. This model
suggests that signals IS on the cortical surface (repre-
sented by a mesh of Nn nodes) at node m result from
a weighted sum of the cortical activities a at neighbo-
ring nodes n (Eq. 1), thus modeling the local induced
activities by geodesic (i.e. following the cortical surface)
weights ωgeo (see Fig. 1.b). It also supposes that the si-
gnals in the volume V (divided in Nv voxels) result from
a weighted sum of the local cortical signals on the sur-
face (Eq. 1), thus modeling the PVE by weights ωnorm
which depends on the normal distance of a voxel v to the



Fig. 1. Normal (a) and geodesic (b) components of the
model designed by Operto et al. [5].

surface (see Fig. 1.a).{
IS(m) =

∑Nn

n=1 ωgeo(m,n)a(n)
V (v) =

∑Nn

m=1 ωnorm(v,m)IS(m)
(1)

However this model suffers from some drawbacks. First,
the cortical mesh often has a variable density, which re-
sults in each node representing portions of the cortical
surface of various size. As the cortical mesh is a discreti-
zed version of a continuous surface, the cortical activity
a at a given node n stands actually for all the cortical
activities γ(i) contained by the Voronoï cell Cn associa-
ted to n. Because we have no prior on the distribution
of those activities within Cn, we consider γmean(n) the
average activity over Cn and obtain Eq. 2.

a(n) = area(Cn)γmean(n) (2)

Combining those considerations with Eq. 1 leads to Eq.
3, thus taking into account the mesh variable density.{
V (v) =

∑Nn

n=1M(v, n)γmean(n)
M(v, n) =

∑Nn

m=1 ωnorm(v,m)ωgeo(m,n)area(Cn)
(3)

Second, we generalize Eq. 3 to time-series of volumes by
simple concatenation (Eq. 4) to process simultaneously
all the fMRI volumes of one session. Hence the forward
model M links real cortical signals Γ and fMRI volumes
V . Each column of V represents the fMRI volumetric
data at time t. Each column of Γ similarly stands for the
signals on the cortical mesh nodes γmean at time t.

V = MΓ (4)

2.2. From volume to surface : inverse problem

We solve the corresponding inverse problem, which
consists in inverting the forward model (Eq. 4), with the
method of regularized least-squares. The number of mesh
nodes often exceeding by far the number of relevant func-
tional voxels, our problem is highly underdetermined and
thus ill-posed and ill-conditioned. Therefore we optimize
a cost function composed of three terms, including two
terms of regularization. The first term fd (Eq. 5) reflects

how close the fMRI volumes predicted Ṽ from the for-
ward model are to the observed data V . The noise cova-
riance matrix R, estimated with [6], balances this term.

fd(Γ̃) = Tr((V −M Γ̃)tR−1(V −M Γ̃))
2 (5)

To begin with, the cortical signal does diffuse locally
[7]. This prior of smoothness can be modeled by a spa-
tial regularization term fs (Eq. 6) relying on the geodesic
distance between neighboring nodes. Here we introduce
cliques notations. A clique ci is defined by a pair of corti-
cal mesh nodes (ni,1, ni,2) and a weight which depends on
the geodesic distance dg between those two nodes and on
a normalization term Dnorm. Such a normalization term,
based on the number Ω(n) of neighboring nodes of each
of the two nodes of ci, is necessary to cope with the mesh
irregularity and ensure the same power of regularization
at each mesh node.
fs(Γ̃) = Tr(Γ̃tDtDΓ̃)

Di,j = δj,ni,1 −δj,ni,2
dg(ni,1,ni,2)Dnorm(ni,1,ni,2) with δj,l =

{
1 if j = l

0 else
Dnorm(ni,1, ni,2) =

√
Ω(ni,1)Ω(ni,2)

Ω(ni,1)+Ω(ni,2)
(6)

Furthermore, BOLD signals measured with fMRI
come from the hemodynamic response function (HRF)
which is smooth in time. Therefore, we define a tempo-
ral regularization term ft (Eq.7) with T expressing the
second order differential.

ft(Γ̃) = Tr(Γ̃T tT Γ̃t) (7)

2.3. Optimization

The regularized least square estimator reaches the
solution by minimizing the corresponding cost function
where λD and λT are respectively the spatial and tem-
poral regularization coefficients :

f(Γ̃) = fd(Γ̃) + λDfs(Γ̃) + λT ft(Γ̃) (8)

Minimizing this cost function amounts to nullifying its
gradient, thus resulting in the following Sylvester equa-
tion (see [8] for more information on such equations) :

HΓ̃ + Γ̃G = K with


H = M tR−1M + 2λDDtD

G = 2λTT tT
K = M tR−1V

(9)
Because operator H is positive definite by construction
and operator G is semi-positive definite, we chose to
use the linear conjugate gradients (CG) algorithm [9].
Indeed, this optimization technique is guaranteed to
converge, under the previously mentioned conditions, to



the unique solution, accurately and in a short amount of
time.

Regularization coefficients were set as follows. In or-
der to ensure the best spatial conditioning of the problem
and guarantee an optimal convergence of the CG, λD was
chosen as to minimize the condition number (i.e. the ratio
of the largest over the smallest eigenvalues) of operator
H (Eq. 9). Hence λD becomes directly dependent of the
mesh geometry and resolution.The optimal λT was set
empirically using an independent set of simulated data
with meshes of various resolution. We found that the op-
timal λT was quite stable across mesh resolutions and
we set it at the empirical value of λT = 15.

3. RESULTS

3.1. Experiments

ISA’s performances were assessed on both simulated
fMRI data, and real data. Simulated data were genera-
ted according to the following process. First, a cortical
mesh was extracted from real data. Then we simulated
a smooth activation blob of 1cm of radius on this mesh,
thus generating a surface map. Thereafter we construc-
ted a block paradigm, using 10 repetitions of this map for
the ”off” blocks and multiplying these blocks by the desi-
red percent of signal change (here PSC = 5) plus 1. Once
the paradigm built, each node signal was convolved with
SPM (http ://www.fil.ion.ucl.ac.uk/spm/) HRF model
(considering a TR of 2s), thus producing a time-series of
maps representing the BOLD fluctuations in time (Fig.
2.c - black). Finally, the forward model (Eq. 4) was ap-
plied to generate the corresponding fMRI volumes. Va-
riable levels of Gaussian noise were added (Fig. 2.c - light
grey) to get realistic fMRI data with variable CNR (i.e.
the ratio of the highest temporal variations amplitude
over the noise standard deviation). We conducted a noise
robustness experiment on simulated fMRI volumes cor-
responding to 50 different realizations of activation blobs
spread across the cortical surface for 3 levels of Gaussian
noise (CNR = 2.5, 1.25 and 0.25). Finally, we produced a
qualitative analysis of the spatial aspect of the projection
using real data from a voice localizer experiment [10] : vo-
lumetric t-maps estimated using SPM, for the contrast
‘voice - non voice’, showing the individual location of
the temporal voice areas, were projected on the cortical
surface for four subjects. Results of all experiments were
compared with those produced using the convolution ker-
nels method that was shown to outperform all other me-
thods [5]. These experiments used cortical meshes pro-
duced by the BrainVisa software (http ://brainvisa.info),
with an average number of 60,000 nodes. Functional data
had a spatial resolution of 3x3x3mm3.

Fig. 2. Results of the robustness to noise assessment.
Average and standard deviation of rtemporal (a) and
rspatial (b) over 50 realization. Qualitative representation
of temporal activity at the center node of an activation
blob (c).

3.2. Robustness to noise

Projection of time series was performed on all simu-
lated datasets using ISA and the convolution kernels me-
thod. We evaluated the quality of the reconstructed si-
gnal in the spatial and temporal domains by computing
the spatial Pearson correlation (rspatial) with the origi-
nal spatial map before application of the forward model,
and the temporal Pearson correlation (rtemporal) with
the original paradigm. For rtemporal we considered only
the temporal signals of the nodes localized within the ac-
tivation area, whereas we considered the whole cortical
surface for rspatial. Under noisy conditions ISA outper-
forms the convolution kernels both in terms of localiza-
tion and correlation to the experimental paradigm (Fig.
2.a,b). Indeed, we observe that ISA restores high values
of rtemporal even with poor CNR, and only starts to face
real difficulties when the CNR goes below 1, that is to
say when the fMRI signal contains more noise than va-
riations of interest. Furthermore rspatial is clearly higher
for ISA than for the convolution kernels, showing a bet-
ter control of the spatial regularization. It is important



Fig. 3. Results of the convolution kernels (left) and ISA
(right) applied on real data (colorscale is subject de-
pendent).

to note that the spatial regularization term is set to opti-
mize the spatial conditioning of the problem, but at the
cost of a loss in signal magnitude restoration (Fig. 2.c).

3.3. Real data

Comparing the effect of ISA and the convolution ker-
nels method, shown in Fig. 3, we noticed that there is
an overall similarity of the activation patterns, but im-
portant local differences can be observed. In particular,
it is clearly visible that peaks of activation are more fo-
cal with ISA. This shows a deconvolution effect that is
intrinsic to the inverse problem approach : on top of ISA
offering a more controlled spatial regularization, the for-
ward model embeds several sources of signal mixing and
the inverse resolution disentangle them. This could lead
to a better spatial accuracy for functional data analysis.

4. CONCLUSION AND FUTURE WORK

We presented here a new surface-based approach to
project fMRI data onto the cortical surface. This tech-
nique is highly flexible and offers a general framework
where it is easy to introduce other prior knowledges as
long as they can be expressed as a function. Moreover

ISA offers a good spatial and temporal accuracy even
when faced to really noisy data. Future work will include
experiments to assess ISA robustness to other kinds of
errors arising from the preprocessing pipeline, such as
anatomy-function registration errors or surface segmen-
tation errors, and applications to real datasets.
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