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In this work, we consider a one-dimensional Itô diffusion process X t with possibly nonlinear drift and diffusion coefficients. We show that, when the diffusion coefficient is known, the drift coefficient is uniquely determined by an observation of the expectation of the process during a small time interval, and starting from values X 0 in a given subset of R. With the same type of observation, and given the drift coefficient, we also show that the diffusion coefficient is uniquely determined. When both coefficients are unknown, we show that they are simultaneously uniquely determined by the observation of the expectation and variance of the process, during a small time interval, and starting again from values X 0 in a given subset of R. To derive these results, we apply the Feynman-Kac theorem which leads to a linear parabolic equation with unknown coefficients in front of the first and second order terms. We then solve the corresponding inverse problem with PDE technics which are mainly based on the strong parabolic maximum principle.

Introduction

We consider one-dimensional Itô diffusion processes X t ∈ R satisfying stochastic differential equations of the form:

dX t = b(X t ) dt + σ(X t )dW t , t ∈ [0, T ]; X 0 = x, (1.1) 
where T > 0, W t is the one-dimensional Wiener process and b : R → R, σ : R → R, σ > 0, are Lipschitz-continuous functions. Under these assumptions, the solution of the equation (1.1) is unique in the sense of theorem 5.2.1 in [START_REF]Stochastic differential equations[END_REF]. The term b(X t ) dt can be interpreted as the deterministic part of the equation, while σ(X t )dW t is the stochastic part of the equation. In the sequel, the functions b and σ are called the drift term and diffusion term, respectively. These equations arise in several domains of applications, such as biology, physics and financial mathematics. We detail below some classical forms of the functions b and σ: [START_REF]Stochastic differential equations[END_REF] in Ornstein-Uhlenbeck processes, b(X t ) = θ (µ -X t ) and σ(X t ) = σ = cte with µ ∈ R and θ, σ > 0. Ornstein-Uhlenbeck processes describe a noisy relaxation with equilibrium µ. They find applications in physics [START_REF] Van Den Bosch | Analysing the velocity of animal range extension[END_REF], financial mathematics [START_REF] Nicolato | Option pricing in stochastic volatility models of the ornstein-uhlenbeck type[END_REF] and biology [START_REF] P E Smouse | Stochastic modelling of animal movement[END_REF]; [START_REF] Van Den Bosch | Analysing the velocity of animal range extension[END_REF] in the two types Wright-Fisher gene frequency diffusion model with selection and genetic drift effects, b(X t ) = X t [m 1 -(m 1 X t + m 2 (1 -X t ))] and σ(X t ) = 1 Ne X t (1 -X t ), for some constants m 1 , m 2 , N e ; this is one of the most standard model in population genetics [START_REF] Ewens | Theoretical Introduction[END_REF]; [START_REF] Nicolato | Option pricing in stochastic volatility models of the ornstein-uhlenbeck type[END_REF] in Geometric Brownian motion, b(X t ) = αX t and σ(X t ) = βX t . This equation is used in finance, with non-constant coefficients α, β, to model stock prices in the Black-Scholes model. The term α is interpreted in this case as the percentage drift and β the percentage volatility [START_REF] John | Options, futures, and other derivatives[END_REF]. The determination of the volatility is an important question in finance, and is generally addressed numerically based on observations of the prices of financial options [START_REF] Lishang | Identifying the volatility of underlying assets from option prices[END_REF][START_REF] Deng | An inverse problem of determining the implied volatility in option pricing[END_REF]; see also [START_REF] Bouchouev | Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets[END_REF] for a uniqueness result based on the same type of observations.

The aim of our study is to determine the drift term b and the diffusion term σ for general equations of the form (1.1), based on observations of the stochastic process X t . Equivalently, this means showing the uniqueness of the coefficients b and σ which lead to a solution that matches with the given observation. The main type of observation that we consider is the expectation E

x [f (X t )] = E[f (X t )|X 0 = x],
of some function of the stochastic process X t , for instance a momentum if f (s) = s k for some k ≥ 0. The observation is carried out during a small time interval and for initial conditions X 0 in a small subset of R. In that respect we use parabolic partial differential equation (PDE) technics inspired from the theory of inverse problems.

The Itô diffusion processes are related to PDEs by the Feynman-Kac theorem (see e.g. theorem 8.1.1 in [START_REF]Stochastic differential equations[END_REF]). Consider a function

f ∈ C 2 (R) such that |f (x)| ≤ C e δx 2 , (1.2) 
for δ > 0 small enough and some C > 0. Define

u(t, x) = E x [f (X t )] = E [f (X t )|X 0 = x] , (1.3) 
where X t is the solution of (1.1) with X 0 = x. The Feynman-Kac theorem implies that u is the unique solution in C 2 1 (R + × R) of:

∂ t u = 1 2 σ 2 (x)∂ xx u + b(x)∂ x u, t ≥ 0; u(0, x) = f (x). (1.4)
For parabolic equations of the form (1.4), several inverse problems have already been investigated. In all cases, the main question is to show the uniqueness of some coefficients in the equation, based on exact observations of the solution u(t, x), for (t, x) in a given observation region O ⊂ [0, +∞) × R. Furthermore, one of the most challenging goal is to obtain such uniqueness results using the smallest possible observation region. Most uniqueness results in inverse problems for parabolic PDEs have been obtained using the method of Carleman estimates [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF] on bounded domains. This method requires, among other measurements, the knowledge of the solution u(τ, x) at some time τ > 0 and for all x in the domain [START_REF] Yamamoto | Simultaneous reconstruction of the initial temperature and heat radiative coefficient[END_REF][START_REF] Belassoued | Inverse source problem for a transmission problem for a parabolic equation[END_REF][START_REF] Cristofol | Biological invasions: Deriving the regions at risk from partial measurements[END_REF][START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF][START_REF] O Y Immanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF][START_REF] Cristofol | Stable estimation of two coefficients in a nonlinear fisher-kpp equation[END_REF]. Other approaches are based on a semi-group formulation of the solutions, but use the same type of observations of the solution on the whole domain, at a given time [START_REF] Choulli | Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation[END_REF]. More recent approaches [START_REF] Roques | On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation[END_REF][START_REF] Cristofol | Uniqueness from pointwise observations in a multi-parameter inverse problem[END_REF][START_REF] Roques | The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system[END_REF][START_REF] Roques | Parameter estimation for energy balance models with memory[END_REF] lead to uniqueness results for one or several coefficients, under the assumption that u and its first spatial derivative are known at a single point x 0 of a bounded domain, and for all t in a small interval (0, ε), and that the initial data u(0, x) is known over the entire domain. On the other hand, the case of unbounded domains is less addressed (see [START_REF] Cristofol | Coefficient determination via asymptotic spreading speeds[END_REF]).

Here, contrarily to most existing approaches, (i) the domain is unbounded; (ii) we determine simultaneously two coefficients in front of a second and a first order term in the PDE; (iii) our results are interpreted in terms of nonlinear stochastic diffusion processes. As in the above-mentioned studies [START_REF] Roques | On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation[END_REF][START_REF] Cristofol | Uniqueness from pointwise observations in a multi-parameter inverse problem[END_REF][START_REF] Roques | The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system[END_REF][START_REF] Roques | Parameter estimation for energy balance models with memory[END_REF], we assume that the observation set reduces to a neighborhood of single point x 0 , during a small time interval.

Our manuscript is organized as follows. In Section 2 we detail our assumptions on the unknown coefficients and on the observations and we state our main results. In Section 3 we prove the uniqueness results stated in Theorem 2.1 , Theorem 2.2 and Theorem 2.3.

Assumptions and main results

Observations. We consider two main types of observations. Let ε ∈ (0, T ) and ω an open and nonempty subset in R. The observation sets are either of the form

O f [X t ] = {E x [f (X t )], for t ∈ (0, ε) and x ∈ ω}, (2.5) 
for some function f satisfying the assumptions (1.2) of Feynman-Kac theorem, or of the form

O k [X t ] = {E x [(X t ) k ], for t ∈ (0, ε) and x ∈ ω}, (2.6) 
for k = 1, 2. In both cases, ε > 0 and ω can be chosen as small as we want.

For the sake of simplicity, and with a slight abuse of notation, for two processes X and X, we say that

O f [X t ] = O f [ Xt ] (resp. O k [X t ] = O k [ Xt ]) if and only if E x [f (X t )] = E x [f ( Xt )] (resp. E x [(X t ) k ] = E x [( Xt ) k ] for k = 1, 2)
, for all t ∈ (0, ε) and x ∈ ω.

Unknown functions. We assume that the unknown functions belong to the function space:

M := {ψ is Lipschitz-continuous and piecewise analytic in R}.

(2.7)

A continuous function ψ is called piecewise analytic if there exist n ≥ 1 and an increasing sequence (κ j ) j∈Z such that lim

j→-∞ κ j = -∞, lim j→+∞ κ j = +∞, κ j+1 -κ j >
δ for some δ > 0, and

ψ(x) = j∈Z χ [κ j ,κ j+1 ) (x)ϕ j (x), for all x ∈ R;
here ϕ j are some analytic functions defined on the intervals [κ j , κ j+1 ], and χ [κ j ,κ j+1 ) are the characteristic functions of the intervals [κ j , κ j+1 ) for j ∈ Z.

In practice, the assumption ψ ∈ M is not very restrictive. For instance, the set of piecewise linear functions in R is a subset of M.

Main results. Our first result states that, whenever σ is known, the coefficient b in (1.1) is uniquely determined by an observation of the type O f . 

( Xt ) dt + σ( Xt )dW t , t ∈ [0, T ]; X0 = x. Assume that f ′ = 0 in R and O f [X t ] = O f [ Xt ]. Then, b ≡ b in R.
An important and easily interpretable observation is the expectation of the process X t during a small time interval and for all X 0 = x in any small set ω ⊂ R by choosing f (x) = x, x ∈ R.

Our second result allows to uniquely determine, whenever b is known, the coefficient σ in (1.1), which is a coefficient from the principal part (second order term) of the equation (1.4). 

( Xt ) dt + σ( Xt )dW t , t ∈ [0, T ]; X0 = x. Assume that f ′′ = 0 in R and O f [X t ] = O f [ Xt ]. Then, σ ≡ σ in R.
Determining several coefficients of parabolic PDEs is generally far more involved than determining a single coefficient. It requires more and well-chosen observations. For instance, four coefficients of a Lotka-Volterra system of parabolic equations have been determined in [START_REF] Roques | The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system[END_REF], based on the observation of one component of the solution, starting with three different initial conditions. See also [START_REF] Cristofol | Stable estimation of two coefficients in a nonlinear fisher-kpp equation[END_REF][START_REF] Choulli | Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation[END_REF] for other results on simultaneous determination of several coefficients, with different methods. Here, our third result shows that, if the first momentum (expected value) and the second momentum of X t are observed during a small time interval and for X 0 = x in a small set ω ⊂ R, then both coefficients b and σ in (1.1) are uniquely determined. An immediate corollary of Theorem 2.3 is that b and σ are uniquely determined by the observation of the expectation E x [X t ] and variance V

x [X t ] = E x [X 2 t ] -(E x [X t ]) 2
of the process X t during a small time interval and for all X 0 = x in a small set ω ⊂ R. More precisely, define the set

O v [X t ] = {V x [X t ], for t ∈ (0, ε) and x ∈ ω}, (2.8) 
we have the following result. 

( Xt ) dt + σ( Xt )dW t , t ∈ [0, T ]; X0 = x, respectively. Assume that O 1 [X t ] = O 1 [ Xt ] and O v [X t ] = O v [ Xt ].
O ′ f [X t ] = {E x 0 [f (X t )], ∂ x E x [f (X t )] |x=x 0 , for t ∈ (0, ε)}, (2.9) 
and

O ′ ,k [X t ] = {E x 0 [(X t ) k ], ∂ x E x [(X t ) k ] |x=x 0 , for t ∈ (0, ε)}, (2.10) 
for k = 1, 2, all of the results of our theorems and corollary can still be obtained, by using the Hopf 's Lemma in addition to the strong parabolic maximum principle. See the footnote in the proof of Theorem 2.1.

Proofs

Proof of Theorems 2.1 and 2.2

We begin with the proof of Theorem 2.1. Let us define, for all t ∈ [0, T ) and

x ∈ R, u(t, x) = E x [f (X t )] = E [f (X t )|X 0 = x] , ũ(t, x) = E x [f ( Xt )] = E[f ( Xt )|X 0 = x]. (3.11)
As mentioned in the Introduction, the Feynman-Kac theorem implies that u and ũ are respectively the unique solutions of:

∂ t u = 1 2 σ 2 (x)∂ xx u + b(x)∂ x u, t ∈ [0, T ), x ∈ R; u(0, x) = f (x), (3.12) 
and Then U(t, x) satisfies

∂ t ũ = 1 2 σ 2 (x)∂ xx ũ + b(x)∂ x ũ, t ∈ [0, T ), x ∈ R ũ(0, x) = f (x). ( 3 
∂ t U = 1 2 σ 2 (x)∂ xx U + b(x)∂ x U + B(x) ∂ x ũ, t ∈ [0, T ), x ∈ R, (3.14) 
and U(0, x) = 0 for all x ∈ R. Let x 0 ∈ ω. As B ∈ M is piecewise analytic, we can define

x 1 = sup{x > x 0 such that B has a constant sign on [x 0 , x]}.
By "constant sign", we mean that either B ≥ 0 on [x 0 , x] or B ≤ 0 on [x 0 , x]. Assume (by contradiction) that there exists x 2 ∈ (x 0 , x 1 ) such that |B(x 2 )| > 0. From the definition of x 1 , we know that B has a constant sign in (x 0 , x 2 ). As ∂ x ũ(0, x) = f ′ (x) = 0 on the compact set [x 0 , x 2 ] and from the regularity of ũ (see theorem 8.2.1 in [START_REF]Stochastic differential equations[END_REF]), there exists

ε ′ ∈ (0, ε) such that ∂ x ũ(t, x) has a constant sign on [0, ε ′ ) × [x 0 , x 2 ]. Finally, B(x) ∂ x ũ, has a constant sign in (0, ε ′ ) × [x 0 , x 2 ].
Without loss of generality, we can assume that:

B(x) ∂ x ũ ≥ 0 for (t, x) in [0, ε ′ ) × [x 0 , x 2 ]. (3.15) 
Computing (3.14) at t = 0 and x = x 2 , and using the equality U(0, x) = 0 we get ∂ t U(0, x 2 ) = B(x 2 ) ∂ x ũ(0, x 2 ) ≥ 0 (from (3.15)). Besides, from the assumption |B(x 2 )| > 0 and f ′ (x 2 ) = 0, we know that the inequality is strict:

∂ t U(0, x 2 ) = B(x 2 ) f ′ (x 2 ) > 0. Thus, (even if it means reducing ε ′ > 0), U(t, x 2 ) > 0 for t ∈ (0, ε ′ ). (3.16) Using the assumption O f [X t ] = O f [ Xt ] of Theorem 2.
1, and from the definition of u, ũ and U = u -ũ, we have:

U(t, x) ≡ 0 in [0, ε) × ω. (3.17) 
In particular, U(t, x 0 ) = 0 for all t ∈ (0, ε ′ ). Setting LU = 1 2 σ 2 (x)∂ xx U + b(x)∂ x U, and summarizing the properties (3.15)-(3.17), we get:

       ∂ t U -LU ≥ 0, t ∈ (0, ε ′ ), x ∈ (x 0 , x 2 ), U(t, x 0 ) = 0, U(t, x 2 ) > 0, t ∈ (0, ε ′ ), U(0, x) = 0, x ∈ (x 0 , x 2 ). (3.18) 
The strong parabolic maximum principle then implies that U(t, x) > 0 in (0, ε ′ ) × (x 0 , x 2 ). This contradicts (3.17) 1 ; as a consequence, B ≡ 0 in (x 0 , x 1 ). From the definition of x 1 and the piecewise analyticity of B, this implies that x 1 = +∞, thus B ≡ 0 in (x 0 , +∞). Using the same arguments with x - 1 = inf{x < x 0 such that B has a constant sign on [x, x 0 ]} instead of x 1 , we easily see that B ≡ 0 in (-∞, x 0 ), and consequently, B ≡ 0 in R. This concludes the proof of Theorem 2.1.

The proof of Theorem 2.2 is very similar to that of Theorem 2.1.

Proof of Theorem 2.3

In this case, the proof is more involved. Indeed, we reconstruct simultaneously two coefficients from the principal part and the first order term in equation (1.4) and this implies to repeat the observations and to consider adapted weight functions

1 If (3.17) was replaced by U (t, x 0 ) = ∂ x U (t, x 0 ) = 0 for t ∈ [0, ε), a similar contradiction could be obtained by using the Hopf's Lemma (theorem 14 p. 190 in [START_REF] Protter | Maximum Principles in Differential Equations[END_REF]), as it implies that

∂ x U (t, x 0 ) = 0.
in the form (2.6). As in the proof of Theorem 2.1, we define, for all t ∈ [0, T ) and x ∈ R, and for f (s) = s k ,

u(t, x) = E x [f (X t )] = E[f (X t )|X 0 = x], ũ(t, x) = E x [f ( Xt )] = E[f ( Xt )|X 0 = x], (3.19) 
and u and ũ are respectively the unique solutions of:

∂ t u = 1 2 σ 2 (x)∂ xx u + b(x)∂ x u, t ∈ [0, T ), x ∈ R; u(0, x) = f (x), (3.20) 
and

∂ t ũ = 1 2 σ2 (x)∂ xx ũ + b(x)∂ x ũ, t ∈ [0, T ), x ∈ R ũ(0, x) = f (x). (3.21) Define B(x) = b(x) -b(x), Σ(x) = 1 2 (σ 2 (x) -σ2 (x))
, and U(t, x) = u(t, x) -ũ(t, x).

Then U(t, x) satisfies

∂ t U - 1 2 σ 2 (x)∂ xx U -b(x)∂ x U = B(x) ∂ x ũ + Σ(x) ∂ xx ũ, t ∈ [0, T ), x ∈ R, (3.22) 
and U(0, x) = 0 for all x ∈ R. Let x 0 ∈ ω. We define:

x * B = sup{x > x 0 such that B ≡ 0 on [x 0 , x]}, x * Σ = sup{x > x 0 such that Σ ≡ 0 on [x 0 , x]}.

(3.23)

Then, four cases may occur.

Case 1: we assume that x * B < x * Σ . Using the piecewise analyticity of B, and from the definition of x * B , we obtain the existence of some x 2 ∈ (x * B , x * Σ ) such that B(x) = 0 for all x ∈ (x * B , x 2 ], i.e., B has a constant strict sign in (x * B , x 2 ]. Moreover, Σ(x) = 0 for all x ∈ (x * B , x 2 ], thus U satisfies:

∂ t U -LU = B(x) ∂ x ũ, t ∈ [0, T ), x ∈ (x 0 , x 2 ), (3.24) 
where

LU := 1 2 σ 2 (x)∂ xx U + b(x)∂ x U. Take k = 1 in the definition of f (s) = s k . We have ∂ x ũ(0, x) = f ′ (x) = 1 for all x ∈ R, which implies that there exists ε ′ ∈ (0, ε) such that ∂ x ũ(t, x) is positive on [0, ε ′ ) × [x 0 , x 2 ]
. Finally, the term B(x) ∂ x ũ in the right hand side of (3.24) has a constant sign in (0, ε ′ ) × [x 0 , x 2 ]. Without loss of generality, we can assume that:

B(x) ∂ x ũ ≥ 0 for (t, x) in [0, ε ′ ) × [x 0 , x 2 ].
(3.25)

We then observe that ∂ t U(0, x 2 ) = B(x 2 ) ≥ 0 and, from the definition of x 2 , the inequality is strict: ∂ t U(0, x 2 ) > 0. Thus, (even if it means reducing ε ′ > 0),

U(t, x 2 ) > 0 for t ∈ (0, ε ′ ). (3.26) Finally, U satisfies        ∂ t U -LU ≥ 0, t ∈ (0, ε ′ ), x ∈ (x 0 , x 2 ), U(t, x 0 ) = 0, U(t, x 2 ) > 0, t ∈ (0, ε ′ ), U(0, x) = 0, x ∈ (x 0 , x 2 ).
(3.27)

From strong parabolic maximum principle U(t, x) > 0 in (0, ε ′ ) × (x 0 , x 2 ). This contradicts the assumption O 1 [X t ] = O 1 [ Xt ] of Theorem 2.3. Thus, Case 1 is ruled out.

Case 2: we assume that x * B > x * Σ . With the same type of arguments as in Case 1, we obtain the existence of some x 2 ∈ (x * Σ , x * B ) such that Σ(x) = 0 for all x ∈ (x * Σ , x 2 ], i.e., Σ has a constant strict sign in (x * Σ , x 2 ]. Moreover, B(x) = 0 for all x ∈ (x * Σ , x 2 ], thus U satisfies: 

∂ t U -LU = Σ(x) ∂ xx ũ, t ∈ [0, T ), x ∈ (x 0 , x 2 ). ( 3 

Theorem 2 . 1 .

 21 Let b and b in M, σ a strictly positive Lipschitz-continuous function, X t the solution of (1.1), and Xt the solution of d Xt = b

Theorem 2 . 2 .

 22 Let σ and σ > 0 in M, b a Lipschitz-continuous function, X t the solution of (1.1), and Xt the solution of d Xt = b

Theorem 2 . 3 .

 23 Let b, b, σ, σ ∈ M with σ, σ > 0. Consider X t the solution of (1.1), and Xt the solution of d Xt = b( Xt ) dt + σ( Xt )dW t , t ∈ [0, T ]; X0 = x. Assume that O k [X t ] = O k [ Xt ] for k = 1, 2. Then, b ≡ b and σ ≡ σ in R.

Corollary 2 . 4 .

 24 Let b, b, σ, σ ∈ M. Consider X t the solution of (1.1), and Xt the solution of d Xt = b

  .13) Define B(x) = b(x) -b(x), and U(t, x) = u(t, x) -ũ(t, x).

  .28) Take k = 2 in the definition of f (s) = s k . We have ∂ xx ũ(0, x) = f ′′ (x) = 2 for all x ∈ R. Thus, with the same arguments as in Case 1, we get:Σ(x) ∂ xx ũ ≥ 0 for (t, x) in [0, ε ′ ) × [x 0 , x 2 ],(3.29)and ∂ t U(0, x 2 ) > 0. Thus, U again satisfies (3.27), and the strong parabolic maximum principle implies U(t, x) > 0 in (0, ε ′ ) × (x 0 , x 2 ), leading to a contradiction with the assumption O 2 [X t ] = O 2 [ Xt ] of Theorem 2.3. Thus, Case 2 is ruled out.Case 3: we assume thatx * B = x * Σ < +∞. Let us set G(t, x) = B(x) ∂ x ũ + Σ(x) ∂ xx ũ,corresponding to the right-hand side in(3.22). Then, setFrom the analyticity of Σ and B in a right neighborhood of x * B , l * is well-defined and only two situations may occur: either |l * | < +∞ or |l * | = +∞.

Acknowledgements

The research leading to these results has received funding from the ANR within the project NONLOCAL ANR-14-CE25-0013.

Assume first that |l * | < +∞. Take k = 1 in the definition of f (s) = s k . Thus, ∂ x ũ(0, x) = 1 and ∂ xx ũ(0, x) = 0.

(3.30) 

and G(t, x) satisfies the same inequality. Thus, again, U satisfies (3.27), and the strong parabolic maximum principle implies that U(t, x) > 0 in (0, ε ′ ) × (x 0 , x 2 ) and a contradiction with the assumption

Without loss of generality, we assume that Σ > 0 in (x * Σ , x 2 ]. Using (3.31), and since |l * | = +∞, we can define ε ′ ∈ (0, ε) such that

Again, using the strong parabolic maximum principle, we get a contradiction with the assumption O 2 [X t ] = O 2 [ Xt ] of Theorem 2.3. Case 3 is then ruled out. Finally, as Cases 1, 2, 3 are ruled out, we necessarily have x * B = x * Σ = +∞, which show that B ≡ Σ ≡ 0 in (x 0 , +∞). Using the same arguments with (x * B ) -= inf{x < x 0 such that B ≡ 0 on [x, x 0 ]} and (x * Σ ) -= inf{x < x 0 such that Σ ≡ 0 on [x, x 0 ]}, instead of x * B and x * Σ , we also check that B ≡ Σ ≡ 0 in (-∞, x 0 ) and consequently B ≡ Σ ≡ 0 in R which concludes the proof of Theorem 2.3.