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Abstract

We provide a general methodology to study the role of market
distortions on local indeterminacy and bifurcations. We extend the
well-known Woodford (1986) model to account for market distortions,
introducing general specifications for three crucial functions: the real
interest rate, the real wage and the workers’ offer curve. The elastic-
ities of these three functions play a key role on local dynamics and
allow us to identify which types of distortions are the most powerful
for indeterminacy.

Most of the specific market imperfections considered in the related
literature are particular cases of our general framework. Comparing
them we obtain several equivalence results in terms of indeterminacy
mechanisms. We also provide examples of distortions that illustrate
new results. Furthermore we show that, for an elasticity of substitu-
tion between inputs around unity, indeterminacy requires a minimal
degree of distortions. However, the degree of labor market distortions
compatible with that requirement is empirically plausible.
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1 Introduction

In this paper we develop a methodology to study and fully characterize the
role of market distortions on the occurrence of local indeterminacy and bi-
furcations. Several papers have been studying the effects of certain specific
market distortions (linked to externalities, imperfectly competitive markets,
or government intervention) on local dynamics,1 but a systematic analysis
within a general unified framework, able to compare the importance of dif-
ferent types of distortions as a route to indeterminacy and bifurcations, is
still missing. In order to do that we introduce a general framework, able to
account for market distortions without specifying a priori their source, and
highlight the main channels through which indeterminacy occurs.

Although our methodology can be applied to any dynamic general equi-
librium model, the dynamic framework considered in this paper is based on
the perfectly competitive one sector model of a segmented asset economy of
Woodford (1986) and Grandmont et al. (1998).2 Market distortions play a
role on the local stability properties of the steady state because they modify
the elasticities of three crucial functions that characterize our two dimen-
sional equilibrium dynamic system: the real interest rate, the real wage or
equivalently effective consumption per unit of labor, and the generalized offer
curve. We introduce general specifications for these elasticities that allow us
to recover most of the distortions on product, capital and labor markets, and
admit perfect competition as a particular case.

Focusing on not too weak values of the elasticity of capital-labor sub-
stitution,3 we show that, in contrast to the perfectly competitive economy,4

when there are market distortions, indeterminacy and bifurcations may oc-
cur in the presence of sufficiently high capital-labor substitution and labor
supply elasticities. However, in some cases, indeterminacy is ruled out if the
individual labor supply elasticity becomes arbitrarily large, implying that,
by imposing an infinitely elastic labor supply, one may obtain a wrong idea
of the dynamic implications of some distortions. We find that distortions
affecting the real interest rate do not play a major role. On the contray, even
(arbitrarily) small distortions on the offer curve and/or effective consumption

1See the survey by Benhabib and Farmer (1999) and the bibliographic references in
Section 4.

2This is a suitable framework for our purpose, since several papers have introduced
specific market distortons on product and factor markets in this model. These papers
provide examples to apply our general methodology (see Section 4).

3Weak values of this elasticity are not empirically relevant (Hamermesh (1993), Duffy
and Papageorgiou (2000)).

4Indeterminacy only occurs under perfect competition (Woodford (1986), Grandmont
et al. (1998)) for a weak capital-labor substitution.
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promote the occurrence of indeterminacy. However, indeterminacy can only
prevail for values of the elasticity of capital-labor substitution around one
(those considered empirically plausible), under a minimal level of distortions
in the offer curve and/or in effective consumption. Furthermore, distortions
modifying the offer curve affect significantly the emergence of indeterminacy,
leading to new results.

To clarify these findings, we apply our general method to examples of spe-
cific distortions on the product, capital and labor markets, focusing on two
types of results. On one hand, we obtain several equivalence results in terms
of local dynamics and indeterminacy mechanisms. We find that labor and
consumption taxation with a balanced budget are equivalent to consumption
externalities, sharing the same indeterminacy mechanism. Product market
imperfections (due to mark-up variability and taste for variety) can be seen
as particular cases of the framework with positive externalities in produc-
tion, and unemployment benefits with efficiency wages can be recovered as
a particular case of an economy where the desutility of labor is negatively
affected by labor externalities. On the other hand, we also discuss the de-
grees of specific market distortions required for the occurrence of indetermi-
nacy under empirically plausible values (i.e. around one) of the elasticity of
capital-labor substitution. We confirm, focusing on capital income taxation,
that distortions on the capital market do not, per se, promote indeterminacy.
Under output market distortions, indeterminacy may emerge, but requires
parameters configurations at odds with empirical evidence, i.e., too strong
positive externalities in production or high markups. On the contrary, under
labor market distortions (unions, efficiency wages, unemployment benefits,
externalities in preferences), indeterminacy and bifurcations emerge for em-
pirically plausible distortions. Hence, labor market distortions are the most
relevant for indeterminacy.

The rest of the paper is organized as follows. We present our general
framework in Section 2, study the role of distortions on local dynamics in
Section 3, and apply our results to examples with specific market distortions
in Section 4. Section 5 provides concluding remarks. Proofs and technical
details are provided in the Appendix.

2 The model

Our framework extends the perfectly competitive Woodford model to take
into account market imperfections. To ease the presentation we begin with
a brief exposition of this model.

According to the perfectly competitive economy studied by Woodford
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(1986) and Grandmont et al. (1998), in each period t ∈ N∗, a final good is
produced under a constant returns to scale technology AF (Kt−1, Lt), where
A > 0 is a scaling parameter, F (K,L) is a strictly increasing function, con-
cave and homogeneous of degree one in capital, K > 0, and labor, L > 0.
From profit maximization, the real interest rate ρt and the real wage ωt are re-
spectively equal to the marginal productivities of capital and labor, i.e. ρt =
AFK(Kt−1, Lt) ≡ Aρ(Kt−1/Lt) and ωt = AFL(Kt−1, Lt) ≡ Aω(Kt−1/Lt).
There are two types of infinitely-lived consumers, workers and capitalists.
Both can save through two assets, money and productive capital. However,
capitalits are less impatient than workers and do not supply labor, whereas
workers face a finance constraint which prevents them from borrowing against
their wage earnings. Focusing on equilibria where the finance constraint is
binding and capital is the asset with the greatest return, it follows that
only workers hold money (they save all their wage income in money), and
capitalists hold the entire stock of capital. As in Woodford (1986), the be-
haviour of the representative worker can be summarized by the maximization
of U

(
Cw

t+1/B
)
− V (Lt) subject to the budget constraint Pt+1Ct+1 = wtLt,

where Pt is the price of the final good and wt the nominal wage at period t,
Cw

t+1 ≥ 0 the worker’s consumption at period t + 1, B > 0 a scaling para-
meter, V (L) the desutility of labor in L ∈ [0, L∗] and U(Cw/B) the utility
of consumption.5 The solution of this problem is given by the intertemporal
trade-off between future consumption and leisure:

ωt+1Lt+1/B = γ(Lt) (1)

where γ(L) is the usual offer curve and Cw
t+1 = ωt+1Lt+1 at the monetary

equilibrium, with a fixed constant amount of money in the economy.
The representative capitalist maximizes the log-linear lifetime utility func-

tion
∑

∞

t=1 β
t lnCc

t subject to the budget constraint C
c
t + Kt = (1 − δ +

rt/Pt)Kt−1, where C
c
t represents his consumption at period t, β ∈ (0, 1) his

subjective discount factor, rt the nominal interest rate and δ ∈ (0, 1) the
depreciation rate of capital. Solving the capitalist’s problem we obtain the
capital accumulation equation

Kt = β [1− δ + ρt]Kt−1 (2)

A perfectly competitive intertemporal equilibrium is a sequence (Kt−1, Lt)

5It is assumed that U
(
Cwt+1/B

)
is a continuous function of Cwt+1 ≥ 0, and Cr, with

r high enough, U ′ > 0, U ′′ ≤ 0 for Cwt+1 > 0 , and −xU ′′(x)/U ′(x) < 1. Also, V (l) is a
continuous function for [0, L∗], and Cr, with r high enough, V ′ > 0, V ′′ ≥ 0 for (0, L∗).
We also assume that limL→L∗V

′(L) = +∞, with L∗ (the worker’s endowment) possibly
infinite.
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∈ R2++, t = 1, 2, ...,∞, given K0 > 0, satisfying (1) and (2), where ωt =
Aω(Kt−1/Lt) and ρt = Aρ(Kt−1/Lt).

6

We now present our general framework with market distortions, explain-
ing in a second step the main differences with respect to the perfectly com-
petitive case. We propose a more general equilibrium dynamic system, given
by (3)-(4) in Definition 1 below, where ̺t represents the real interest rate rel-
evant to capitalists’ decisions, Γt a generalized offer curve, and ΩtLt effective
consumption. In what follows, we denote by εX,y the elasticity, evaluated at
the steady state, of the function X = {̺,Ω,Γ} with respect to the argument
y = {K,L}, while εγ − 1 � 0 is the inverse of the elasticity of labor supply
of the representative worker with respect to labor, s ∈ (0, 1) the elasticity of
the production function with respect to capital, and σ > 0 is the elasticity
of capital-labor substitution of the representative firm, all evaluated at the
private level and at the steady state.7

Definition 1 A perfect foresight intertemporal equilibrium of the economy
with market distortions is a sequence (Kt−1, Lt) ∈ R

2
++, t = 1, 2, ...,∞, that

for a given K0 > 0 satisfies:

Kt = β [1− δ + ̺t]Kt−1 (3)

(1/B)Ωt+1Lt+1 = Γt (4)

where ̺t ≡ A̺(Kt−1, Lt), Ωt ≡ AΩ(Kt−1, Lt) and Γt ≡ Γ(Kt−1, Lt). The
functions ̺(K,L), Ω(K,L) and Γ(K,L) are positively valued and differen-
tiable as many times as needed for (K,L) ∈ R2++, such that

ε̺,K = αK,K +
βK,K

σ
−
1− s

σ
, ε̺,L = αK,L +

βK,L

σ
+
1− s

σ

εΩ,K = αL,K +
βL,K
σ

+
s

σ
, εΩ,L = αL,L +

βL,L
σ
−
s

σ

εΓ,K = αΓ,K +
βΓ,K
σ

, εΓ,L = αΓ,L +
βΓ,L
σ
+ εγ,

(5)

where αi,j ∈ R and βi,j ∈ R, for i = K, L, Γ and j = K,L, are parameters
independent of εγ and σ

As under perfect competition, the dynamics of the economy with market
distortions are governed by a two dimensional system in capital and labor,
where the first equation represents capital accumulation and the second one

6See Grandmont et al. (1998) and Woodford (1986) for more details.
7We consider the normalized steady state (K,L) = (1, 1) of the dynamic system (3)-(4),

whose existence is shown in Proposition 2 of Appendix 6.1.
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the intertemporal choice of workers. However, now we assume that ̺t, Ωt

and Γt are given by general functions of Kt−1 and Lt, without choosing a
particular specification for them, so that they encompass a large class of
specific market distortions. Of course, the perfectly competitive case is re-
covered from Definition 1 for ̺(K,L) = FK(K,L), Ω(K,L) = FL(K,L) and
Γ(K,L) = γ (L). However, with market distortions, ̺t may not coincide
with the perfectly competitive marginal productivity of capital, ΩtLt may
not coincide with the perfectly competitive wage bill and Γt may differ from
the private offer curve γ (Lt). For example, in the cases of productive exter-
nalities, imperfect competition in the product market or with consumption,
labor or capital taxation, the real interest rate and/or the real wage relevant
to consumers’ decisions are no longer equal to the marginal productivities of
capital and labor at the firm level. Also in the case of consumption or pub-
lic spending externalities on preferences the relevant intertemporal choice of
workers becomes a trade-off between future effective consumption8, Ωt+1Lt+1,

(that no longer coincides with the wage bill) and leisure. Moreover, in the
presence of some labor market imperfections, such as efficiency wages or
unions, or with leisure externalities, the private offer curve derived for the
perfectly competitive economy is no longer valid at the social level, where the
relevant concept is the generalized offer curve Γ. See the examples provided
in Section 4.

Market distortions modify the elasticities of these three functions, with
respect to the perfectly competitive case. When αi,j = βi,j = 0, we recover
the elasticities under perfect competition9. Hence, in each equality, αi,j +
βi,j/σ 
= 0 represent market distortions, which add two new components to
the different elasticities: αi,j which provides a measure of the importance of
market distortions when inputs are high substitutes in production (σ high),
and βi,j, which become more relevant when inputs are weak substitutes in
production (σ low).

In the rest of the paper we consider that |βi,j| < s, for all i = K,L,Γ and
j = K,L. Since empirical works show that market distortions are not too big,
this is a plausible assumption covering the most interesting cases presented in
the literature. Empirical studies also show that the wage bill is increasing in
labor. Without market distortions this means that consumption is increasing
in labor. We extend this assumption to our economy with market distortions,
so that effective consumption (ΩL) is increasing in labor, i.e. 1 + ǫΩ,L > 0,
implying, from Definition 1, αLL > −1 and σ > s−βLL

1+αLL
. In accordance

8By effective consumption we mean the argument of the utility for consumption, which
in the presence of consumption or public spending externalities on preferences will also
include them.

9See Grandmont et al. (1998).
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with empirical studies we also assume that capital income is increasing with
capital, i.e. 1 + θǫ̺,K > 0 where θ ≡ 1 − β(1 − δ) ∈ (0, 1), which, under

Definition 1, implies αK,K > −1/θ and σ >
θ(1−s−βKK)
1+θαKK

. Finally, we consider

that s < 1/2 and θ < s/ (1− s), as usually done in Woodford economies,10

and we further assume that s−βLL
1+αLL

> θ(1−s−βKK)
1+θαKK

.11 We summarize all the
conditions discussed above in the following Assumption:

Assumption 1

1. 0 < s < 1/2 and 0 < θ (1− s) < s.

2. |βi,j| < s, for all i = K,L,Γ and j = K,L;

αLL > −1, αK,K > −1/θ and s−βLL
1+αLL

> θ(1−s−βKK)
1+θαKK

.

3. σ > s−βLL
1+αLL

.

Assumption 1.3 implies that we only focus on not too weak values of
the elasticity of capital-labor substitution.12 It collapses into σ > s in the
absence of distortions, a case where, as shown in Grandmont et al. (1998),
indeterminacy and bifurcations are not possible. Hence, the occurrence of
indeterminacy and bifurcations in our framework is due to the existence
of market distortions, mainly through their effects on αi,j, which are more
relevant than βi,j when inputs are not weak substitutes in production.

By loglinearizing the system (3)-(4) around the normalized steady state,

we obtain the local dynamics for K̂t = (Kt −K) /K and L̂t+1 = (Lt+1 − L) /L
given by following equations:

[
K̂t

L̂t+1

]
=

[
(1 + θε̺,K) θε̺,L

ǫΓ,K−εΩ,K(1+θε̺,K)

1+εΩ,L

εΓ,L−θεΩ,Kε̺,L
1+εΩ,L

][
K̂t−1

L̂t

]
≡ [J ]

[
Kt−1−K

K
Lt−L
L

]

(6)
Market distortions influence the local dynamics of the model, relatively

to the perfectly competititive case, by modifying the elasticities εΩ,i, ε̺,i and
εΓ,i. Since θ is small and ε̺,i appears multiplied by θ, distortions on the

10See, for instance, Grandmont and al. (1998), Cazzavillan et. al. (1998), Barinci and
Chéron (2001), Lloyd-Braga and Modesto (2007), Dufourt et al. (2008)

11This is not restrictive, since empirical values of θ are rather small (around 0.0123
under most monthly parameterizations). Furthermore, it becomes s > θ (1− s) in the
absence of market imperfections.

12It also covers the most empirically relevant situations. For instance Hamermesh (1993)
and Duffy and Papageorgiou (2000) find values in accordance with σ greater than 0.4.
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̺ function do not play a major role. However, distortions affecting the Γ
and/or the Ω function can significantly affect the dynamic behaviour of our
system. Indeed, under Assumption 1, in the perfectly competitive case we
have εΓ,L > 1 and 0 < 1 + εΩ,L < 1, while with distortions, by (5), εΓ,L may
become lower than 1 (αΓ,L < 0) and 1 + εΩ,L greater than 1 (αL,L > 0). Due
to this, as we shall see in next section, indeterminacy and bifurcations occur
when capital and labor are not weak substitutes, even if there are only arbi-
trarily small distortions in the Γ and/or the Ω function. Finally, a major and
novel difference with respect to the perfectly competitive case is that in our
framework, if αΓ,L is sufficiently negative, εΓ,L, may become negative. This
leads to new parameters’ configurations under which indeterminacy occurs.13

3 The role of market distortions on local dy-

namics

In order to study the role of market distortions on local dynamics, we first
obtain the trace, T , and the determinant, D, of the Jacobian matrix, J , of
system (6). We then analyze the occurrence of indeterminacy and bifurca-
tions by studying how T and D evolve in the space (T,D) as some relevant
parameters of the model are made to vary continuously in their admissible
range, according to the geometrical method developed in Grandmont et al.
(1998). Below we only discuss some necessary conditions required for inde-
terminacy and bifurcations, and we summarize our results in Proposition 1
and Tables 1 and 2. Proofs, technical details, and a complete use of the
geometrical method are provided in the Appendix.

Note that T and D correspond, respectively, to the sum and product of
the two roots of the associated characteristic polynomial P (λ) ≡ λ2−λT+D.
Hence, the local dynamic properties of the model depend on the values taken
by T and D. To locate these values in the plane (T,D), three lines are
relevant (see Figure ??). On the line (AB), one eigenvalue is equal to −1,
i.e. P (−1) ≡ 1+T +D = 0. On the line (AC), one eigenvalue is equal to 1,
i.e. P (1) ≡ 1− T +D = 0. On the segment [BC], the two eigenvalues are
complex conjugates with a unit modulus, i.e. D = 1 and |T | < 2. It can be
deduced that the steady state is a sink (indeterminate)14 when D < 1 and
|T | < 1+D, i.e., (T,D) is inside the triangle (ABC). It is a saddle-point when

13Although not yet explored in the literature, specific distortions leading to this situation
exist. See the last example of section 4.4.

14When the steady state is locally indeterminate there is, for each given value
K0 close to the steady state, a continuum of deterministic equilibrium trajectories
{Kt−1, Lt}t=1,2,...,∞, all converging to the steady state.
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|1 +D| < |T |. Otherwise, it is a source (locally unstable). Also, considering,
for instance, that εγ is running the interval [1,+∞), a transcritical bifurcation
generically occurs when (T,D) crosses the line (AC), i.e. when εγ crosses
the critical value εγT .

15 When (T,D) crosses the line (AB), εγ crossing the
critical value εγF , a flip bifurcation generically occurs. When (T,D) crosses
the segment [BC] in its interior, εγ crossing the critical value εγH , a Hopf
bifurcation generically occurs.16

In our framework, using (5), the trace and the determinant of the Jacobian
matrix, J given in (6), can be written in terms of the parameters of the model:

T = T0(σ)(εγ − 1) + T1(σ) (7)

D = D0(σ)(εγ − 1) +D1(σ), (8)

where Th(σ) and Dh(σ), h = 1, 2, are also functions of αij, βij, θ and s (see
(11) and (12)).

Under Assumption 1, D0(σ) > 0, hence D ≥ D1(σ) for εγ ≥ 1. When
D′

1 (σ) < 0, we further have D1(σ) > D1(+∞). Therefore, the necessary
conditionD < 1 for indeterminacy requires thatD1(+∞) < 1 whenD

′

1 (σ) <
0. In the rest of the paper we consider that the condition D1 (+∞) < 1 is
always satisfied. We further assume that D1 (+∞) > −1. Using (15), we
summarize these conditions as follows:

Assumption 2

1. D1 (+∞) < 1, i.e., αL,L − αΓ,L > θ[αK,K(1 + αΓ,L)− αΓ,KαK,L].

2. D1 (+∞) > −1, i.e., θ[αK,K(1+αΓ,L)−αΓ,KαK,L] > − (2 + αL,L + αΓ,L).

15A saddle node or a pitchfork bifurcation may be also possible. The case of a saddle
node bifurcation, in which the steady state under analysis disappears, is ruled out, since
we apply our analysis to (K,L) = (1, 1) whose existence is persistent, under the usual
scaling procedure. We also assume that pitchfork bifurcations are ruled out, as a mere
exposition device. Notice that, several works that have studied the existence of multiple
steady states in economies with constant elasticities ǫγ and σ (eg. Cazzavillan et al. (1998)
and Kuhry (2001)) found at most two steady states, which rules out the case of a pitchfork
bifurcation.

16The expressions of εγT , εγF and εγH are given in Appendix 6.5. Moreover, when
the steady state undergoes a Hopf or a flip bifurcation there are, for some values of εγ
close to, respectively εγH or εγF , deterministic equilibrium trajectories exhibiting recurrent
bounded fluctuations. When a transcritical bifurcation occurs, two nearby steady states
exchange stability properties. Note also that bifurcations are quite relevant in explaining
persistency of business fluctuations, since they appear when at least one eigenvalue crosses
the unit circle.
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The second inequality is obviously satisfied without distortions, and,
therefore, is also verified for values of αi,j not arbitrarily large. Since we
are not interested in unrealistically strong market distortions, this seems to
be a reasonable assumption. The first condition, necessary for indeterminacy
when D′

1 (σ) < 0, can only be met with distortions. Indeed, under perfect
competition D′

1 (σ) < 0 but D1(+∞) = 1, which rules out indeterminacy.
We now present our results, considering separately two cases: D′

1 (σ) < 0
and D′

1 (σ) > 0, that emerge for different values of the distortion parameters.
See (18). Within each case we use a classification based on the values taken
by S1 = D′

1(σ)/T
′

1(σ), which depends on the parameters αi,j, βi,j, θ and
s, and whose expression is given in (16) in the Appendix. We obtain six
configurations. D′

1 (σ) < 0 in configuration (i), (ii), (iii) and (iv), presented
in Table 1, whereas D′

1 (σ) > 0 in configurations (v) and (vi) in Table 2.
When distortions only appear on the ̺ and Ω functions, we always obtain

D′

1 (σ) < 0. See (19). Hence, configurations (v) and (vi), where D
′

1 (σ) > 0,
can only emerge in the presence of distortions on the Γ function (αΓ,i 
= 0
and/or βΓ,i 
= 0).

17 Moreover, since under θ small, distortions in ρ do not to
play a major role on local dynamics and are not required to obtainD′

1 (σ) > 0,
we only consider distortions on the Γ and Ω functions when analyzing this
case. We further notice that when D′

1 (σ) > 0 and αK,i = βK,i = 0, the
necessary condition for indeterminacy D > T − 1 requires S1 ∈ (0, 1). See
(22) in Appendix 6.3. This explains why we do not consider configurations
where S1 /∈ (0, 1) when D

′

1 (σ) > 0. Finally, it is useful to notice that in the
limit case of perfect competition (αi,j = βi,j = 0) and under Assumption 1, we
have S1 = 1 and D

′

1 (σ) < 0, using (16) and (19). Therefore, configurations
(i) and (ii) of Table 1 correspond to the smaller departure from the case
without distortions. Proposition 1 below summarizes our results on local
stability properties and bifurcations:

Proposition 1 Let (K,L) = (1, 1) be the normalized steady state of the
dynamic system (3)-(4), as stated in Proposition 2. Consider that σ takes
values in intervals specified by referring to the critical values σT , σF , σH1,
σH2, σH3 and σS2 defined in Appendix 6.6. Take εγ ∈ [1,∞) as the bifurcation
parameter with Hopf, flip and transcritical bifurcation values εγH εγF and εγT ,
respectively given in (23),(24) and (25).18

(a) Consider that αKK takes either nonpositive or positive values. Then,

17This is the case where D can take negative values. See figures 6 and 7.
18Assumptions 3 and 4 are satisfied in all the examples considered in the related litera-

ture, and simplify considerably our analysis. Assumptions 5, 6 and 7 are merely introduced
as an exposition device. See Appendices 6.2 and 6.3. The critical values of SB and SD,
used to define some configurations, are given in Appendix 6.6.
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under Assumptions 1-4, and imposing also Assumptions 5 and 6 in the case
of configurations (ii), (iii) and (iv), the nature of the steady state, whether a
saddle, a sink or a source, depends upon the values of the parameters αKK,
σ and εγ belonging to the intervals indicated in Table 1.19

(b) Assume that αKi = βKi = 0 and consider that (αΓ,K−αL,K) takes
either nonpositive or positive values. Then, under Assumptions 1-4, and
imposing also Assumption 7 in the case of configurations (vi), the nature of
the steady state, whether a saddle, a sink or a source, depends upon the values
of the parameters (αΓ,K−αL,K), σ and εγ belonging to the intervals indicated
in Table 2.

Also, whenever the critical value εγH (resp. εγF or εγT ) appears in some
row of Tables 1 and 2, a Hopf bifurcation (resp. a flip or transcritical bifur-
cation) generically occurs as εγ crosses the corresponding value.

Proof. See Appendix 6.3.

3.1 Discussion of the results

By inspection of Tables 1 and 2, we see that, when capital and labor are
sufficiently substitutable in production, indeterminacy and bifurcations occur
in the presence of market distortions.20

Indeterminacy requires a critical lower bound on the elasticity of substi-
tution between capital and labor (σ), which may be different across configu-
rations. In Table 1, where D′

1(σ) < 0, this critical lower bound is higher or
equal to σH1 , because σ > σH1 is a necessary condition for indeterminacy.

21

In Table 2, where D′

1(σ) > 0, although σ > σH1 is no longer a necessary
condition for indeterminacy, indeterminacy also requires a lower bound for
σ.

Indeterminacy also requires a critical upper bound (either ǫγH or ǫγT ) on
ǫγ, depending on the configuration considered. However, in configurations
(i), (iv), (v) and (vi) indeterminacy may be ruled out if ǫγ is small and suf-
ficiently close to 1. Therefore, imposing an infinitely elastic labor supply at

19In Table 1 the lines with a * disappear if σ
H2
does not exist and the upper limit of

the preceding lines becomes ∞.
20In Grandmont et al. (1998), the consequences of indeterminacy and bifurcations for

the existence and properties of equilibria, in particular those exhibiting deterministic and
stochastic expectations-driven cycles, are explored.

21Indeterminacy requires D < 1. Since D is increasing with εγ, D1(σ) < 1 is needed,
which is equivalent to σ > σH1

when D′

1(σ) < 0 as in Table 1.
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εγ
Config. σ Saddle Sink Source

(i) 1) αK,K ≤ 0
(

s−βLL
1+αLL

,∞
)

[1,∞) - -

D′

1 (σ) < 0 2) αK,K > 0
(

s−βLL
1+αLL

, σT

]
[1,∞) - -

S1 ∈ (0, 1) (σT , σH2) [1, εγT ) - (εγT ,∞)
(σH2,∞) [1, εγT ) (εγT , εγH ) (εγH ,∞)

(ii) 1) αK,K ≤ 0
(

s−βLL
1+αLL

, σH1

]
(εγT ,∞) - [1, εγT )

D′

1 (σ) < 0 (σH1, σH2) (εγT ,∞) [1, εγH ) (εγH , εγT )
|S1| > 1 * (σH2,∞) (εγT ,∞) [1, εγT ) -

2) αK,K > 0
(

s−βLL
1+αLL

, σH1

]
(εγT ,∞) - [1, εγT )

(σH1, σT ) (εγT ,∞) [1, εγH ) (εγH , εγT )
(σT ,∞) - [1, εγH ) (εγH ,∞)

(iii) 1) αK,K ≤ 0
(

s−βLL
1+αLL

, σF
)

[1, εγF ) - (εγF , εγT )

D′

1 (σ) < 0 and (εγT ,∞)
S1 ∈ (−1, SB) [σF , σH1] (εγT ,∞) - [1, εγT )

(σH1, σH2) (εγT ,∞) [1, εγH ) (εγH , εγT )
* (σH2,∞) (εγT ,∞) [1, εγT ) -

2) αK,K > 0
(

s−βLL
1+αLL

, σF
)

[1, εγF ) - (εγF , εγT )

and (εγT ,∞)
[σF , σH1] (εγT ,∞) - [1, εγT )
(σH1, σT ) (εγT ,∞) [1, εγH ) (εγH , εγT )
[σT ,∞) - [1, εγH ) (εγH ,∞)

(iv) 1) αK,K ≤ 0
(

s−βLL
1+αLL

, σH3

)
[1, εγF ) - (εγF , εγT )

D′

1 (σ) < 0 and (εγT ,∞)
S1 ∈ (SB, 0) (σH3, σF ) [1, εγF ) (εγF , εγH ) (εγH , εγT )

and (εγT ,∞)
[σF , σH2) (εγT ,∞) [1, εγH ) (εγH , εγT )

* (σ
H2
,∞) (εγT ,∞) [1, εγT ) −

2) αK,K > 0
(

s−βLL
1+αLL

, σH3

)
[1, εγF ) − (εγF , εγT )

and (εγT ,∞)
(σH3, σF ) [1, εγF ) (εγF , εγH ) (εγH , εγT )

and (εγT ,∞)
[σF , σT ) (εγT ,∞) [1, εγH ) (εγH , εγT )
[σT ,∞) [1, εγH ) (εγH ,∞)

Table 1: Local stability properties and bifurcations
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εγ
Conf σ Saddle Sink Source

(v) 1) αΓ,K−αL,K≥ 0
(

s−βLL
1+αLL

, σH3

)
[1, εγF ) - (εγF , εγT )

D′

1 (σ) > 0 and (εγT ,∞)
S1 ∈ (0, SD) (σH3, σF ) [1, εγF ) (εγF , εγH ) (εγH , εγT )
αK,i = βK,i = 0 and (εγT ,∞)

(σF , σH2) (εγT ,∞) [1, εγH) (εγH , εγT )
(σH2,∞) (εγT ,∞) [1, εγT ) -

2) αΓ,K−αL,K< 0
(

s−βLL
1+αLL

, σH3

)
[1, εγF ) - (εγF , εγT )

and (εγT ,∞)
(σH3, σF ) [1, εγF ) (εγF , εγH ) (εγH , εγT )

and (εγT ,∞)
(σF ,∞) (εγT ,∞) [1, εγH) (εγH , εγT )

(vi) 1) αΓ,K−αL,K≥ 0
(

s−βLL
1+αLL

, σS2
)

[1, εγT ) - (εγT , εγF )

D′

1 (σ) > 0 and (εγF ,∞)
S1 ∈ (SD, 1)

(
σS2 , σF

)
[1, εγF ) (εγF , εγT ) -

αK,i = βK,i = 0 and (εγT ,∞)
(σF ,∞) (εγT ,∞) [1, εγT ) -

2) αΓ,K−αL,K< 0
(

s−βLL
1+αLL

, σS2
)

[1, εγT ) - (εγT , εγF )

and (εγT ,∞)(
σS2 , σF

)
[1, εγF ) (εγF , εγT ) -
and (εγT ,∞)

(σF , σH2) (εγT ,∞) [1, εγT ) -
(σH2,∞) (εγT ,∞) [1, εγH) (εγH , εγT )

Table 2: Local stability properties and bifurcations
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the individual level (εγ = 1) may not be appropriate to study the implica-
tions of market distortions on local indeterminacy. This is a new interesting
result that will be illustrated and further discussed in the economic examples
provided in Section 4.

3.1.1 Distortions on the ̺ and Ω functions

We start with the case where distortions affecting only the ̺ and Ω functions
are present (αΓ,i = βΓ,i = 0), as it happens, for example, when we only have
product or capital market distortions (see Section 4). Then, only configura-
tions (i)− (iv) can be obtained (see (19)), where, as seen above, σ > σH1 is
a necessary condition for indeterminacy. Note that, although each of these
configurations can a priori be obtained, S1 is always positive when θ is small
(see (16)), so that configurations (i) and (ii) are the most relevant ones.

For αΓ,i = βΓ,i = 0, Assumption 2.1, nedeed for indeterminacy when
D′

1(σ) < 0, becomes αL,L > θαK,K, which has a suitable economic interpre-
tation: the response of effective consumption to labor (1 + αL,L) must be
stronger than the response of capital income to capital (1 + θαK,K), when
σ = +∞. When αK,K ≤ 0, another necessary condition for indeterminacy is

S1 /∈ (0, 1)⇔
1−s−βK,K
s−βL,L

αL,L + αL,K
1−s+βK,L
s−βL,L

+ αK,L
1−s−βK,K
1−s+βK,L

+ αK,K > 0.
22 As

a direct implication, under Assumption 1, indeterminacy is ruled out if αL,L,
αL,K, αK,L and αK,K are all negative.

Let us now discuss in detail the role of distortions affecting the ̺ function.
For αK,K > 0, given the necessary condition αL,L > θαK,K, indeterminacy
requires a positive value for αL,L. When αK,K ≤ 0, and in the absence of
distortions on the Ω function (αL,j = βL,j = 0), the necessary indeterminacy
condition S1 /∈ (0, 1) requires a positive lower bound on αK,L, i.e., αK,L >

−αK,K
1−s+βK,L
1−s−βK,K

> 0, so that a cross effect (αK,L) with an opposite sign

from the direct effect (αK,K) is also necessary. We may then conclude that
distortions on the ̺ function, i.e., affecting the capital accumulation equation,
do not seem to play a crucial role for indeterminacy. Indeed, indeterminacy
either requires opposite effects of capital and labor on the distortions affecting
the capital accumulation equation and a distortion due to labor effects (αK,L)
positive and bounded away from zero, or the presence of some other market
failures, distorting the intertemporal trade-off between future consumption
and labor.

We now discuss the role of distortions affecting the Ω function. For αL,L ≤

22Indeed, when αK,K ≤ 0, indeterminacy is possible in configurations (ii), (iii) and
(iv), but does not occur in configuration (i), i.e. it requires S1 /∈ (0, 1). This condition is
nedeed so that we may have D > T − 1, as required for indeterminacy.
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0, the necessary condition for indeterminacy (αL,L > θαK,K) implies αK,K <
0, i.e., requires also distortions on the ̺ function. However, this is no longer
true for αL,L > 0. Indeed, without distortions on the ̺ function, the necessary
condition αL,L > θαK,K is satisfied for all αL,L > 0. Moreover, the other
condition S1 /∈ (0, 1), necessary when αK,K = 0, also holds when the only
distortion is an arbitrarily small positive distortion on effective consumption
due to labor. Hence indeterminacy may emerge with an arbitrarily small
positive αL,L.

3.1.2 Distortions on the Ω and Γ functions

We consider now distortions that only affect both Ω and Γ, i.e. the intertem-
poral trade-off condition of workers, as it happens, for instance, when we
have labor market imperfections (see Section 4). In this case αK,i = βK,i = 0.
From (18) and (20), we can see that D′

1 (σ) can a priori take a positive or
negative sign, even for arbitrarily small values of θ.23 Hence, not only con-
figurations (i) to (iv) are possible, but configurations (v) and (vi) may also
emerge. These last two configurations require that αΓL < α

∗

ΓL as shown in
(21). They are possible in the absence of distortions on Ω, whereas they never
emerge without effects through Γ, since α∗ΓL = −1 when αΓ,K = βΓ,i = 0.
Notice, however, that configurations (v) and (vi) require some distortions
bounded away from zero.24 On the contrary, if distortions are arbitrarily
weak, D′

1(σ) < 0 and, when θ is small, S1 is always positive, so that config-
urations (i) and (ii) remain the relevant ones.

In the absence of distortions affecting capital accumulation (αK,i = βK,i =
0), indeterminacy only occurs if αL,L+αL,K > αΓ,L+αΓ,K , a condition with a
nice economic interpretation.25 The term αL,L+αL,K summarizes the global
effect of distortions on the Ω function, and αΓ,L+αΓ,K represents the global
effect of distortions in the Γ function, when σ tends to +∞, (see (5)). There-
fore, indeterminacy requires a positive difference between these two global
distortions on Ω and Γ. This implies that distortions on the generalized offer
curve that negatively depend on capital and labor and distortions on the
effective consumption that depend positively on capital and labor seem to
help the occurrence of indeterminacy. If distortions are sufficiently weak so
that D′

1(σ) < 0, then, by Assumption 2.1, αLL > αΓL is another necessary
condition for indeterminacy. Hence, without any effects through labor, i.e.

23The same could have been said if we had also considered distortions on the ̺ function.
24Note that α∗ΓL is close to -1 when βΓL, αΓK and αLL are close to zero.
25Indeed, from Tables 1 and 2, indeterminacy only emerges when either D′

1(σ) < 0 and
S1 /∈ (0, 1), or D′

1(σ) > 0 and S1 ∈ (0, 1), which implies αL,L+αL,K > αΓ,L+αΓ,K . This
condition is needed to ensure D > T − 1.
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for αΓ,L = αL,L = 0, indeterminacy is not possible: in the absence of dis-
tortions affecting the ̺ function, the effects of distortions through labor are
crucial for indeterminacy when distortions are small (D′

1(σ) < 0).
Using the two necessary conditions mentioned above, and in the absence

of distortions on Ω, indeterminacy requires αΓL < Min {0,−αΓ,K}. Thus,
indeterminacy is possible when the only distortion is an arbitrarily small
negative αΓ,L.

A few general remarks are now in order. While general distortions on
the real interest rate do not seem to play a major role on the occurrence of
indeterminacy, distortions on the generalized offer curve and on the effective
consumption seem to help the occurrence of indeterminacy. As seen above,
indeterminacy is possible in the presence of arbitrarily small distortions af-
fecting either effective consumption or the offer curve. However, this would
require infinitely large elasticities of private labor supply and of substitution
between inputs.26 Hence, indeterminacy with plausible values of σ can only
occur if distortions take minimal degrees.

4 Applications

We now proceed by applying our general methodology and results to several
examples that provide microeconomic foundations for the model developed
above. While many of these examples have already been studied in the
literature (but not always in a finance constrained Woodford economy) some
of them are new, allowing us to exhibit phenomena that have not yet been
illustrated. The strategy used to analyze each example is the following.
We start by identifying the ̺(K,L), Ω(K,L) and Γ(K,L) functions.27 We
then compute the elasticities of these three functions with respect to K and
L, evaluated at the normalized steady state, and using (5) we identify the
parameters αi,j and βi,j for i = K,L,Γ and j = K,L. We can then apply the
results obtained in the previous section to discuss the dynamic properties of
the economy near the steady state.

We consider four types of examples. We emphasize equivalence results,

26Indeed, as seen above, under θ small and weak distortions, only configurations (i) and
(ii) are possible (see Table 1). Then, indeterminacy requires σ > σH1

and either ǫγ < ǫγH
or ǫγ < ǫγT . When distortions become arbitrarily close to zero, σH1

tends to +∞ . In this
case, 1/ (ǫγH − 1) and 1/ (ǫγT − 1) also tend to +∞. Similar results have been obtained in
Ramsey and overlapping generations economies. See Lloyd-Braga et al. (2007) and Pintus
(2006), where distortions are due to production externalities.

27In all the examples, the functions Aρ(K/L), Aω(K/L) and γ(L), appearing in the
definition of ̺(K,L), Ω(K,L) and Γ(K,L), represent, respectively, the competitive real
interest rate, the competitive real wage and the competitive offer curve.
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in terms of the indeterminacy mechanisms, across specific distortions fitting
within the same type of example. We also discuss the minimal degree of
distortions required for indeterminacy to occur with an empirically plausible
value of the elasticity of capital-labor substitution (around 1). The first two
types of examples have no distortions on the offer curve so that, as discussed
above, D′

1 (σ) < 0 (as in Table 1), and, as we shall see, indeterminacy is only
obtained under configuration (ii). The last two types of examples illustrate
the crucial role played by distortions that affect the offer curve, Γ(K,L).
We will see in particular that indeterminacy emerges under new configura-
tions (those of Table 1 and Table 2), and that for some sets of distortions’
parameters indeterminacy requires a value for ǫγ bounded away from 1.

4.1 Examples with the same distortion on the real in-
terest rate and the real wage

In the examples presented below, the same distortion affects both the real
interest rate and the real wage, but the generalized offer curve coincides with
the competitive one, Γ(K,L) = γ(L). We will see that in these examples,
indeterminacy always requires σ > σH1 , as an application of Proposition 1(i).
We begin with an example where productive externalities are the only distor-
tion. We pursue by explaining that many models with imperfect competition
on the product market are, in terms of local dynamic analysis, particular
cases of the first example.

Externalities in production have often been introduced in macro-dynamic
models (Barinci and Chéron (2001), Benhabib and Farmer (1994), Cazzav-
illan (2001), Cazzavillan et al. (1998)). In these papers all markets are
perfectly competitive and firms face a private constant returns to scale tech-
nology, but due to positive externalities that affect the total productivity of
factors,28 returns to scale are increasing at the social level. Here, we will ex-
tend this formulation, allowing also for negative productive externalities29 so
that, at the social level, returns to scale can be decreasing. We consider there-
fore that production is given by y = AF (K,L)ξ(K,L) ≡ ALf(K/L)ξ(K,L),
where ξ(K,L) stands for externalities, f(K/L) is the usual intensive, strictly
increasing and concave, production function. Since firms, when maximizing
profits, take externalities as given, we have:

Ωt = Aω(Kt−1/Lt)ξ(Kt−1, Lt)

̺t = Aρ(Kt−1/Lt)ξ(Kt−1, Lt).

28They are usually justified by learning by doing or matching problems on labor market.
29These can be justified, for instance, by congestion or pollution arguments.
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We obtain αL,L = αK,L = εξ,L, αL,K = αK,K = εξ,K, and αΓ,i = βj,i = 0,
for i = K,L and j = K,L,Γ, where εξ,i > −1 denotes the elasticity of the
function ξ(K,L) with respect to i = K,L, evaluated at the steady state. It
is easy to check that Assumption 4 is satisfied and Assumptions 2 implies
−2 − ν < (1 + θ)εξ,K < ν where ν ≡ εξ,L + εξ,K. Moreover, Assumption 1
implies that s(1+ θεξ,K) > θ(1+ν− εξ,K)(1−s) so that D

′

1 (σ) < 0 and only
Proposition 1(a), i.e. Table 1, applies.

In the case of negative externalities (εξ,K < 0, ν − εξ,K < 0), S1 ∈ (0, 1),
so that we are in configuration (i). Since αK,K = εξ,K < 0, the steady
state is always locally determinate (a saddle, see Table 1). Hence negative
externalities illustrate the result, discussed in Section 3, that indeterminacy
cannot occur when αK,i and αL,i are all negative.

If, as considered for instance in Cazzavillan, Lloyd-Braga and Pintus
(1998), we assume positive externalities (εξ,K > 0, εξ,L = ν − εξ,K > 0)
we obtain S1 > 1. In this case, configuration (ii).1 applies and indetermi-
nacy can emerge for σ > σH1 = (s− θ(1− s))/(ν − (1 + θ)εξ,K). Notice that
σH1 can be below one, but this requires sufficiently strong labor externalities.
For instance, in the absence of capital externalities (εξ,K = 0), indeterminacy
emerges in the Cobb-Douglas case if ν = εξ,L exceed s − θ(1 − s), a value
which is too high in empirical terms.

We will now emphasize that, for the analysis of local dynamics, many
models with imperfect competition on the product market are, in fact, a
particular case of the previous framework with positive productive external-
ities. Benhabib an Farmer (1994) and Cazzavillan, Lloyd-Braga and Pin-
tus (1998) underlined that this is the case when imperfectly competitive
economies are characterized by constant markups and decreasing marginal
costs (increasing returns). The same happens when imperfect competition
is associated with markup variability or with taste for variety, as we now
show. We focus on markup variability linked to strategic interactions be-
tween producers and business formation (Dos Santos Ferreira and Lloyd-
Braga (2005), Kuhry (2001), Seegmuller (2003, 2008a), Weder (2000a)). We
consider that taste for variety is, following Benassy (1996), the consumer
utility gain of consuming one unit of all the Nt available varieties of goods
instead of consumingNt units of a single variety (Jacobsen (1998), Seegmuller
(2008b)). In these two types of models,30 increasing returns come from the
existence of a fixed cost31 and the number Nt of producers is determined

30For the sake of conciseness, we do not present these models in detail, providing only
their main economic features. For more details, the reader can look at the references
herein.

31Using our notation the production of a firm i = 1, ..., Nt is given by yit =
A(f(kit−1/lit)lit−φ), where kit−1 (lit) represents capital (labor) used by firm i and φ > 0
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by the usual zero profit condition. At equilibrium the number of firms is as
an increasing function of aggregate production, i.e. Nt = N(f(Kt−1/Lt)Lt),
with ǫN (Y ) ≡ N

′(Y )Y/N(Y ) ≥ 0, and the same distortion µ(Nt), increasing
with Nt, affects both the real wage and the real interest rate, i.e.:

Ωt = µ(Nt)Aω(Kt−1/Lt) (9)

̺t = µ(Nt)Aρ(Kt−1/Lt) (10)

where ǫµ(N) ≡ µ
′(N)N/µ(N) ≥ 0. In models with counter-cyclical markups,

µ(Nt) can be interpreted as the inverse of the markup factor, while when there
is taste for variety, it represents the ratio between the price set by a single
firm and the aggregate price. Substituting the expression for Nt into (9) and
(10), we obtain expressions for Ω(K,L) and ̺(K,L) similar to the ones of the
model with productive externalities. Indeed, defining ν ≡ ǫµ(N)ǫN(Y ) ≥ 0,
we obtain αL,L = αK,L = (1− s)ν, αL,K = αK,K = sν and αΓ,i = βj,i = 0, for
i = K,L and j = K,L,Γ, i.e., for the same value of ν these models correspond
to the particular case of the framework with positive productive externalities
presented above where εξ,K/εξ,L = s/ (1− s). Therefore the previous results
apply and indeterminacy can emerge for σ > σH1 = (s−θ(1−s))/[ν(1− (1+
θ)s)].32 Hence, ν should be high enough to get indeterminacy with a value of
σ close to 1, which requires sufficiently counter-cyclical markups (large fixed
cost) or a sufficiently high degree of taste for variety.

We can therefore conclude that, in all these examples, indeterminacy may
only emerge in the presence of relatively high distortions, like large increasing
returns or high markups, that seem to be empirically irrelevant.

4.2 Examples with different distortions on the real in-
terest rate and effective consumption

In this section we present again examples where distortions do not affect the
generalized offer curve (Γ(K,L) = γ(L)) so that, as above, D′

1 (σ) < 0 and
only Table 1 applies. However, now distortions affecting the real interest
rate are different from the ones that modify effective consumption. This will
allow us to emphasize that capital market distortions are not, per se, the
most relevant ones for indeterminacy. On the contrary, a distortion that
only affects effective consumption can be a source of indeterminacy.33

is a fixed cost.
32Notice that now Assumption 2 is satisfied for 1− s > θs.
33Note however that the degree of this distortion needs to be sufficiently large for inde-

terminacy to emerge under a not arbitrarily high elasticity of capital-labor substitution.
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In the first example presented we consider a perfectly competitive econ-
omy where public expenditures, financed by variable taxation under a bal-
anced budget rule, are introduced. We also assume that government spend-
ing can affect consumption utility through externalities in preferences. This
example follows closely, although extending it by also considering capital
income taxation, the work of Lloyd-Braga et al. (2008), and covers as par-
ticular cases the fiscal policy rules considered in Dromel and Pintus (2008),
Giannitsarou (2005), Guo and Lansing (1998), Gokan (2005), Pintus (2003),
Schmitt-Grohé and Uribe (1997), and obviously constant tax rates. The gov-
ernment can levy taxes on capital income (ρtKt−1), labor income (ωtLt) and
on private aggregate consumption (Ct = Cw

t + C
c
t ). Real public spending

in goods and services in period t, Gt ≥ 0, is given by the balanced bud-
get rule Gt = τL (ωtLt)ωtLt + τC (Ct)Ct + τK (ρtKt−1) ρtKt−1. Tax rates on
labor and capital incomes, and on consumption are respectively given by
τL (ωtLt) ≡ zL (ωtLt/ωL)

φL , τK (ρtKt−1) ≡ zK (ρtKt−1/ρK)
φK and τC (Ct) ≡

zc (Ct/C)
φc , where ωL is the steady state value of the wage bill, ρK the

steady state value of capital income and C the steady state level of con-
sumption, while zi ∈ (0, 1) for i = L,K and zc > 0 represent the level of the
tax rates at the steady state. The parameters φj ∈ R (j = L,K,C) denote
the elasticities of the tax rates with respect to the tax bases. When φj = 0
the tax rate is constant and equal to zj. Finally, we denote by η > 0 the
elasticity of public spending externalities in preferences that affect workers’
utility of consumption. Assuming that agents take as given the tax rules and
externalities, we obtain:

Ω(Kt−1, Lt) = AGη
t

1− zL (ωtLt/ωL)
φL

1 + zc (Ct/C)
φc

ω(Kt−1/Lt)

̺(Kt−1, Lt) = A[1− zK (ρtKt−1/ρK)
φK ]ρ(Kt−1/Lt)

where Gt is given by the balanced budget condition. In the following, we will
analyze separately the effects of each type of taxation on local dynamics.

We start with the case of capital taxation without public spending exter-
nalities in preferences, so that market distortions only appear in the function
̺(K,L). We get αj,i = βj,i = 0 for i = K,L and j = L,Γ, αK,K = −φK

zK
1−zK

,
αK,L = 0 and βK,K = −αK,K(1−s) = −βK,L. Obviously, Assumption 4 is sat-

isfied and under θ small, Assumptions 1 and 2 imply that 0 < φK <
(1−zK)s
zK(1−s)

.

We deduce that Proposition 1.(a) applies and that S1 ∈ (0, 1), so that we
are in configuration (i). Since αK,K < 0, the steady state is always a saddle
(see Table 1). This illustrates that distortions on capital market are not the
most powerful to get indeterminacy.
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In the case of labor income taxation only, and considering public spend-
ing externalities in preferences, distortions only affect effective consumption
Ω(K,L). We have αj,i = βj,i = 0 for i = K,L and j = K,Γ, αL,L =
η(1 + φL)− φL

zL
1−zL

, αL,K = 0 and βL,L = −αL,Ls = −βL,K . Assumption 4 is
satisfied as before, and Assumptions 1 and 2 imply that 0 < αL,L < 1, i.e.,

− η(1−zL)
η(1−zL)−zL

< φL <
(1−η)(1−zL)
η(1−zL)−zL

if η > zL
1−zL

, or (1−η)(1−zL)
η(1−zL)−zL

< φL < −
η(1−zL)

η(1−zL)−zL

if η < zL
1−zL

. We deduce that Proposition 1.(a) applies and that config-

uration (ii).1 is the relevant one34 so that indeterminacy may emerge if

σ > σH1 =
(1−zL)[s(1+η)−θ(1−s)]+φLs[η(1−zL)−zL]

η(1−zL)+φL[η(1−zL)−zL]
. Therefore, without public

spending externalities in preferences (η = 0), indeterminacy is only possible
if −1−zL

zL
< φL < 0, i.e., constant tax rates or tax rates that vary positively

with the tax base promote determinacy. Moreover, indeterminacy requires
−1−zL

zL
< φL < −1−zL

zL

s−θ(1−s)
(1−s)

in the Cobb-Douglas case, i.e., φL cannot be

too close to zero.35 However, by direct inspection of the expressions of αL,L

and σH1, we notice that these conclusions are no longer valid in the presence
of public spending externalities in preferences (η > 0) where indeterminacy
may emerge under a constant or a positively elastic tax rate.

The case of consumption taxation provides a second example of a tax
rule that introduces distortions only on effective consumption. Consider-
ing for simplicity the case without public spending externalities in pref-
erences (η = 0), we have αj,i = βj,i = 0 for i = K,L and j = K,Γ,
αL,L = − zcφc

1+zc(1+φc)
ψ, αL,K = − zcφc

1+zc(1+φc)
(1 − ψ), βL,L = −αL,Lβs and

βL,K = −βL,L, where ψ ≡ θ(1 − s)/[θ(1 − s) + (1 − β)s]. Assumption 4
is again satisfied and, for θ sufficiently weak, Assumptions 1 and 2 imply
that 1/β > αL,L > 0, i.e., − (1+zc)

zc
1

1+βψ
< φc < 0. Using these inequal-

ities, we can deduce that Proposition 1.(a) applies and S1 > 1,36. Again
configuration (ii).1 is the relevant one, so that indeterminacy may emerge if

σ > σH1 =
(1+zc)[s−θ(1−s)]+zcφc[s(1−βψ)−θ(1−s)]

−zcφcψ
. In the particular case investi-

gated by Giannitsarou (2005) in a Ramsey model where government spending
is constant (φc = −1), indeterminacy occurs under a Cobb-Douglas technol-
ogy provided zc is larger than a lower bound (zc > [s− θ(1− s)]/(1− sβ)ψ).

These two last examples, based on fiscal policy rules and public spending
externalities in preferences, show that, although indeterminacy may emerge

34We assume that 2[s− θ(1− s)] > θ(1− s) which implicitly requires a sufficiently weak
θ.

35Similarly, if we fix the value of φL < 0, indeterminacy requires a sufficiently high value
for zL. For example, when η = 0 and φL = −1 (the case considered in Schmitt-Grohé
and Uribe (1997), Pintus (2003) and Gokan (2005) of a constant government spending),
indeterminacy only emerges for all σ ≥ 1 if zL > [s− θ(1− s)]/[1− θ(1− s)].

36As before, this requires a sufficiently weak θ.
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when distortions only modify effective consumption, it only emerges for plau-
sible values of the elasticity of capital-labor substitution in the presence of
sufficiently large distortions (taxes in this case).

We end this section by showing that models with consumption externali-
ties in preferences (Alonso-Carrera et al. (2008), Gali (1994), Ljungqvist and
Uhlig (2000), Weder (2000b)) introduce market distortions that again only
affect Ω(K,L), and are in fact perfectly equivalent to the previous examples
with labor income or consumption taxation.

Consumption externalities correspond to the idea that individual utility
of consumption is affected by the current consumption of others (envy or
altruism), so that aggregate or average consumption becomes an argument
of the utility function. In our framework, this amounts to consider that
workers’ utility is given by U(Cw

t+1ϕ(Ct+1)/B)− V (Lt), where Ct+1 denotes
average consumption and ϕ(Ct+1) the externality function.

37 Accordingly,
at equilibrium,

Ω(Kt−1, Lt) = Aϕ(Ct)ω(Kt−1/Lt)

Since ̺(Kt−1, Lt) and Γ(Kt−1,Lt) are not affected by this distortion, αj,i =
βj,i = 0 for i = K,L and j = K,Γ. Let υ be the elasticity of ϕ with respect to
C, evaluated at the steady state. To fully determine Ω(Kt−1, Lt), we have to
precise whether individual workers compare themselves to the average worker
or to the average consumer, i.e., whether C = Cw or C = Cw + Cc.

When C = Cw, we have αL,L = υ, αL,K = 0 and βL,L = −αL,Ls = −βL,K.
Note that the same values for αj,i and βj,i can be obtained by considering
instead the case of labor income taxation presented above, if we take υ =
η(1+φL)−φL

zL
1−zL

. Hence, from the point of view of local indeterminacy and
dynamics, the two models are perfectly similar, i.e, the mechanisms operating
for indeterminacy are the same, even if their economic interpretations are
different.38

When C = Cw + Cc, the results are slightly different. Now αL,L = υψ,
αL,K = υ(1 − ψ) and βL,L = −αL,Lsβ = −βL,K , with ψ = θ(1 − s)/[(1 −
β)s+θ(1−s)]. There is now an equivalence with the model with consumption
taxation since for υ = − zcφc

1+zc(1+φc)
the parameters αj,i and βj,i are identical

in both models.39 Hence, once more, although the distortions introduced in
these models have different microeconomic foundations, they operate exactly
in the same way.

37We do not introduce externalities into capitalists preferences because, since they have
a log-linear utility function, such externalities would not affect the dynamics.

38Notice that this implies that indeterminacy only occurs when υ > 0, i.e., consumption
externalities are of the "keeping-up with the Joneses" type.

39Again, indeterminacy requires consumption externalities of the "keeping-up with the
Joneses" type.
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With these examples we were able to illustrate the fact that distortions
that affect the capital market do not promote indeterminacy. Indeed, when
there is only capital income taxation, the steady state is always a saddle.
On the contrary, when distortions only modify effective consumption (la-
bor income taxation, public spending externalities, consumption taxation),
indeterminacy can emerge. As in the first type of examples, configuration
(ii) of Table 1 applies. Therefore, the mechanisms for indeterminacy are
quite similar, even if the economic interpretation of distortions across all
these examples is different. Finally, we showed that models where aggregate
consumption affects consumption utility (consumption externalities) are per-
fectly equivalent, from a local dynamic point of view, to models with labor
income and consumption taxation.

4.3 Examples with distortions only on the generalized
offer curve

In the examples presented in this section distortions only affect the general-
ized offer curve. We begin with the case of leisure externalities in preferences
and show that, with respect to the previous examples, several new dynamic
configurations and results emerge, depending on the level of this externality.
We pursue by presenting an example with efficiency wages and establish that,
in terms of local dynamics, it corresponds to a particular case of the model
with leisure externalities.

The idea behind leisure externalities is that an individual’s utility from
leisure is affected by the amount of labour supplied by others. For the sake of
simplicity, let the utility function of a worker be written as Cw

t+1/B−L
µ

t L
ǫγ
t ,

where ǫγ ≥ 1, µ ∈ R are constant parameters and Lt denotes aggregate labor,
which is taken as given by individual workers, but modifies their welfare.
Solving the model, and since at equilibrium Lt = Lt, we get αj,i = βj,i = 0
and βΓ,i = αΓ,K = 0 for {i, j} = {K,L}, and αΓ,L = µ, i.e. distortions
only affect Γ(K,L) through the parameter αΓ,L. We can easily see that
Assumptions 1 and 4 are ensured. Moreover, from Assumption 2, we focus
on cases where −2 < µ < 0. Note that when µ < 0 the marginal desutility
of labor is lower when the others also work more.40

Let us define µ∗ ≡ [2[s− θ(1− s)]− 2
√
s[s− θ(1− s)]]/[θ(1 − s)]. If

µ∗ < µ < 0, configurations (ii).1 and (iii).1 of Table 1 apply, meaning that
indeterminacy requires σ > σH1. Since σH1 < 1 when µ < −[s − θ(1 −
s)]/[1− θ(1− s)], indeterminacy can occur when the production function is

40Recent contributions that have introduced leisure externalities (Benhabib and Farmer
(2000), Weder (2004)) also assumed µ < 0.
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Cobb-Douglas for µ∗ < µ < −[s− θ(1− s)]/[1− θ(1− s)].
For µ < µ∗, indeterminacy emerges for a different range of the elasticity

of capital-labor substitution. Indeed, if −1 < µ < µ∗, configuration (iv).1
applies, the steady state being locally indeterminate for εγF < εγ < εγH when
σH3 < σ < σF , for 1 ≤ εγ < εγH when σF < σ < σH2 , and for 1 ≤ εγ < εγT
when σ > σH2. See Table 1.

If −2 < µ < −1,41 configuration (v).1 applies. The conditions for inde-
terminacy are qualitatively similar to those obtained just before but quanti-
tatively, the results are different. Indeed, as σF =

2s+(1−s)θ(2+µ)
2(2+µ)

, we deduce

that σF < 1 for µ > µ∗∗ ≡ −2[2−s−θ(1−s)]
2−θ(1−s)

, with −2 < µ∗∗ < −1. While
for −1 < µ < µ∗, indeterminacy emerges under a Cobb-Douglas technology
when the private labor supply is infinitely elastic, we do not get this result
for all −2 < µ < −1. More precisely, when −2 < µ < µ∗∗,42 indeterminacy
may be ruled out because private labor supply is too elastic (εγF > εγ ≥ 1).
This shows that it should be misleading to focus only on the case of an infi-
nitely elastic labor supply when we want to fully study the role of some labor
market distortions on the occurrence of indeterminacy.

We end this section by presenting an example with efficiency wages and
show that, in terms of local dynamics, such a framework can be seen as a par-
ticular case of the previous model with leisure externalities. The example we
present here follows closely Grandmont (2008), where unemployment insur-
ance43 is introduced in a Woodford economy with efficiency wages (see also
(Coimbra (1999), Nakajima (2006)). At equilibrium, these distortions only
affect the generalized offer curve: Γ(Kt−1,Lt) = g(Lt), where g(L) stands for
aggregate consumption of employed and unemployed workers, and its elas-
ticity satisfy 0 < ǫg < 1, with ǫg close to 1 when unemployment benefits are
small, and decreasing to zero when these benefits become larger. Because of a
constant reservation wage,44 we have ǫγ = 1. Hence−1 < αΓ,L = (ǫg−1) < 0,
and αi,j = βi,j = 0 for {i, j} = {K,L}, βΓ,L = βΓ,K = αΓ,K = 0.

Comparing the parameters αi,j and βi,j of this economy with those of
the leisure externalities example presented above, we can see that they are
formally identical for µ = ǫg−1, provided −1 < µ < 0 and ǫγ = 1. Therefore,
this last model can be seen as a particular case of not too negative aggregate
labor externalities in leisure utility. Recall that for µ∗ < µ < 0, configurations

41Notice that in their paper, Benhabib and Farmer (2000) set µ = −1.23.
42This also requires σH3 < 1.
43Unemployment compensation is a constant percentage of wages, financed by taxation

on labor income at a uniform rate.
44Each worker supplies one unit of labor with a labor desutility that depends on the

level of effort. Since at equilibrium the level of effort is constant, individual labor supply
is infinitely elastic.
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(ii).1 and (iii).1 of Table 1 apply, i.e., indeterminacy emerges for σ > σH1.
Because σH1 < 1 requires 0 < ǫg < (1 − s)/[1 − θ(1 − s)],

45 unemployment
insurance cannot be arbitrarily weak when the technology is Cobb-Douglas.
However, the range of values for ǫg such that indeterminacy emerges for
all σ ≥ 1 is compatible with a wide and quite plausible range of values of
unemployment and unemployment insurance rates.46

4.4 Examples with distortions on the generalized offer
curve and effective consumption

In this section we focus on examples where both Γ(K,L) and Ω(K,L) are
affected by market distortions, while the capital market remains perfectly
competitive. The first example deals with labor market imperfections: unions
and unemployment benefits are introduced. In the second example, public
spending, financed through a balanced budget rule, affects both individual
utility of consumption and labor desutility. This case is new, and is able
to illustrate most of the dynamic results (configurations) exhibited in the
general framework.

The first example is based on Dufourt et al. (2008), where the Woodford
finance constrained framework is extended to take into account the existence
of involuntary unemployment (see also Lloyd-Braga and Modesto (2007)).
In this paper, wages and employment are determined through an efficient
bargain between unions and firms. Unions are able to set wages above a
reservation wage, with a markup factor µ(K,L) = 1−αs(K/L)

1−s(K/L)
≥ 1, increasing

in the (constant) bargaining power of unions (1−α) ∈ [0, 1).47 Employment
is determined by the equality between the reservation wage and the marginal
productivity of labor.Dufourt et al. (2008) also consider a constant real
unemployment benefit b > 0 financed by taxes on those employed. Identifying
their model with our general framework, we obtain:

Ω(Kt−1, Lt) = Aµ(Kt−1/Lt)ω(Kt−1/Lt)

̺(Kt−1, Lt) = Aαρ(Kt−1/Lt)

Γ(Kt−1,Lt) = b
µ(Kt−1/Lt)

Lt

45From the previous example on leisure externalities, remember that σH1 < 1 requires
µ < −[s− θ(1− s)]/[1− θ(1− s)].

46See Grandmont (2008) for a more detailed discussion.
47Note that the case of a perfectly competitive labor market would be obtained with

µ(K,L) = 1, i.e., α = 1.
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Because of the existence of a reservation wage48 we have ǫγ = 1 and, after
some computations, we get αK,j = βK,j = 0 for j = K,L,

49 αΓ,K = αL,K =

−αL,L = −βΓ,K = βL,L = −βL,K = βΓ,L = s(1−α)
1−αs

∈ (0, s), and αΓ,L =
αL,L − 1. Note that Assumption 2 is satisfied for s < 1/2, and Assumption
1 for αs > θ(1− s).

One can check that, for θ(1− s)/s < α < 1− [θ(1− s)/s(4− θ)], config-
urations (ii).1 and (iii).1 are the relevant ones and indeterminacy emerges
for σ > σH1 = s (see Table 1). For 1 − [θ(1 − s)/s(4 − θ)] < α ≤ 1, config-
uration (iv).1 applies. Since ǫγ = 1, indeterminacy emerges when σ > σF =
2s[α(2−s)−1]+θ(1−s)(1−αs)

2[1−s(2−α)]
. Notice that for 1 − [θ(1 − s)/s(4 − θ)] < α ≤ 1, we

have s < σF < 1. Therefore, the steady state is always indeterminate if the
technology is Cobb-Douglas, even when union power is arbitrarily small or
equal to zero.50 Therefore, and recalling also the efficiency wages example,
we conclude that with plausible labor market imperfections, indeterminacy
emerges under reasonable degrees of capital-labor substitution.51

In the last example, the standardWoodford model is modified introducing
public spending, financed by taxation on capital and labor incomes through a
balanced budget rule. Assuming that government expenditures (Gt) provide
services that affect not only workers’ utility for consumption, but also their
desutility of labor, we will be able to provide an illustration of configuration
(vi). For simplicity, let the utility of the representative worker be defined by
Gη

t+1C
w
t+1/B − G

µ
t L

ǫγ
t , where ǫγ ≥ 1 and η and µ are parameters, represent-

ing, respectively, the elasticity of government spending affecting consumption
utility and labor desutility. The level of government spending is defined by
Gt = τKρtKt−1 + τLωtLt, where τK ∈ (0, 1) and τL ∈ (0, 1) denote, re-
spectively, the capital and labor income tax rates that are supposed to be
constant. At equilibrium, we obtain:

Ω(Kt−1, Lt) = [τKρtKt−1 + τLωtLt]
η(1− τL)ω(Kt−1/Lt)

̺(Kt−1, Lt) = (1− τK)Aρ(Kt−1/Lt)

Γ(Kt−1,Lt) = [τKρtKt−1 + τLωtLt]
µγ(Lt),

where γ(Lt) = ǫγL
ǫγ
t , ǫγ − 1 ≥ 0 representing the inverse of the elasticity of

48Each worker supplies inelastically 1 unit of labor. Due to the unemployment benefit,
there is a reservation wage below which individuals prefer not to work.

49This means that, in terms of local dynamics, the model is as if ̺(Kt−1, Lt) is not
affected by distortions.

50This is due to the significant difference between the parameters αL,L and αΓ,L coming
from the existence of the unemployment benefit.

51Indeed, in both cases, indeterminacy is implied by the existence of sufficiently negative
values of αΓ,L (ǫg low in the efficiency wage model, αΓ,L < −1 here), that correspond to
plausible values of the replacement ratio and of the unemployment rate.

26



the labor supply at the individual level. By direct inspection of ̺(Kt−1, Lt),
we immediately deduce that αK,i = βK,i = 0.52 Let us define ψ ≡ τL(1 −
s)/[τL(1 − s) + sτK] ∈ (0, 1). We get αL,L = ηψ, αL,K = η(1 − ψ), βL,L =
(1−s−ψ)η = −βL,K , and αΓ,L = µψ, αΓ,K = µ(1−ψ), βΓ,L = (1−s−ψ)µ =
−βΓ,K.

In order to simplify the presentation, we consider that η > max{µ, 0}53

and ψ < 1− s(1 + η)/(1 − s + η) < 1− s. In this case, Assumptions 1 and
2 further require that −2/ψ − µ < η < s/(1− s − ψ), µ > −s/(1 − s− ψ),
and that θ < θ∗ ≡ [s− η(1− s− ψ)]/(1 + ηψ)(1− s).

Let µb ≡ (1+ηψ)(θ−θ∗)
1−ψ−θ(1+ηψ)

. For µ > µb, D′

1(σ) < 0 and configurations (ii).1,

(iii).1 and (iv).1 are the relevant ones. In configurations (ii).1 and (iii).1

indeterminacy emerges for σ > σH1 =
s−(1−s−ψ)(η−µ)−θ(1−s)(1+µ)

ψ(η−µ)
, provided εγ

is sufficiently small. See Table 1.
In configuration (iv).1, which emerges when µ is sufficiently close to µb,

indeterminacy occurs for σH3 < σ < σF when εγF < εγ < εγH , and for σ > σF
when 1 ≤ εγ < min{εγH , εγT }, where σF = 2[s−(1−s−ψ)(η+µ)]+θ(1−s)(2+η+µ)

2[2+ψ(η+µ)]
.

Hence, when the capital-labor substitution σ is not too large, indeterminacy
may be ruled out if εγ is sufficiently close to one. When µ < µb, D′

1(σ) >
0. So either configuration (v).2 applies54 and indeterminacy occurs under
similar conditions than under configuration (iv).1, or configuration (vi).2 is
the relevant one and indeterminacy occurs for σS2 < σ < σF when εγF <
εγ < εγT , and for σ > σF when 1 ≤ εγ < min{εγH , εγT }.

55 This example
shows that distortions that affect both sides of the intertemporal trade-off of
workers, i.e., effective consumption Ω(K,L) and the generalized offer curve
Γ(K,L), are able to generate most of the possible dynamic configurations
exhibited in our general framework.

5 Concluding remarks

With our general analysis of the role of market distortions on local dynamics
and the different examples of specific distortions presented above, we were
able to we emphasize several interesting results, some of them already latent
in previous works, but which are here confirmed, generalized and highlighted.

52In terms of local dynamics this means that government intervention does not affect
̺(Kt−1, Lt), i.e., this model is equivalent to a model where ̺(Kt−1, Lt) = ρt.

53Note that since αK,i = βK,i = 0, η > µ is a necessary condition for indeterminacy.
54Note that αΓ,K − αL,K = −(η − µ)(1− ψ) < 0.
55Configuration (v) emerges for µc < µ < µb, while for µ < µc we obtain configuration

(vi), where µc ≡ (1−s)(1+η)(1+ηψ)(θ−θ∗)
(1−s)(1−ψ)−s+(1−s−ψ)η < 0. Note that µc falls into the appropriate range

of values for µ if η is sufficiently large and ψ is close to 1− s.
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First of all, capital market distortions per se do not seem to play a major role
for the occurrence of indeterminacy. On the contrary, bifurcations and in-
determinacy emerge under labor market rigidities, without imposing strange
or implausible restrictions, whereas for output market distortions, indeter-
minacy requires conditions that might be considered less relevant from an
empirical point of view. These findings suggest that the functioning of labor
markets, which in the real world show significant deviations from the compet-
itive paradigm, may be responsible for the persistency along business fluctu-
ations and for the existence of expectations-driven cycles. Empirical analysis
on this issue is therefore an important direction for further research.56

A possible explanation for these results may be linked to the fact that
future expectations, which open the room for fluctuations driven by self-
fulfilling expectations, only affect the current decisions of consumers/workers,
thus rendering distortions that affect the intertemporal trade-off of con-
sumers/workers more important than those affecting the capital accumula-
tion equation.57 Strategic considerations by firms owning productive capital,
which are usually disregarded, may render future expectations of capital-
ists/producers relevant, and change the results. Although some works have
already considered some of these aspects,58 further research on this issue is
welcome.

Two remarks concerning the scope of the present study are worth refer-
ring. First, our paper only deals with the role of market distortions on local
indeterminacy linked to the sink property, i.e. we do not adress the cases of
static or global dynamic indeterminacy and bifurcations,59 which may also
appear in the presence of some market imperfections. Second, although we
only discuss local deterministic indeterminacy and cycles, we may be able
to construct stochastic sunspot cycles along indeterminacy and bifurcations

56Some recent works confirm the importance of labor market imperfections in explaining
real business cycles data. Dufourt et al. (2007) replicate the fluctuations and persistence
of unemployment data, considering i.i.d. sunspot shocks on expecations in a model with
unions and unemployment benefits. Chari et al. (2007) also show quantitatively that labor
market frictions constitute one of the most promising mechanisms through which shocks
on fundamentals lead to business cycles fluctuations.

57Indeed, in all the usual macrodynamic frameworks, including the Ramsey and over-
lapping generations models, firms just rent productive capital, accummulated from past
savings of consumers/capitalists, so that future expectations do not directly influence cap-
ital accumulation.

58See for instance d’Aspremont et. al (2000).
59The interested reader can refer to Dos Santos Ferreira and Dufourt (2006), Dos Santos

Ferreira and Lloyd-Braga (2008) and Wang and Wen (2008) who exploit static indeter-
minacy of the equilibrium to explain expectation-driven fluctuations and to Drugeon and
Wigniolle (1996) and Gali (1995) who obtain multiplicities from the analysis of global
dynamics.
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using the methodology of Grandmont et al. (1998). However, under some
market failures, with strategic interactions between agents, our parameters
αij and βij may become stochastic in the presence of extrinsic uncertainty
and, in this case, the results provided in Grandmont et al. (1998) may
no longer be applicable, in the context of autocorrelated sunspot processes,
along bifurcations.

Finally, let us notice that our work enabled us to find classes of specific
distortions within which equivalence results are obtained. This has some
strong implications. If we estimate the relevant parameters of our general
formulation, we will not be able to identify a particular source of specific dis-
tortions among those, which belonging to the same class, are observationally
equivalent. Also, even if indeterminacy requires an empirically unreasonable
degree of some specific distortion, the associated indeterminacy mechanism is
not necessarily unimportant, since an equivalent empirically plausible model
may exist.

6 Appendix

6.1 Existence of a steady state

Proposition 2 (Existence of the normalized steady state) (K∗, L∗) =
(1, 1) is a stationary solution of the dynamic system (3)-(4) if and only if
A = θ/(β̺(1, 1) > 0 and B = [β̺(1, 1)Γ(1, 1)]−1 θΩ(1, 1) > 0.

Proof. A stationary equilibrium of the dynamic system (3)-(4) is a so-
lution (K,L) = (Kt−1, Lt) for all t, that satisfies A̺(K,L) = θ/β and
A/B)Ω(K,L)L = Γ(K,L). The existence of a steady state can be established
by choosing appropriately the two scaling parameters A > 0 and B > 0 so
as to ensure that one steady state coincides with (K,L) = (1, 1). From the
first equation, we obtain a unique solution A = θ/(β̺(1, 1) > 0. Substi-
tuting this into the second equation we then obtain the unique solution for
B = [β̺(1, 1)Γ(1, 1)]−1 θΩ(1, 1) > 0.

6.2 Trace T and determinant D of the Jacobian matrix

The trace T and the determinant D of the associated Jacobian matrix J ,

defined in (6), are given respectively, by T = 1 +
εΓ,L+θ(ε̺,K(1+εΩ,L)−εΩ,Kε̺,L)

1+εΩ,L

and D =
εΓ,L(1+θε̺,K)−θεΓ,Kε̺,L

1+εΩ,L
. We substitute the expressions given in (5) in

these two equations, and we assume that the numerator and the denominator
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of T and D linearly depend on the elasticity of capital-labor substitution σ,
i.e. that:

Assumption 3

(βL,K + s) =
(1−s−βK,K)(s−βL,L)

(1−s+βK,L)
and βΓ,K = −βΓ,L

1−s−βK,K
1−s+βK,L

.

This assumption is satisfied in models with no distortion and by all the
works considered in the literature and presented here as applications. Under
Assumption 3, T and D can then be written as:

T = T0(σ)(εγ−1)+T 1(σ), T0(σ) =
σ

σ(1 + αL,L)− (s− βL,L)

T1(σ) = 1 + {σ[1 + αΓ,L + θ(αK,K(1 + αL,L)− αL,KαK,L)] + βΓ,L

− θ[(1 + αL,L)(1− s− βK,K) + αK,K(s− βL,L) + αL,K(1− s+ βK,L)

+ αK,L
(1− s− βK,K)(s− βL,L)

1− s+ βK,L
]}/{σ(1 + αL,L)− (s− βL,L)}

(11)

D = D0(σ)(εγ−1)+D1(σ), D0(σ) =
σ(1 + θαK,K)− θ(1− s− βK,K)

σ(1 + αL,L)− (s− βL,L)

D1(σ) = {σ[(1 + θαK,K)(1 + αΓ,L)− θαΓ,KαK,L] + βΓ,L(1 + θαK,K)

− θ[(1− s− βK,K)(1 + αΓ,L) + αΓ,K(1− s+ βK,L)

− αK,LβΓ,L
1− s− βK,K

1− s+ βK,L

]}/{σ(1 + αL,L)− (s− βL,L)}

(12)

6.3 Local stability properties

Our main interest is to understand how the existence of market imperfec-
tions change the characterization of local stability properties in terms of the
elasticity of substitution between capital and labor, σ, and of the elastic-
ity of the private offer curve, εγ, while keeping s and θ constant at values
satisfying Assumption 1.1. Applying the geometrical method developed by
Grandmont et al. (1998), we start by analyzing the variations of T and D in
the plane (T,D), as εγ is running the interval [1,+∞). From (11) and (12),
we see that, in the plane (T,D), the locus of points (T (εγ), D(εγ)) describes
a half-line ∆ for εγ ∈ [1,+∞), that starts at (T1(σ), D1(σ)) when εγ = 1,
with a slope S equal to
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S = D0(σ)/T0(σ) = 1 + θαK,K − θ (1− s− βK,K) σ
−1 > 0 (13)

Under Assumption 1, D0(σ) > 0 and T0(σ) > 0, i.e. the half-line ∆ is
positively sloped, pointing upwards to the right, as εγ increases from 1 to
+∞. When σ goes from (s−βLL)/(1+αLL) to +∞, S increases to 1+θαK,K.
Easy analytical computations show that:

Lemma 1 Under Assumption 1 if αKK ≤ 0 then 0 < S < 1, whereas if
αKK > 0, then 1 + θαK,K > S > 1 if and only if σ > σT , and S = 1 if and
only if σ = σT , with σT ≡ (1− s− βKK)/αKK.

To locate the half-line ∆ in the plane (T,D), it is also important to know,
not only its slope but also the position of its starting point (T1(σ), D1(σ)) as
σ varies from +∞ to (s−βLL)/(1+αLL). It describes a half-line ∆1, starting
at (T1(+∞), D1(+∞)) given by:

T1(+∞) = 1+
[
1+αΓ,L+θ(αK,K(1+αL,L)−αL,KαK,L)

]
[1+αL,L]

−1(14)

D1 (+∞) = [1+αΓ,L+θ (αK,K(1+αΓ,L)−αΓ,KαK,L)] [1+αL,L]
−1 (15)

We focus on configurations where this starting point lies on the line (AC),
i.e. we assume that:

Assumption 4
1+D1(+∞)−T1(+∞) = 0 i.e., αK,K(αΓ,L−αL,L) = αK,L(αΓ,K −αL,K).

Most of the distortions considered in the literature satisfy this condition.
Note that from Assumption 2 (T1(+∞), D1(+∞)) lies between A an C.

Under Assumption 4 the slope S1 of the half-line ∆1, is given by:

S1 =
D′

1(σ)

T ′1(σ)
= 1 + θ

I2
I1
, (16)

with

I1 ≡ θ(1 + αL,L)[(1 + αL,L)(1− s− βK,K) + αL,K(1− s+ βK,L)

+αK,L
(1− s− βK,K)(s− βL,L)

1− s+ βK,L
]

−(s− βL,L)[1 + αΓ,L − θαL,KαK,L]− (1 + αL,L)βΓ,L; (17)

I2 ≡ −(1 + αL,L)[(1− s− βK,K) (αL,L − αΓ,L)

+αK,K(s− βL,L + βΓ,L) + (αL,K − αΓ,K)(1− s+ βK,L)

+αK,L
(1− s− βK,K)(s− βL,L + βΓ,L)

1− s + βK,L
].

As σ decreases from +∞ to (s− βLL)/(1 + αLL), the half-line ∆1 may point
upwards (D′

1 (σ) < 0) or downwards (D
′

1 (σ) > 0).
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6.4 Configurations

We analyze separately these two cases, D′

1 (σ) < 0 and D′

1 (σ) > 0. Note
that:

SignD′

1(σ) = Sign(I1 + θI2), (18)

where

I1 + θI2 ≡ θ(1 + αL,L)[(1− s− βK,K) + (1− s− βK,K)αΓ,L

−αK,K(s− βL,L + βΓ,L) + αΓ,K(1− s+ βK,L)

−αK,L
(1− s− βK,K)βΓ,L
1− s+ βK,L

]− (s− βL,L)[1 + αΓ,L − θαL,KαK,L]

−(1 + αL,L)βΓ,L

Within each case, due to geometrical arguments, we have several configu-
rations: 4 within the first case and 2 within the second case. These con-
figurations are presented below and depicted in the plane (T,D) in Figure
1.

- Configuration (i) D′

1 (σ) < 0 and S1 ∈ (0, 1): I1 < −θI2 < 0.

- Configuration (ii): D′

1 (σ) < 0 and |S1| > 1:

either I1 < 0 and I2 < 0, where S1 > 1 or 0 < 2I1 < −θI2, where
S1 < −1;

- Configuration (iii): D′

1 (σ) < 0 and S1 ∈ (−1, SB): 0 < (1− SB) I1 <
−θI2 < 2I1;

- Configuration (iv): D′

1 (σ) < 0 and S1 ∈ (SB, 0): 0 < I1 < −θI2 <
(1− SB) I1;

- Configuration (v): D′

1 (σ) > 0 and S1 ∈ (0, SD): −
I1
θ
< I2 < −

(1+αLL)(1−s)
s−βLL

I1 <
0;

- Configuration (vi): D′

1 (σ) > 0 and S1 ∈ (SD, 1) : −
(1+αLL)(1−s)

s−βLL
I1 < I2 < 0.

where SD ∈ (0, 1) and SB ∈ (−1, 0) , the critical value of S1 such that the
∆1 line goes through B, are given in the Appendix 6.7.

Before proceeding let us make a few helpful remarks. When αΓ,i = βΓ,i =
0, using Assumption 4, I1 + θI2 becomes:

I1 + θI2 = θ(1 + αL,L)(1− s− βK,K)− (s− βL,L)(1 + θαK,K), (19)

which is always strictly negative under Assumption 1.2. Hence D′

1 (σ) < 0.

32



When αK,i = βK,i = 0, I1 + θI2 becomes:

I1 + θI2 =− (s− βL,L)(1 + αΓ,L)− βΓ,L(1 + αL,L)

+ θ (1− s) (1 + αL,L) (1 + αΓ,L + αΓ,K) ,
(20)

which a priori can take a positive or negative sign. Using (20) and (18),
configurations (v) and (vi), where D′

1(σ) > 0 and αK,i = βK,i = 0, are
obtained when

αΓL < α
∗

ΓL ≡ −1−
βΓ,L(1 + αL,L)− θ (1− s) (1 + αL,L)αΓ,K

(s− βL,L)− θ (1− s) (1 + αL,L)
. (21)

Finally, note that, using (11) and (12), when αK,i = βK,i = 0, the conditionD >
T − 1 can be written as:

θ (1− s)
[(αL,L + αL,K)− (αΓ,L + αΓ,K)]− (ǫγ − 1) σ

σ(1 + αL,L)− (s− βL,L)
> 0 (22)

Since ǫγ − 1 > 0, this condition can only be satisfied, under Assumption 1,
when (αL,L + αL,K) − (αΓ,L + αΓ,K) > 0. This last condition implies that,
when αK,i = βK,i = 0, I2 ≡ − (1 + αLL) (1−s) [(αL,L + αL,K)− (αΓ,L + αΓ,K)]
< 0. Therefore D′

1(σ) > 0⇔ I1 + θI2 > 0, requires I1 > 0 and 0 < S1 < 1.

6.4.1 Derivation of Proposition 1

The case where D′

1 (σ) < 0: Proposition 1 (a) - Table 1

Configuration (i) (S1 ∈ (0, 1)) In this configuration, the half line ∆1

starts (for σ = +∞) on the line (AC) between A and C (see Assumptions
2 and 4), with a slope lower than 1, i.e., lower than the slope of (AC), and
points upwards, lying therefore on the right of (AC). See Figure 2. Two
main cases can arise. If αKK ≤ 0, then S < 1 (see Lemma 1) and the half-
line ∆ lies below line (AC) and above line (AB). Hence, the steady state is
a saddle.

If αKK > 0, there exists the critical value σT such that S = 1 (see Lemma
1). Hence, for σ ≤ σT , since S ≤ 1 the same as before happens. However,
if σ > σT , then S > 1, and the half-line ∆ will cross (AC). We define σH2

as a critical value of σ such that the half-line ∆ goes through point C. See
Appendix 6.6. Then, for σ = +∞, the half-line ∆ starting on (AC) points
upwards with a slope higher than 1. By continuity, the critical value σH2 , in
this configuration greater than σT , exists.

60 For σ > σH2,∆ crosses [BC] after

60In Appendix 6.8 we show the uniqueness of σH2
in the configuration under analysis.
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crossing (AC), i.e., the steady state is a saddle for 1 ≤ εγ < εγT , undergoes
a transcritical bifurcation at εγ = εγT , becomes a sink for εγT < εγ < εγH ,
undergoes a Hopf bifurcation at εγ = εγH , and becomes a source for εγ > εγH .
For σT < σ < σH2, the Hopf bifurcation disappears and the steady state is
either a saddle (1 ≤ εγ < εγT ) or a source (εγ > εγT ).

Configuration (ii) (|S1| > 1) Since the half-line ∆1 starts on the line
(AC), between A and C, and points upwards with a slope S1 strictly greater
than 1 or strictly smaller than −1, it crosses neither (AB), nor (AC). See
Figure 3. However, since ∆1 crosses the segment [BC], we define σH1 as the
critical value of σ such that D1(σH1) = 1. See (26).

As in the previous configuration, the analysis depends on the value of
αK,K . Consider first that αK,K ≤ 0, which means that S < 1. See Lemma
1. If σ ≤ σH1, the half-line ∆ starts above [BC] and crosses (AC). For
σ > σH1 , (T1(σ), D1(σ)) is inside (ABC). When σH1 < σ < σH2 , ∆ crosses
first the segment [BC] and then line (AC), above point C. For σ > σH2, ∆
only crosses (AC) below point C.61

Assuming now that αK,K > 0, the critical value σT > 0 exists (see Lemma
1). We assume that σT > σH1 , i.e., the slope of the half-line ∆ at σH1 is lower
than 1. This is ensured by:

Assumption 5 If αK,K > 0, then −1− T1(σT ) < D1(σT ) < 1.
62.

As before, when σ ≤ σH1 , (T1(σ), D1(σ)) is above the segment [BC] and the
half-line ∆ only crosses (AC). To simplify the analysis, we also assume that:

Assumption 6 If σ > σH1 and αK,K > 0, then εγH < εγT .63

As a consequence, when σH1 < σ < σT , ∆ crosses first the segment [BC] and
then line (AC) above C. When σ ≥ σT , the half-line ∆ only crosses [BC].

Configuration (iii) (S1 ∈ (−1, SB)) In this configuration the slope S1
is negative and greater than −1, and the half-line ∆1, that starts on (AC)
and points upwards to the left, crosses (AB) above point B. See Figure 4.
Let us then define σF as the critical value such that 1+D1(σF )+T1(σF ) = 0.
See (27).

61This last case does not appear if σH2
does not exist. See Appendix 6.8, for αK,K = 0.

62More precisely, Assumption 5 ensures that, for configurations (ii), (iii) and (iv), the
point (T1(σT ),D1(σT )) lies within the triangle (ABC) when αKK > 0.

63This condition is ensured if (31) in Appendix 6.8 is satisfied.
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Consider first that αK,K ≤ 0, i.e., the slope of ∆ is always smaller or
equal to 1. When σ < σF , (T1(σ), D1(σ)) is below line (AB) and above
segment [BC]. Since the half-line ∆ points upwards it does not cross [BC],
but crosses (AB) before crossing (AC). When σF ≤ σ ≤ σH1 , (T1(σ), D1(σ))
is above (AB) and above [BC]. Then, ∆ only crosses (AC). When σ > σH1 ,
the point (T1(σ),D1(σ)) is inside the triangle (ABC). As in the previous
configuration, σH2 is greater than σH1 . Therefore, for σH1 ≤ σ < σH2, the
half-line ∆ crosses first [BC] and then (AC) above C, and for σ > σH2, the
half-line ∆ only crosses (AC) below C.64

Consider now that αK,K > 0. In this case, the critical value σT > 0 exists
and, under Assumption 5, we have σT > σH1 > σF . Therefore, when σ < σH1 ,
we obtain the same results as before. When σH1 < σ < σT , (T1(σ), D1(σ))
is inside the triangle (ABC) and, under Assumption 6, ∆ crosses first [BC],
and then (AC) above point C. When σ ≥ σT , S becomes greater than 1,
which means that ∆ only crosses [BC].

Configuration (iv) (S1 ∈ (SB, 0)) In this configuration, the slope S1
is negative and greater than −1, and the half line ∆1, that points upwards to
the left, crosses line (AB) below point B. See Figure 5. In this configuration,
a new critical value, σH3 , the value of σ such that the half line∆ goes through
point B, becomes relevant.65

We begin by assuming αK,K ≤ 0, which implies S smaller than 1. For
σ < σH3 , ∆ starts on the left-side of (AB), crosses (AB) above B and (AC).
For σH3 < σ < σF , ∆ also starts on the left-side of (AB), but crosses (AB)
below B, the segment [BC], and (AC) above C. Recall that when σH2 exists,
the∆ line crosses point C. Then, for σF ≤ σ < σH2 ,

66 (T1(σ), D1(σ)) is inside
(ABC), and ∆ crosses [BC] and (AC) above C. For σ > σH2 , (T1(σ), D1(σ))
is still inside (ABC) and ∆ crosses (AC) below C.67

We consider now the case where αK,K > 0. Since we assume that σT is
sufficiently big, we have that σT > σF (> σH3) (Assumption 5). Then, for
σ < σH3 , the half-line ∆ crosses (AB) above B and (AC). For σH3 < σ < σF ,
∆ crosses (AB) below B, the segment [BC] and (AC) above C (Assumption
6). For σF ≤ σ < σT , ∆ starts inside (ABC) with a slope smaller than 1.

64This last case does not appear if σH2
does not exist. See Appendix 6.8, for αK,K = 0.

65In Appendix 6.9 we prove that in this configuration, there exists a unique critical value
σH3

∈ (σH1
, σF ) such that the half-line ∆ goes through point B and crosses [BC] on the

right of B for σ > σH3
.

66Note that σH2
may be higher or lower than σF . To simplify the exposition we only

present in Table 1 the results for σH2
> σF . Using geometrical considerations, the reader

can easily deduce the case where σF > σH2
.

67This last case does not appear if σH2
does not exist. See Appendix 6.8, for αK,K = 0.
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Then, it crosses [BC] and (AC) above C. For σ ≥ σT , the slope S being
greater than 1, ∆ only crosses [BC].

All these results are summarized in Table 1.

The case where D′

1 (σ) > 0 and αK,j = βK,j = 0, j = K,L: Proposition
1 (b) - Table 2 In this case the half-line ∆1 points downwards and, since
S1 ∈ (0, 1), it lyes on the left of (AC). Remember that, from Assumptions
2, and 4 the starting point of ∆1, (T1(+∞), D1(+∞)), is on the (AC) line,
between A and C. Therefore ∆1 crosses (AB) between A and B at the

critical value σF ∈ (
s−βL,L
1+αL,L

,+∞).

The half-line ∆, beginning on line ∆1 for εγ = 1, points upwards. Since
D′

1(σ) > 0, it must then cross (AB) at εγF > 1 if and only if
s−βLL
1+αLL

< σ < σF .
Moreover, ∆ always crosses (AC) at a value εγT > 1, since from Lemma 1, it
has a slope S ∈ (0, 1), with S tending to 1 when σ tends to +∞ . Notice also
that, since D1(+∞) < 1 and D

′

1(σ) > 0, the half-line ∆, pointing upwards,
also always crosses the line (BC), defined by D = 1, at εγH > 1. However,
whether Hopf bifurcations occur or not, depend on whether ∆ crosses the
segment [BC] in its interior or not. The following Lemma will help us with
this question:

Lemma 2 Let SD ≡ 1−
θ(1+αLL)(1−s)

s−βLL
.

1. If S1 < SD, (i) when αΓ,K ≤ αL,K then ǫγH < ǫγT ; (ii) when αΓ,K >

αL,K, then ǫγH < ǫγT for
s−βL,L
1+αL,L

< σ < σH2 and ǫγH > ǫγT for σ > σH2.

2. If S1 > SD, (i) when αΓ,K ≥ αL,K then ǫγH > ǫγT ; (ii) when αΓ,K <

αL,K, then: ǫγH > ǫγT for
s−βL,L
1+αL,L

< σ < σH2 and ǫγH < ǫγT for σ > σH2.

Proof. With αK,i = βK,i = 0, i = K,L, note that ǫγH > ǫγT ⇔

(σ − σH2) (αΓ,K − αL,K) > 0, where σH2 ≡
s−βL,L
1+αL,L

−

s−βL,L

(1+αL,L)(1−s)
I4−I3
θ

(S1−SD)

(αΓ,K−αL,K)(1+αL,L)
is the value of σ such that ǫγH (σH2) = ǫγT (σH2). Hence, when S1 < SD
and αΓ,K < αL,K or when S1 > SD and αΓ,K > αL,K, we have σH2 ≤
s−βL,L
1+αL,L

so that σ > σH2 for all σ under consideration. Otherwise, we get

σH2 >
s−βL,L
1+αL,L

. In the case where αΓ,K = αL,K, (σ − σH2) (αΓ,K − αL,K) =
s−βL,L

(1+αL,L)
2
(1−s)

I4−I3
θ
(S1 − SD). Therefore, ǫγH > ǫγT for S1 > SD and ǫγH < ǫγT

for S1 < SD. Lemma 2 immediately follows.
According to this Lemma, it is convenient to analyze the local dynamics

considering separately configuration (v) where S1 ∈ (0, SD) and configuration
(vi) where S1 ∈ (SD, 1).
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Before proceeding, let us also establish the relevant result:

Lemma 3 For D′

1 (σ) > 0 with αK,j = βK,j = 0, and under Assumption 1 ,
if 0 < S1 < SD, then S > S1 for all σ > s−βLL

1+αLL
; while if SD < S1 < 1, then

S < S1 ⇔
s−βLL
1+αLL

< σ < σS1 , where σS1 is given by (29).

Proof. Notice that using (13), (16), Lemma 2 and αK,j = βK,j = 0, since

D′

1(σ) > 0, we can write S1 − SD = −
θI2
I1

1+αLL
s−βLL

[
σS1 − s−βLL

1+αLL

]
and S − S1 =

− θI2
σI1

[
σ − σS1

]
, where I2 < 0 and I1 > 0, and

1+αLL
s−βLL

> 0 under Assumption

1. This implies S > S1 ⇔ σ > σS1 , while σS1 < s−βLL
1+αLL

⇔ S1 < SD.

Therefore, when S1 < SD, S > S1 for all σ >
s−βLL
1+αLL

. When S1 > SD then

S < S1 ⇔
s−βLL
(1+αLL)

< σ < σS1 .

Configuration (v) (S1 ∈ (0, SD)) Using Lemma 3, we show that in this
configuration S1 < S. Hence, for

s−βLL
1+αLL

< σ < σF , the half-line ∆ crosses
(AC) only after having crossed line (AB), i.e. εγT > εγF > 1 (see Figure
6). For σ < σH3 , ∆ crosses line (BC) on the left of point B, i.e., εγH < εγF ,
whereas for σ > σH3 the crossing point lies on the right of point B, i.e.,
εγH > εγF .

68 In the first case (σ < σH3) there are no Hopf bifurcations.
However, for σ > σH3 , Hopf bifurcations are possible if the crossing point lies
on the left of point C, i.e., if εγH < εγT . Under Lemma 2, this will depend on
the sign of αΓ,K − αL,K and also on whether σ is higher or lower than σH2 .
With the help of geometrical arguments we can see that when σH2 >

s−βLL
1+αLL

exists, then σH2 > σH3.
69 However σH2 may be higher or lower than σF .

To simplify the exposition we only present in Table 2 the results for this
configuration assuming that σH2 > σF .

70

Configuration (vi) (S1 ∈ (SD, 1)) In this configuration, as shown in
Lemma 3, S < S1 for all

s−βLL
1+αLL

< σ < σS1 and S > S1 for all σ > σS1 ,

where σS1 is the value of σ for which S = S1.
71 Define σS2 as the critical

value of σ such that the half line ∆ goes through point A.72 When s−βLL
1+αLL

<

68We can see geometrically that σH3
< σF .

69Suppose on the contrary that σH2
< σH3

. For σH2
< σ < σH3

, ∆ could not cross the
line (BC) on the right of point C because for σ < σH3

, as shown in the Appendix 6.9, it
must cross line (BC) on the left of point B.

70Using geometrical considerations, the reader can easily obtain the case where σF >
σH2

.
71The expression for σS1 is given in (29).
72The expression for σS2 is given in (30). As the slope of ∆ increases and its ini-

tial point shifts upwards along ∆1, εγT < εγF for s−βLL
1+αLL

< σ < σS2 , and εγT > εγF
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σ < σS2 , the half-line ∆, pointing upwards with a slope lower than ∆1 (we
can see geometrically that σS2 < σS1), crosses first (AC) and then (AB),
both crossing points being below point A. See Figure 7. What happens for
σ > σS2 depends on whether ∆ crosses (AB), which will only happen for
σ < σF , and on whether ∆ crosses the segment [BC] in its interior or not.
We will assume that (T1, D1) for σ = σS1 is inside the triangle (ABC), i.e.,
that:

Assumption 7 D1(σS1) > −1− T1(σS1)

Hence, σS1 > σF .
73 Then, for σS2 < σ < σF , ∆ still has a slope lower than

∆1, but it first crosses (AB) and then (AC). For σ > σF , ∆ no longer crosses
(AB). Whether ∆ goes through (BC) on the left or on the right of point C
depends, according to Lemma 3, on the sign of αΓK − αLK and on whether
σ is higher or lower than σH2 . We can see geometrically that σH2 > σS1 and
therefore σH2 > σF .

All these results are summarized in Table 2.

6.5 Expressions for critical values of εγ

εγH is such that D = 1, which is equivalent to:

εγH = 1 + {σ[αL,L − αΓ,L + θ(αΓ,KαK,L − αK,K(1 + αΓ,L))]

+ θ[(1− s− βK,K)(1 + αΓ,L) + αΓ,K(1− s+ βK,L)

− αK,LβΓ,L
1− s− βK,K

1− s+ βK,L

]− βΓ,L(1 + θαK,K)− (s− βL,L)}

/[σ(1 + θαK,K)− θ(1− s− βK,K)]

(23)

εγF is such that 1 + T +D = 0. After some computations, we obtain:

for σ > σS2 . Easy analytical computations show that σS2 ∈
(
s−βLL
1+αLL

,∞
)
exists if

s−βLL
1+αLL

(1 + αLL + αLK − αΓK) > θ (1− s) (1 + αLL + αLK) − βΓL. Hence, if this con-

dition is not met, then εγT > εγF for all σ > s−βLL
1+αLL

.
73Note that then we have εγH > εγF for all σ > s−βLL

(1+αLL)
. See Appendix 6.9 for the

definition and the existence of σH3
. Indeed, there cannot exist a σH3

> s−βLL
1+αLL

, since its
existence would require that σS1 < σH3

< σF , which is ruled out by Assumption 7.
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εγF = 1 + {σ[2(2 + αL,L + αΓ,L) + θ(αK,K(2 + αL,L + αΓ,L)− αK,L(αL,K + αΓ,K))]

− 2(s− βL,L − βΓ,L)− θ[(1− s− βK,K)(2 + αL,L + αΓ,L)

+ αK,K(s− βL,L − βΓ,L) + (αL,K + αΓ,K)(1− s+ βK,L)

+ αK,L(s− βL,L − βΓ,L)
1− s− βK,K

1− s+ βK,L
]}/[θ(1− s− βK,K)− σ(2 + θαK,K)]

(24)

εγT is such that 1− T +D = 0. After some computations, we obtain:

εγT = 1 + {(1− s− βK,K)(αL,L − αΓ,L) + αK,K(s− βL,L + βΓ,L)+

+ (αL,K − αΓ,K)(1− s+ βK,L) + αK,L(s− βL,L + βΓ,L)
1− s− βK,K

1− s+ βK,L

}

/(1− s− βK,K − σαK,K)

(25)

6.6 Definitions and expressions for some critical values
of σ

σH1 is the critical value of σ such that D1(σH1) = 1.

σH1 ≡
s− βL,L + βΓ,L(1 + θαK,K)

αL,L − αΓ,L − θ[αK,K(1 + αΓ,L)− αΓ,KαK,L]
(26)

−
θ[(1− s− βK,K)(1 + αΓ,L) + αΓ,K(1− s+ βK,L)− αK,LβΓ,L

1−s−βK,K
1−s+βK,L

]

αL,L − αΓ,L − θ[αK,K(1 + αΓ,L)− αΓ,KαK,L]

σH2 is a critical value of σ such that the half-line ∆ goes through the
point (T,D) = (2, 1), i.e., goes through point C.74 Note that εγT = εγH for
σ = σH2 .
σH3 is the critical value of σ such that the half line ∆ goes through the

point (T,D) = (−2, 1), i.e., goes through point B.75 Note that εγF = εγH for
σ = σH3 .

74In Appendix 6.8, we show conditions for its existence and uniqueness.
75In Appendix 6.9, we we show conditions for its existence and uniqueness.
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The critical value σF is defined by 1 +D1(σF ) + T1(σF ) = 0.
76

σF ≡
(s− βLL − βΓ,L)

[
2 + θ(αKK + αKL

1−s−βKK
1−s+βKL

]

(2 + θαKK)(2 + αLL + αΓ,L)− θαKL(αLK + αΓ,K)
(27)

+
θ[(1− s− βKK)(2 + αLL + αΓ,L) + (1− s+ βKL)(αLK + αΓ,K)]

(2 + θαKK)(2 + αLL + αΓ,L)− θαKL(αLK + αΓ,K)

σT is the value of σ for which S = 1.

σT ≡
(1− s− βKK)

αKK
(28)

σS1 is the value of σ for which S = S1, relevant for Lemma . For αKi =
βKi = 0 it is given by:

σS1 ≡
θ (1− s) (1 + αLL) (1 + αLL + αLK)− (s− βLL) (1 + αΓ,L)− (1 + αLL) βΓL

(1 + αLL) (αLL + αLK − αΓ,L − αΓK)
(29)

σS2 is the value of σ such that the half line ∆ goes through the point
(T,D) = (−1, 0), i.e., goes through point A, so that εγT = εγF . For αKi =
βKi = 0 it is given by:

σS2 ≡
θ (1− s) (1 + αLL + αLK) + (s− βLL − βΓL)

2 (1 + αLL) + αLK − αΓK
(30)

6.7 Expressions for critical values of S1

SB < 0 is the critical value of S1 such that the ∆1 line goes through B and
is given by:

SB = 1 +
4(1 + αL,L)

−3(1 + αL,L)− (1 + θαK,K)(1 + αΓ,L) + θαΓ,KαK,L

SD ≡ 1−
θ(1 + αLL)(1− s)

s− βLL

76Note that using Assumption 4 the denominator of σF can also be written as 2(2 +
αL,L + αΓ,L)− 2θ[αΓ,KαK,L − αK,K(1 + αΓ,L) > 0
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6.8 Existence of σH2

Recall that when σ = σH2 we have ǫγH = ǫγT , i.e. the ∆ line goes through
point C. To discuss the existence and uniqueness of σH2 , we consider first
the configurations where S1 ∈ (0, 1), and then the remaining ones.
1. Configurations where S1 ∈ (0, 1).
When D′

1(σ) < 0 (as in configuration (i)), the existence of σH2 requires
αK,K > 0. Since D

′

1(σ) < 0 and S(σ) increases with σ (with S(+∞) > 1),
we deduce by direct geometrical considerations the existence and uniqueness
of σH2(> σT ), such that ǫγH < ǫγT for σ < σH2 , and ǫγH > ǫγT for σ > σH2 .

When D
′

1(σ) > 0, see Lemma 2.
2. Configurations where S1 > 1 or S1 < 0.
Consider first the case where αK,K < 0. Note that the equation ǫγH = ǫγT

is a polynomial of degree 2, i.e. has at most two solutions. Since S(+∞) ∈
(0, 1), we can see geometrically that a solution σH2 ∈ (σH1 ,+∞) must exist
and the number of these solutions is odd. We deduce the uniqueness of
σH2(> σH1), such that ǫγH < ǫγT for σ < σH2 , and ǫγH > ǫγT for σ > σH2 .

Consider now that αK,K = 0. Note that in this particular case, ǫγT
does not depend on σ. The equation ǫγH = ǫγT has at most one solution
σH2 ∈ (σH1,+∞) , and this solution is by continuity such that again ǫγH < ǫγT
for σ < σH2 , and ǫγH > ǫγT for σ > σH2.

Finally, consider that αK,K > 0. We can see geometrically that if there is
a solution σH2 to ǫγH = ǫγT , then σH2 ∈ (σH1 , σT ). The inequality ǫγH ≤ ǫγT
is equivalent to g(σ) ≥ 0, where

g(σ) ≡ αK,K[αL,L − αΓ,L + θ(αΓ,LαK,L − αK,K(1 + αΓ,L))](σ − σT )(σ − σH1)

−
I2

1 + αL,L

[σ(1 + θαK,K)− θ(1− s− βK,K)]

This function describes a convex parabola with g(0) > 0, g(σH1) > 0, g(σT ) >
0 and g(+∞) = +∞. Hence, either we have two solutions (if g′(σH1) < 0) or
none (if g′(σH1) ≥ 0) to the equation g(σ) = 0. As:

g′(σ) = αK,K[αL,L − αΓ,L + θ(αΓ,LαK,L − αK,K(1 + αΓ,L))]

[2σ − (σT + σH1)]−
I2

1 + αL,L
(1 + θαK,K)

We deduce that g′(σH1) ≥ 0 is equivalent to:

I2 ≤αK,K(1 + αL,L)[αL,L − αΓ,L + θ(αΓ,LαK,L − αK,K(1 + αΓ,L))]

(σH1 − σT )/(1 + θαK,K)
(31)
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Hence, when this inequality is satisfied, there is no solution to g(σ) = 0,
because g(σT ) ≥ g(σH1) > 0. This implies that ǫγH < ǫγT for all σ > σH1 , i.e.
the half-line ∆ always goes above point C.

6.9 Existence of σH3

Using (23) and (24) we have that ǫγH = ǫγF ⇔ h(σ) = 0, and ǫγH > ǫγF ⇔
h(σ) > 0, where:

h(σ) ≡[σ(2 + θαK,K)− θ(1− s− βK,K)][αL,L − αΓ,L + θ(αΓ,KαK,L

− αK,K(1 + αΓ,L))](σ − σH1) + 2[σ(1 + θαK,K)− θ(1− s− βK,K)]

[2 + αL,L + αΓ,L − θ(αΓ,KαK,L − αK,K(1 + αL,L))](σ − σF ),

By definition, σH3 is a value of σ such that ǫγH = ǫγF , therefore it must
be a solution of h(σ) = 0.

Since h(σ) is a polynomial of degree 2, the equation h(σ) = 0 has at most
two solutions. Here we limit our analysis to configurations (iv), (v) and (vi)
since σH3 is only relevant under these configurations. In all of them, since
∆ is positively sloped pointing upwards, it can only go through point B if
its initial point in ∆1 is on the left of line (AB), i.e., σH3 < σF . Also, in
all these three configurations the polynomial h(σ) is a convex function of σ
since the coefficient of the quadratic term σ2 is positive.77

Consider first configuration (iv). We can see geometrically that if there
is a σH3 >

s−βLL
1+αLL

then it must satisfy s−βLL
1+αLL

< σH1 < σH3 < σF . Straight
computations show that in this configuration h(σF ) > 0 and h (σH1) < 0.
Therefore there is a unique σH3 ∈ (σH1 , σF ) such that h (σH3) = 0. By
continuity, we have that ǫγH > ǫγF for σF > σ > σH3, and ǫγH < ǫγF for
σH1 < σ < σH3 .

Consider now configurations (v) and (vi). As seen above if σH3(>
s−βLL
1+αLL

)
exists it must satisfy σH3 < σF . Straight computations show that in these

configurations h(σF ) > 0. In configuration (v) we also have that h
(

s−βLL
1+αLL

)
<

0, which proves existence and uniqueness of σH3 . We then have ǫγH > ǫγF for
σ > σH3, and ǫγH < ǫγF for σ < σH3. In configuration (vi), on the contrary,

77Indeed, this coefficient is given by

c ≡ (2 + θαKK) {αLL − αΓL + θ [αΓKαKL − αKK (1 + αΓL)]}

+2 (1 + θαKK) {2 + αLL + αΓL − θ [αΓKαKL − αKK (1 + αLL)]}

In configuration (iv) c > 0, by Assumption 1 and 2. In configurations (v) and (vi) it is
also positive since αKi = βKi = 0 and c becomes c ≡ 4 (1 + αLL) which is positive by
Assumption 1.
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h
(

s−βLL
1+αLL

)
> 0. Therefore two cases are possible. Either there are two roots,

σaH3
and σbH3

, for the polynomial h (σH3) = 0, such that
s−βLL
1+αLL

< σaH3
< σbH3

<

σF , and in this case εγH < εγF for σ ∈
(
σHa

3
, σHb

3

)
, and εγH > εγF otherwise.

Notice however that the existence of σH3 ∈
(

s−βLL
1+αLL

, σF

)
in this configuration

requires that S > S1, which is ruled out by Assumption 7. Alternatively

there is no σH3 ∈
(

s−βLL
1+αLL

, σF

)
and εγH > εγF for all σ >

s−βLL
1+αLL

.
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