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“Hearing faces and seeing voices”: 
Amodal coding of person identity in 
the human brain
Bashar Awwad Shiekh Hasan1,2, Mitchell Valdes-Sosa3, Joachim Gross1 & Pascal Belin1,4,5

Recognizing familiar individuals is achieved by the brain by combining cues from several sensory 
modalities, including the face of a person and her voice. Here we used functional magnetic resonance 
(fMRI) and a whole-brain, searchlight multi-voxel pattern analysis (MVPA) to search for areas in which 
local fMRI patterns could result in identity classification as a function of sensory modality. We found 
several areas supporting face or voice stimulus classification based on fMRI responses, consistent with 
previous reports; the classification maps overlapped across modalities in a single area of right posterior 
superior temporal sulcus (pSTS). Remarkably, we also found several cortical areas, mostly located along 
the middle temporal gyrus, in which local fMRI patterns resulted in identity “cross-classification”: vocal 
identity could be classified based on fMRI responses to the faces, or the reverse, or both. These findings 
are suggestive of a series of cortical identity representations increasingly abstracted from the input 
modality.

•	 Local patterns of cerebral activity measured with fMRI can classify familiar faces or voices.
•	 Overlap of face- and voice-classifying areas in right posterior STS.
•	 Cross-classification of facial and vocal identity in several temporal lobe areas.

The ability to recognize familiar individuals is of high importance in our social interactions. The human brain 
achieves this by making use of cues from several sensory modalities, including visual signals from the face of 
a person and auditory signals from her voice1,2. There is evidence that these cues are combined across senses 
to yield more accurate, more robust representations of person identity—a clear case of multisensory integra-
tion3–5. For instance, familiar speaker recognition is faster and more accurate when the voice is paired with a 
time-synchronized face from the same individual than when presented alone, and slower and less accurate when 
paired with the face of a different individual3.

The contribution of different sensory modalities to person perception is acknowledged in particular by cog-
nitive models such as Bruce and Young (1986)’s model of face perception. Specifically they proposed the notion 
of “person identity nodes” (PINs): a portion of associative memory holding identity-specific semantic codes that 
can be accessed via the face, the voice or other modalities: it is the point at which person recognition, as opposed 
to face recognition, is achieved6,7.

Whether the PINs have a neuronal counterpart in the human brain remains unclear, in part owing to the 
fact that most studies of person recognition—either using neuropsychological assessment of patients with brain 
lesions, or neuroimaging techniques such as functional magnetic resonance imaging (fMRI) in healthy volun-
teers—have focused on single modality, mostly face, then, far second, voice; only few studies have investigated the 
cerebral bases of person recognition based on more than one sensory modality1,4.

Lesion and neuroimaging studies have suggested potential candidate cortical areas for the PINs, including the 
precuneus8, parietal and hippocampal regions9–11, posterior superior temporal sulcus (pSTS)12,13 or the anterior 
temporal lobes14. However a PIN, as defined in Bruce & Young (1986), would correspond to a patient with a brain 
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lesion preserving recognition and feeling of familiarity based on single modalities separately but who could not 
retrieve semantic information on the person, and not associate the face and voice of the person; such a patient has 
not yet been identified1. Other studies suggest that amodal representations could rather emerge from cross-talk 
interactions between modality-specific areas1: voice and face-sensitive areas are not only connected via direct 
anatomical projections15 but also functionally connected during familiar voice recognition16.

Multi-voxel pattern analyses (MVPA) offer a powerful means of extracting information contained in distrib-
uted fMRI activity17,18: their enhanced sensitivity compared to classical univariate fMRI analyses has contributed 
to clarifying the neural correlates of unimodal face19–23 or voice24,25 identity processing. To our knowledge MVPA 
have not been used yet to examine the cerebral bases of multimodal person identification although they have pro-
vided exciting insights in the integration of emotional information across senses. Peelen et al.26 used a searchlight 
information-based analysis27 to compare the fMRI activation patterns elicited in local spherical clusters of voxels 
by emotional stimuli presented in three modalities: faces, voices and bodies. They found two clusters across the 
whole brain, located in rostral medial prefrontal cortex and in the left pSTS, in which patterns of activity associ-
ated with the same emotions from different modalities were more similar to each other than patterns associated 
with different emotions, strong evidence for supramodal representations of emotion26.

Here we used fMRI to measure blood oxygenation level dependent (BOLD) signal as an indirect index of neu-
ronal activity in normal volunteers engaged in an identity recognition task. They were performing a 4-alternative 
forced choice classification of the identity of four familiar persons recorded while saying the word “had” either as 
a video combining the face and the voice (Face-Voice condition), a silent video of their face (Face condition) or 
the audio recording of the voice (Voice condition). We used a slow-event related design to maximize independ-
ence between trials and a large number of trials to enable robust subject-level analyses. Searchlight MVPA was 
used across the whole grey matter mask of each subject to localize brain areas in which local patterns of cortical 
activity could be used to train a support vector machine (SVM) classifier to classify the identity of the familiar 
persons viewed and/or heard. We asked whether some cortical areas could result in identity classification across 
sensory modalities.

Results
All five participants performed the identity classification task with near-ceiling accuracy during scanning 
(Fig. 1). Individual one-way ANOVAs showed that average percent correct accuracy was lower and average 
reaction time (RT) longer in the Voice condition (p <​ 0.05 two-tailed; Accuracy: mean =​ 94.6%, range across 
the five subjects =​ [90.0–98.2]; RT: mean =​ 643 ms, range of mean =​ [542–795]) than in the Face (Accuracy: 
mean =​ 98.9%, range =​ [97.9–100]; RT: mean =​ 458 ms, range =​ [362–531]) or the Face-Voice (Accuracy: 
mean =​ 99.0%, range =​ [97.9–100]; RT: mean =​ 475 ms, range =​ [396–537]) conditions (differences significant 
in 4/5 participants).

Univariate fMRI analysis confirmed the involvement of visual and auditory cortex in stimulus processing, 
revealing overlapping activation of bilateral fusiform cortex and medial prefrontal cortex in the Face and the 
Face-Voice conditions, and of bilateral superior temporal gyrus and sulcus in the Voice and the Face-Voice condi-
tions. No significant activity differences between the four identities were observed in any part of the brain for any 
stimulation conditions (all q >​ 0.01 FDR) with the univariate analysis.

In the MVPA analysis (cf. Methods) all participants individually showed areas of cortex in which local patterns 
of fMRI activity resulted in significantly (0.01 FDR corrected) above-chance stimulus classification, either the 
voice or the face. The coincidence map of Fig. 2, which shows in the standard stereotactic space of the Montreal 
Neurological Institute (MNI) the voxels present in the individual classification accuracy maps of 4 or 5 of the 5 
participants, reveals several areas consistently involved across individuals. For faces, classifying areas included left 
fusiform gyrus, right inferior temporal gyrus and right posterior STS. For voices, classifying areas were located 
along left occipital cortex, left mid STS, right mid STS/middle temporal gyrus and posterior STS (Fig. 2, Table 1).

Next we probed the modality-dependence of these local representations of face and voice stimuli in two dif-
ferent, complementary ways. First we asked whether any overlap in the stimulus-classifying areas based on face 

Figure 1.  Behavioural results. Distribution of average accuracy and reaction time (in ms) at the identity 
classification task across the five participants. AV: audiovisual Face-Voice condition.
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or voice could be observed. Only a single region of cortex showed such overlap consistently across participants: 
spherical ROIs centered on right posterior STS (pSTS) could classify both faces and voices (Fig. 2, Table 1).

Second, we asked whether some areas could result in identity cross-classification, that is, whether they could 
classify test fMRI volumes measured in response to presentation of the familiar identities in one modality (e.g., 
the face) after training the SVM classifier based on fMRI volumes measured in response to the other modal-
ity (e.g., the voice). All participant showed such areas resulting in cross-classification of identity either in one 
direction (train classifier on voices, test on faces) or the other (train on faces, test on voices) or both (Figure S1). 
The coincidence map of these regions across the five participants (Fig. 2) revealed a number of these identity 
cross-classifying areas consistently located across individuals: most consisted of small patches of cortex located 
in the temporal lobe along the whole antero-posterior extent of the STS bilaterally; additional cross-classifying 
areas were found in left inferior prefrontal cortex and in right Rolandic operculum. Remarkably, several of these 
cross-modally identity classifying areas showed an overlap of the two directions of cross-classification: fMRI 
patterns measured in these areas resulted in above-chance cross-classification of identity in both directions, i.e., 
from face to voice and from voice to face (Table 1).

Discussion
We used an fMRI searchlight MVPA approach to investigate the cerebral processing of identity information from 
the auditory and visual sensory modalities. We searched the whole brain of healthy participants for areas in 
which local fMRI patterns measured in response to the face or voice of four familiar individuals contained suffi-
cient information to classify the face or voice. All participants individually showed areas resulting in significantly 
above-chance classification of face or voice stimuli based on the responses of local voxel clusters, consistent with 
previous results. We also found, for the first time, local areas resulting in identity cross-classification, that is, suc-
cessful classification of identities in one modality based on fMRI responses in the other modality. We argue these 
results reinforce the notion of amodal representations of person identity in the human brain.

We found that the face and voice of familiar persons can be decoded within-modality based on local fMRI 
patterns. All five participants showed areas in which fMRI patterns measured in 8 mm-radius spheres in response 
to the face or voice of the four familiar persons resulted in significantly (q <​ 0.01 FDR corrected) above-chance 
classification of face or voice by a classifier trained on stimuli in the same modality: face classification based on 
fMRI responses to the faces; voice classification based on fMRI responses to the voices (Fig. 2, Table 1).

Figure 2.  Identity cross-classification in multiple cortical areas. Voxels overlaid in color on surface rendering 
of the left and right hemispheres are the centers of spherical ROIs resulting in significantly (q <​ 0.01 FDR 
corrected) above-chance classification of the stimulation conditions in at least 4 of the 5 subjects. Blue voxels: 
above-chance within-modality classification (train on voice and test on voice; train on face and test on face); 
Yellow voxels: above-chance cross-modal classification (train on voice and test on face; train on face and test 
on voice). Panels show for selected clusters the individual values (coloured shapes: Subjects 1–5) of the cluster-
average difference between classification accuracy and the empirical chance level (determined via permutations 
for each voxel) for each of the four classification schemes. Bars indicate standard deviation across the group 
mean. Voice: train and test on voice; Face: Train and test on face; Voice-Face: train on voice and test on face; 
Face-Voice: train on face and test on voice.
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Face stimulus classification could be performed based on the local fMRI signal in regions of fusiform and 
occipital cortex (Fig. 2, Table 1). This result is consistent with previous reports of face identity classification based 
on local fMRI clusters in fusiform areas19–22 suggesting that activity in these areas of the core face processing net-
work already contain sufficient identity information to discriminate between facial identities. We did not observe 
face classification in more anterior areas of the anterior temporal lobe reported by some studies19,20,23.

Voice classification based on local fMRI clusters is, to our knowledge, a novel result. Previous reports have 
demonstrated classification of speaker identity based on fMRI responses to voices24,25 but this classification was 
based on large number of voxels non-continuously drawn from extended areas of cortex. In Formisano et al.24’s 
pioneering study all voxels in auditory cortex were initially considered for training and testing the SVM classifi-
ers, then uninformative voxels were progressively eliminated (“recursive feature elimination”28). This procedure 
resulted in maps of voxels spanning discontinuously the whole auditory cortex and that collectively resulted in 
above-chance classification of speaker’s voice or vowel24. These findings have been interpreted as evidence for a 
distributed coding of speaker identity, where information on speaker identity is possibly represented across multi-
ple cortical areas. Here we show that significant voice classification is possible based on much smaller sets of vox-
els, suggesting that cortical representations of speaker identity in the temporal lobe are not necessarily distributed 
over large cortical areas. Thus speaker recognition could involve both local as well as distributed representations 
depending in particular on the relevant stimulus features.

Note that the above results should be interpreted with caution: the face (or voice) classification observed 
here does not necessarily imply face (or voice) identity classification. Previous studies having examined identity 
classification have used multiple stimuli for each identity (e.g., faces viewed from different viewpoints; speakers 
pronouncing different words) such that the classifier had to generalize over several different instances of the 
identity—in effect solving the invariance problem our brain is confronted with when assessing identity19–22,24,25. 
Here we only used a single stimulus per modality per identity, such that accurate face or voice classification by a 
classifier does not imply that this classifier could generalize to other stimuli from the same identity. We tested for 
low-level stimulus classification, not higher-level identity classification. Of course, this limitation disappears when 
training and testing sets correspond to stimuli from different modalities (cf. below).

The first clue towards multi-modality in cortical representations of identity comes from the overlap of the 
(within-modality) face and voice classification maps. All participants showed such areas of overlap of face and 
voice classification in which local fMRI clusters resulted in above-chance classification for both faces and voices 
with right pSTS being the only region consistently located across participants (Fig. 2). This result is consistent with 
a growing body of evidence on the multi-modal nature of stimulus representations in pSTS29–32. Watson et al.12 	
found that areas in pSTS show comparable BOLD signal increases compared to baseline when participants were 
stimulated with faces or voices12. Right pSTS was also highlighted in the first report of cross-modal adaptation 
in processing facial and vocal expressions of emotion: activity in this area measured in response to emotional 
face-voice was greater when the emotion expressed by the face of a stimulus was different from the emotion 
expressed by the voice of previous stimulus and smaller when the facial and vocal emotions were similar33. 

Cortical Area X Y Z Cluster size Classification

Within-Modality Classification

  Left Fusiform Gyrus −​38 −​72 −​14 12 Face

  Left Posterior Temporal −​44 −​64 6 23 Voice

  Left STS −​58 −​30 −​2 35 Voice

  Right Inferior Temporal Gyrus 50 −​58 −​12 43 Face

  Right Middle Temporal Gyrus 60 −​28 −​14 6 Voice

  Right Middle Temporal Gyrus 54 −​30 −​4 7 Voice

  Right Posterior STS/STG 52 −​64 14 50 Face, Voice

Across-Modality Classification

  Left Inferior Frontal Gyrus −​50 16 6 74 Both directions

  Left Inferior Temporal Gyrus −​54 −​58 −​6 15 Face->​Voice

  Left Superior Temporal Sulcus −​54 −​6 −​14 32 Both directions

  Left Middle Temporal Gyrus −​54 −​34 −​2 52 Face->​Voice

  Left Middle Temporal Gyrus −​58 −​58 10 23 Both directions

  Right Supramarginal Gyrus 66 −​26 28 13 Voice->​Face

  Right Inferior Temporal Gyrus 48 −​68 −​8 34 Both directions

  Right Inferior Temporal Gyrus 64 −​36 −​14 19 Voice->​Face

  Right Middle Temporal Gyrus 54 0 −​20 23 Face->​Voice

  Right Middle Temporal Gyrus 66 −​40 4 29 Both directions

  Right Superior Temporal Sulcus 64 −​24 −​4 19 Both directions

  Right Superior Temporal Pole 48 16 −​18 24 Voice->​Face

Table 1.   Classification peaks. For each cluster of sphere centers resulting in above-chance (q <​ 0.01 FDR) 
classification accuracy in 4 or 5 participants are given approximate cortical area names, MNI coordinates (in 
mm), cluster size (in voxels) and type of classification.
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Together, these results highlight right pSTS as an important region of convergence of the visual and auditory 
streams of person-related information processing.

The most novel result of the present study is our observation of cross-modal classification of identity in several 
areas of cortex. We show for the first time that training SVM classifiers with BOLD signal read from local clusters 
of fMRI voxels in response to identities presented in one modality can successfully decode the same identities 
presented in the other modality.

Most such cross-classifying areas were found along the STS/MTG bilaterally, consistent with the notion of a 
stream of person-related information processing directed towards anterior temporal lobe2. Unexpectedly right 
pSTS does not appear in the group-level map. Cross-classifying clusters are found in the right pSTS at the indi-
vidual level (in all subjects except P3, cf. Figure S1) but less consistently located across subjects than clusters 
located more inferiorly and anteriorly and so not appearing on the coincidence map. Why the anterior temporal 
poles were not observed in our results, despite their likely involvement in multimodal/amodal representations of 
individuals1, remains unclear. This is unlikely due to signal-to-noise ratio differences in anterior compared to pos-
terior temporal regions22 as we found above-chance classification for other classification schemes in some quite 
anterior temporal lobe clusters (Fig. 2). We also observed identity cross-classification in left inferior prefrontal 
cortex. Although this region is not typically part of identity-processing areas, it could reflect the local processing 
of linguistic information accessible from both face and voice modalities: the persons’ names. Indeed, several 
aspects of the stimuli and task performed by the participants other than identity processing could account for 
some of the results observed, including covert naming of the familiar persons viewed or heard, as well as recall 
of semantic information and episodic memories associated with these persons. It is probably those aspects of the 
experimental task that are reflected by the involvement of the inferior frontal gyrus and supra-marginal gyrus 
(Table 1).

Importantly, the limitations of a single stimulus per identity per modality discussed above do not bear on the 
interpretation of the cross-modal results: the training and test sets of fMRI data were acquired not just on differ-
ent stimuli from the same identities, as has been performed by other ‘unimodal’ studies19–22,24,25 but on different 
stimuli in different sensory modalities – arguably a more complex generalization problem than that posed by 
different person-related stimuli in the same modality26. So the cross-classification observed here is a ‘true’ identity 
classification, as opposed to the stimulus classification of our within-modality results.

This evidence, combined with previous results, provides crucial novel insight into the nature of the representa-
tion of person-related information in the human brain. The format of person representation in some cortical areas 
appears abstracted enough from the input modality as to allow correspondence between different modalities. In 
some areas cross-classification only worked in a single direction, but most of these cross-classifying cluster com-
bined slightly different regions that cross-classified in the two opposite directions (face to voice, and voice to face).

These results are suggestive of a hierarchy of representations of person-related information with increasingly 
abstract, modality-free representations. Person representations starting in unimodal areas of visual and audi-
tory cortex would be tied to a sensory modality, possibly allowing classification of different stimuli from a same 
identity but only in that modality. These representations would be characterized by a first point of convergence 
in right pSTS, in which the representations in the different modalities would start to become merged, possibly 
via an increasing proportion of multimodal neurons33 in this area located at the junction of auditory and visual 
processing streams. These representations would then become increasingly abstracted from the input modal-
ity along a rostro-caudal stream along STS/middle temporal gyrus possibly directed towards the anterior tem-
poral lobes2: such modality-free, or amodal, representations of identity would in particular be able to support 
cross-classification of identity.

Overall, our results are consistent with a distributed cerebral PIN, implemented as a series of representa-
tions increasingly abstracted from the input modality ranging from unimodal (in visual and auditory cortex), to 
multi-modal (in right pSTS), to amodal, possibly oriented along STS/MTG. The recognition of individuals based 
on their face and voice would flexibly emerge from the complex, multidirectional interactions between these dif-
ferent representations as a function of information conveyed by each modality, context, etc. Future studies com-
bining large-scale neuroimaging techniques with local recordings and/or perturbation of single-cell or population 
activity in animal models, including careful examination of effective connectivity between the different areas, will 
be key to precise the exact mechanisms underlying such hierarchy at the neuronal level2.

Methods
Participants.  Five healthy volunteers participated in this study (Four females and one male, mean age ±​ s.d.: 
26.8 ±​ 2.4 years). All participants were members of the Institute of Neuroscience and Psychology at Glasgow 
University. They had self-reported correct hearing and vision with no history of any hearing, visual or neurolog-
ical conditions. The ethics committee at the Institute of Neuroscience and Psychology approved the study which 
was conducted in accordance with the guidelines from the British Psychological Society. Participants provided 
written informed consent and were compensated £6 per hour for their time.

Stimuli.  Four speakers were recorded for this study (two males and two females) in a sound proof room 
under standard studio lighting condition. Speakers faced the camera directly and at a distance sufficient to show 
the whole face in the frame. Videos were recorded at a 25 frames/sec rate with a resolution of 640 ×​ 480 pixels 
using a HD Sony camcorder. Audio was recorded at a sampling rate of 48 kHz and a 16 bits per sample resolu-
tion using an M300 condenser microphone (Microtech Gefell GmbH, Germany). All speakers were members of 
the Institute and familiar to all the participants via daily interaction over the course of several months or years. 
The speakers were recorded uttering the syllable “had”. Only one recording per speaker was used in the experi-
ment. iMovie (Apple Inc.) was used to crop the stimuli to 400 with average delay between face and voice onset at 
52 ±​ 19 ms (face leading voice). As a result three versions of the stimuli were produced: I) Voice: only the audio 
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is presented. II) Face: only the silent video is presented. III) Face-Voice: the audio-visual stimulus is presented 
without modification.

Stimuli were presented in the scanner using Media Control Functions (DigiVox, Montreal, Canada) via elec-
trostatic headphones (NordicNeuroLab, Norway). Sound pressure level was set at 80 dB SPL(C) as measured 
using a Lutron Sl-4010 sound level meter. Once the participants were installed in the scanner they were presented 
with sound samples to verify that the sound pressure level was balanced and loud enough to compensate for the 
scanner noise.

Experiment Design and Task.  Each identity (n =​ 4) was presented in the three different conditions: Voice, 
Face, and Face-Voice, resulting in 12 conditions in total. Participants were presented with a stimulus correspond-
ing to one of the four identities in a randomized order, and participants were instructed to classify the identity of 
the stimulus by pressing one of four buttons with the right hand. No feedback was given to the participant. The 
experiment was controlled using Matlab (The Mathworks, Inc, USA) and Psychtoolbox34. Participants were given 
time to practice the experiment and the mapping between buttons and identities before entering the scanner.

Experimental design followed a slow event-related paradigm to minimize contamination of consecutive 
hemodynamic responses, and hence minimize any potential cross talk between BOLD responses to the V and F 
stimuli. Inter-stimulus interval was set randomly between 10 and 18 seconds with the onset of the stimuli locked 
to BOLD volume acquisition.

Data were recorded from each participant over several sessions each containing 6–8 blocks (number of total 
blocks per participant (mean ±​ s.d.): 29.2 ±​ 5.4). Each block lasted around 8 minutes with each condition pre-
sented twice. Two-minute breaks were given between each two consecutive blocks, during which the participants 
were instructed not to move their head. Overall 700.8 ±​ 129.7 trials were presented corresponding to the 4 iden-
tities and three modalities for each participant.

Participants were instructed to perform a 4-alternative forced choice identity classification task using 4 but-
tons of an MR compatible response pad (NordicNeuroLab, Norway). Reaction times (relative to sound onset for 
V condition and face onset for F and FV conditions) were collected within a response window limited to two 
seconds after stimulus onset.

fMRI Data Acquisition.  Scanning was carried out in the Centre for Cognitive Neuroimaging at the 
University of Glasgow. A 3-Tesla Siemens (Erlangen, Germany) TIM Trio scanner was used with a 32-channel 
head coil.

Functional Scans.  High spatial resolution (2 ×​ 2 ×​ 2 mm3) functional images of the whole brain were col-
lected. A relatively long TR was used (TR =​ 3.6 s) to ensure full coverage of the brain. Echo time (TE) =​ 39 ms, 
flip angle =​ 82 degrees, slices =​ 51 ×​ 2 mm thickness ×​ 10% gap, field of view (FOV) =​ 192 mm, matrix =​ 96 ×​ 96, 
iPAT acceleration factor =​ 2, maximum number of volumes =​ 140, and maximum acquisition time (TA) =​ 8 min 
36 seconds. The first 10 seconds of the functional run consisted of “dummy” gradient and radio frequency pulses 
to allow for steady state magnetization during which no stimuli were presented and no fMRI data collected.

Anatomical Scans.  High-resolution (1 ×​ 1 ×​ 1 mm3) T1-weighted structural images were collected, once on 
every session. The scan had 192 axial slices with a 256 ×​ 256 voxels grid and TR =​ 1900, TE =​ 2.92 ms and time 
to inversion =​ 900 ms.

fMRI Data Analysis.  Preprocessing Data were analysed using Statistical Parametric Mapping (SPM8, 
Wellcome Trust Centre for Neuroimaging) in Matlab. All functional and anatomical images from all the ses-
sions were reoriented in the AC-PC orientation. The volumes in every block were realigned to the first volume 
in the session to correct for participant motion. T1-weighted anatomical image was then co-reregistered to the 
mean volume of all the sessions (generated in the previous step). No normalisation to the Montreal Neurological 
Institute (MNI) space or smoothing was applied for MVPA analysis at the individual participant level.

Univariate analysis.  A general linear model (GLM) was built for each individual participant’s data as imple-
mented in SPM8. Designing the regressors of the GLM with the aim of using the resulting beta parameters in 
the MVPA framework requires a careful balance between the number of regressors, and hence betas, and quality 
of the estimated model. Using one regressor per trial would result in more beta parameters, i.e. more samples to 
train and decode, however this usually results in poor estimates of the parameters. On the other extreme having 
few regressors will generate more robust estimates, but with very few samples for classification. In this study we 
piloted with several choices of the regressors and we found that a reasonable balance can be achieved by using one 
regressor per condition per block, i.e. two trials are combined per regressor. The grey matter tissue probability 
maps generated by the segmentation processing stage were used as explicit masks to restrict the data analysis 
to grey matter. For each participant the following univariate contrasts were calculated: three T-tests for Face vs. 
baseline, Voice vs. baseline and Face-Voice vs. baseline; three F-tests comparing the four identities for each pres-
entation condition.

Multivariate analysis.  The main GLM design resulted in a dataset with 350.4 ±​ 64.84 beta images per partici-
pant covering the 12 conditions. To decode these samples a whole-brain searchlight paradigm was used23. In this 
approach cross-validated classification is carried out at the level of a small sphere scanning the whole brain. As 
a result each voxel in the output image contains the average cross-validation accuracy of the sphere centered on 
it. In order to choose a consistent number of voxels per sphere among all participants different sphere radiuses 
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were tested, between 3 and 8 voxels. For our dataset, a 4-voxel radius (8 mm) produced the most consistent voxel 
number per sphere (21.74 ±​ 1.43). Using a relatively smaller sphere ensures the classifier is less likely to over-fit 
on training samples due to a good balance between the number of samples (observations) and the number of 
voxels within the sphere (features). The number of samples is large enough compared to their dimensionality so 
the samples are not too sparse in the feature space35. The searchlight analysis covered the whole brain, but a sphere 
was only considered in the analysis if more than 50% of its voxels fell within the grey matter mask of the subject 
being analysed, in order to restrict analysis to grey matter across the whole brain in each subject. The number of 
spheres included in the analysis was (mean ±​ s.d.) n =​ 46500 ±​ 6400. In each sphere the cross-validation analysis 
only included as features the voxels corresponding to grey matter, the rest being discarded.

Each participant’s data were grouped into training (80% of samples) and testing (the remaining 20%) sets. 
The training samples were chosen randomly and were then used to train a linear Support Vector Machine (SVM) 
classifier (as implemented by libSVM) to decode the four identities from the samples in the testing set. This 
process is then repeated 100 times and the average accuracy value is assigned to the voxel in the centre of the 
sphere. SVM is usually able to solve only two class problems. In order to extend it to 4-class problems, we used the 
one-versus-one approach as implemented in libSVM36.

Empirical Chance Level.  In theory the chance level is c =​ 1/n, where n is the number of classes (c =​ 0.25 in this 
study). However, practically the chance level might differ due to the structure of the data or bias in the labelling 
that affects the training of the classifier. To address this issue an empirical chance level (c’) must be estimated. For 
each sphere the labels of the training set were shuffled, i.e. samples were assigned wrong labels, before feeding 
them to the classifier. The classifier was then tested on the test dataset. This step is usually repeated a large number 
of times (>​1000) to estimate the distribution of the chance level per voxel. However, due to the large number of 
spheres, this was impractical. Here, we only ran the chance level estimation 100 times per sphere as we were only 
interested in the mean value of the empirical chance level.

Significance test.  The empirical chance level estimated per sphere was used in conjunction with a two-tailed 
binomial test22,37. The resulting p-value maps were thresholded at an FDR q-value of 0.01 to correct for multiple 
comparisons. The surviving voxels are then clustered, using xjview (http://www.alivelearn.net/xjview), and only 
clusters with more than 20 voxels were considered in the final accuracy maps.

Group Level.  We decided to collect large numbers of samples in a small number of participants: this allowed us 
enough statistical power to perform analyses at the single-participant level. As a consequence of the small number 
of subjects, we decided not to run random effect analyses at the group level, which would be underpowered, but 
rather to examine voxel clusters located in consistent locations across participants using coincidence maps: the 
non-clustered, FDR corrected individual accuracy maps were normalized to MNI space and a voxel was included 
in the group image if it was significant in at least 4 out of the 5 of participant maps.

This multivariate approach was repeated for four different conditions: (1) Face Classification: only beta 
images corresponding to face stimuli were classified; (2) Voice Classification: only beta images corresponding to 
voice stimuli were classified; (3) Face-Voice Cross-Classification: Face-related beta images were used for train-
ing while Voice-related beta images were used for testing within the cross-validation paradigm; (4) Voice-Face 
Cross-Classification: Voice-related beta images were involved in training the classifier while the Face-related beta 
images were used to test the classifier. The first two conditions were termed “within modality classification” and 
the last two conditions were termed “cross-modality classification”.
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