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MAIN TEXT 

 

Because of its incidence and devastating consequences, Alzheimer’s disease (AD) has 

attracted much research attention overthe last decades. Intensive work led to the 

identification of several cellular and molecular pathophysiologicalprocesses present 

in the disease, including Tau alterations, -amyloid (A) deposition, lipid homeostasis 

dysregulation, excitotoxicity, neuroinflammation,andautophagy defects (Di Paolo 

and Kim, 2011; Ittner and Gotz, 2011; Heppner et al., 2015; Menzies et al., 

2015; Wang and Mandelkow, 2015). Despite much effort, how these different 

pathways interact and contribute to disease pathogenesis remains poorly 

understood. 

 

Recent work has begun to investigate a possible role of microRNAs (miRNAs) in the 

development of AD(Femminella et al., 2015). miRNAsare a class of short non-

coding regulatory RNAs that silence gene expression in plants, invertebrates, 

mammals and humans(Bartel, 2009).Mechanistically, miRNAs bind to short 

sequences found in target transcripts, resulting in mRNA destabilization and/or 

translational repression. The target sequence for a particular miRNA could be 

present in hundreds of mRNAs and a single transcript can, in turn, be targeted by 

multiple mRNAs(Huntzinger and Izaurralde, 2011). Because of this combinatorial 

mode of action, miRNAs are thought to act as high-order regulators of gene 

expression. Not surprisingly, miRNAsare involved in multiple biological processes 

(van Rooij et al., 2007; Pauli et al., 2011; Tan et al., 2013) andaccumulatingdata 

suggest that disruptionof miRNAs networks contribute to human diseases including 

neurodegenerative diseases(Esteller, 2011; Gascon and Gao, 2012; Abe and 

Bonini, 2013). Moreover, transcriptomic studies havedescribed specific and 

consistent alterations in miRNAsassociated with AD, and some targets of these 

miRNAshave beenimplicated in pathophysiological cascadesrelevant to the 

disease(Femminella et al., 2015). Unfortunately, direct experimental data arguing 

for a causal role of miRNAs in AD are still scarce.  
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Work by Horie et al. (2010, 2012) suggests that miR-33 might be particularly 

important in these pathological cascades. They reported that miR-33 controls the 

expression of the cholesterol transporter, ABCA1, and reduces HDL cholesterol levels 

systemically (Horie et al., 2010), andgenetic deletion of miR-33 induced plaque 

regression in a mouse model of atherosclerosis, (Horie et al., 2012).This is relevant 

to AD because an extensive literature supports a connection between cholesterol 

and -amyloid homeostasis (Puglielli et al., 2001; Jiang et al., 2008; Choi et al., 

2015).The presence of Aβ plaques, formed by the sequential cleavage of the 

amyloid precursor protein (APP) and deposition of A oligomers, is a prominent 

neuropathologic feature of the disease and is thought to be central to AD 

development (Nhan et al., 2015).Moreover, polymorphisms of several genes 

encoding proteins that regulate cholesterol metabolism such as ApoE and ABCA1 

have been associated with AD risk (Corder et al., 1993; Koldamova et al., 2010; 

Cramer et al., 2012).Therefore, if miR-33 also controls ABCA1 expression in the 

brain, it may have profound effects on cholesterol transport and therefore in A 

accumulation. 

 

To test this idea, Kim el al. (2015) first examined miR-33 expression across different 

tissues and cell types. Remarkably, miR-33 was enriched in the brain - particularly in 

the cortex - and preferentially expressed by neurons. They next asked whether 

ABCA1 is a target of miR-33 in the brain. For that purpose, the authors quantified 

cortical levels of ABCA1 in miR-33-/- mice (Horie et al., 2010). Levelswere 

significantlyhigher in miR-33-deficient animals than inwild-type, suggesting that 

ABCA1 is also a miR-33 target in the nervous system. miR-33 overexpression in a 

neuronal cell line as well as in primary astrocytes also regulated ABCA1 levels, 

further confirming the direct regulation of ABCA1 via miR-33.  

 

The authors next asked whether miR-33 affected Aß production. Indeed, in cell lines 

expressing mutated APP, miR-33 transfection resulted not only in a reduction of 

ABCA1 but also in increased secretion of A. The ability of different cell types to 

degrade synthetic A was also impaired by miR-33. Remarkably, restoring ABCA1 

levels (using a miR-33-resistant construct) abolished the effects of miR-33 onA 
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homeostasis. Taken together, these findings strongly suggested that miR-33 control 

A deposition by modulating ABCA1 levels.  

 

Finally, Kim el al. (2015) validated the involvement of miR-33 in 

A          in vivo  First, they showed that miR-33-/- mice had 

reduced cortical levels of A products (A and A) but normal APP levels. Then, 

using a mouse model of AD, they found that chronic treatment with a miR-33 

antagonist caused a significant decrease in A. Overall, the data presented by Kim 

et al.(2015) provided additional evidence of the links between cholesterol and A 

metabolism in the brain and, more importantly, pinpointed the essential role of miR-

33 in modulating this pathogenic pathway. 

 

Kim el al. (2015) demonstrated that most cellular changes induced by manipulation 

of miR-33 levelscould be rescued by ABCA1, indicating that this transporter is a 

central target in miR-33 regulatory events. Consistent with this notion, many 

previous studies haveshowed that sometargets are more important than others 

depending on the context (Cassidy et al., 2013; Gascon et al., 2014). 

Nevertheless,miRNAs simultaneously silence multiple transcripts and regulation of 

other targets might result in synergistic effects.In this regard, it is worth noting that 

miR-33 controls the expression of SREBF1,a transcription factor known to 

modulateseveral genes involved in the synthesis and uptake of cholesterol(Horie et 

al., 2013). Furthermore, miR-33 isembedded in the locus of SREBF2, another 

member of the same family(Horie et al., 2010). Since intragenic miRNAs frequently 

target their host genes (Kos et al., 2012; Yuva-Aydemir et al., 2015), an attractive 

hypothesis is that miR-33 might controllipid homeostasis at multiple levels acting 

thereby as a molecular hub (Fig. 1).   

 

Along the same lines, computational algorithms (e.g. TargetScan) indicate that miR-

33 may target multiple kinases families including those involved in Tau 

phosphorylation such as cyclin-dependent kinases or mitogen-activated protein 

kinases (Rudrabhatla, 2014).It is important to remember that although multiple 

theoretical scenarios regarding AD pathogenesis have been postulated, no single 
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theory can successfully account for the clinical heterogeneity observed in the 

disease. Kim et al. (2015)demonstrated in vitro and in vivo a connection between A 

deposition, cholesterol homeostasis and miR-33 in the brain suggesting that 

multiple mechanisms may simultaneously contribute to disease. It would be 

therefore interesting to assess, for example,whether miR-33 affects other known 

cascades such as tau phosphorylation (Fig. 1). 

 

It is important to note that Kim el al.(Kim et al., 2015)did not investigate miR-33 

levels in the brain of AD patients. A rapid survey to the deposited data in GeoR 

profiles showed that no changes in either miR-33a or miR-33b (two miR-33 

homologs found in humans) were observed in three independent studies (Hebert et 

al., 2013; Lau et al., 2013; Santa-Maria et al., 2015). Although these data do not 

support the hypothesis that miR-33 contributes to AD pathology, they should be 

interpreted cautiously given the number of confounding variables intrinsic to these 

profiling studies. In addition to the heterogeneity of AD itself, variable comorbidities 

in analyzed cohorts, different post-mortem intervals, or technicaldisparities might 

preclude the detection of miRNAs changes. In this regard, one could take advantage 

of miRNA profiling in mouse models of AD. Here, again, miR-33 expression was not 

significantly modified in the hippocampus of two different transgenic mice 

overexpressing APP (Barak et al., 2013; Noh et al., 2014) suggesting that miR-33 

might not be involved in the pathogenesis of the disease. Nonetheless, as Kim el al. 

(2015) stated in the discussion, miR-33 may represent an attractive therapeutic 

target. 

 

Regarding the therapeutic potential of miR-33 in AD, one should first address an 

essential question: would altering miR-33 levels alleviatecognitivedeficits associated 

with AD? This is an important questionthat remains unexplored. Notably, there is 

conflicting evidence regarding the contribution of A burden on functional 

impairment: some treatments have been shown to improve behavioral deficits 

withoutaffecting A pathology (Jankowsky et al., 2005; Cuadrado-Tejedor et al., 

2011) whereas others found an inverse correlation between plaque content and 

behavioral performance (Cramer et al., 2012; Verma et al., 2015). Nevertheless, 
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accumulating data indicate that soluble A, rather than the insoluble material in the 

plaques, is the toxic species in AD(Fedele et al., 2015; Ferreira et al., 2015). Since 

miR-33 modulates both the generation and removal of A oligomers, results 

obtained in this study support apositive effect of manipulating miR-33levelson 

behavioral outcomes. Further work should evaluate this crucial issue and clarify 

whether treatments targeting miR-33 in mice are beneficial to revert memory loss or 

other AD-associated symptoms as well as molecular pathology.  
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FIGURE LEGENDS  

 

Figure 1. Schematic representation of the main findings reported in this study as 

well as of other pathways potentially regulated by miR-33 relevant to AD. Kim et al. 

(2015) demonstrated the essential function of miR-33 in modulating ABCA1 

expression and how this transporter influenced cholesterol content of ApoE and, 

thereby, A production and degradation (black fonts, center). miR-33 might exert 

further control on lipid metabolism by regulating the expression of the transcription 

factors SRBEF1 and 2 (white fonts, left). Other miR-33 targets (e.g. cyclin-dependent 

kinases) might further contribute to AD pathogenesis by activating complementary 

pathways (e.g. Tau phosphorylation, (white fonts, right)). 

 

 


