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Abstract. Impacts of climate and land cover changes on
streamflow were assessed using a hydrological modeling.
The precipitation runoff modeling system of the US Geo-
logical Survey was modified in order to consider wetlands
as a separate hydrological response unit. Initial model pa-
rameters were obtained from a previously modeled adjacent
catchment and subsequent calibration and validation were
carried out. The model calibration and validation periods
were divided into three. The calibration period was a five
years period (1981–1986). The validation period was divided
into two: validation 1 (1986–1991) and validation 2 (1996–
2002). Model performance was evaluated by using joint plots
of daily and monthly observed and simulated runoff hydro-
graphs and different coefficients of efficiency. The model
coefficients of efficiency were 0.71 for the calibration period
and 0.69 and 0.66 for validation periods 1 and 2, respectively.
A “delta-change” method was used to formulate climatic sce-
narios. One land cover change scenario was also used to as-
sess the likely impacts of these changes on the runoff. The
results of the scenario analysis showed that the basin is more
sensitive to increase in rainfall (+80% for +20%) than to a
decrease (−62% for −20%). The rainfall elasticity is 4:1
for a 20% increase in rainfall while it is 3:1 for a 20% re-
duction. A 1.5◦c increase in temperature resulted in a 6%
increase in potential evapotranspiration and 13% decrease in
streamflow. This indicates that the watershed is more elas-
tic to rainfall increase than temperature. The proposed land
cover scenario of converting areas between 2000 to 3000 m
a.s.l. to woodland also resulted in a significant decrease in
streamflow (11.8%). The study showed that properly cali-
brated and validated models could help understand likely im-
pacts of climate and land cover changes on catchment water
balance.

Correspondence to:D. Legesse
(dagnachewl@yahoo.com)

1 Introduction

Climate change can cause significant impacts on water re-
sources through changes in the hydrological cycle. The
change in temperature and precipitation components of the
cycle can have a direct consequence on the quantity of evapo-
transpiration and runoff components. Consequently, the spa-
tial and temporal water resource availability, or in general the
water balance, can be significantly affected, which clearly
amplifies its impact on sectors like agriculture, industry and
urban development (Hailemariam, 1999).

Land cover change, associated with the intensification of
agriculture, cattle raising and urbanization, could have a
profound influence on the hydrological processes in small
watersheds and at a regional level (Mendoza et al., 2002).
Streamflow plays an important role in establishing some
of the critical interactions that occur between physical
or ecological processes and social or economic processes
(Choia and Dealb, 2008).

The purpose of water resources management is often to
mitigate or prevent the adverse impacts of excessive runoff
or shortage of water. Hydrological models have served as a
valuable tool in water resources management for many years
and are usually used to simulate the impacts of proposed land
use/ land cover and climate change scenarios and to evalu-
ate management strategies. Generally, hydrological models
provide a framework in which to conceptualize and investi-
gate the relationships between climate and water resources
(Leavesley, 1994; Lazzaratto et al., 2006; Kunstmann and
Stadler, 2005; Choi and Deal, 2008). Global Climate Models
that simulate long-term trends in climate (rainfall, tempera-
ture, humidity) are often unsuitable for regional scale stud-
ies because of the course grid-size resolution. Consequently,
there is a strong need for hydrological modeling tools that
can be used to assess the likely effects of land cover as well
as climate changes on the hydrological cycle at a catchment
scale.
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The Ethiopian Rift system hosts a series of lakes that are
mainly fed by water flowing from the surrounding highlands
and escarpments. Over the past few decades there has been a
lot of activities that have modified the land use/land cover in
the region (Jansen et al., 2009). Moreover, the hydrological
dynamics has been strongly modified by intensive agricul-
tural activities. This has a direct impact on the lakes down-
stream. Therefore, it is very important to understand the
functioning of these lake catchments and their hydrological
response under different land use/cover and climate change
scenarios. Moreover, the water resources development of the
basin requires a judicious planning for the protection of the
fragile ecosystem.

This study will focus on a catchment scale hydrological
modeling of the Meki River basin, which is part of the Cen-
tral Main Ethiopian Rift lakes system.

The main objectives of this study are:

1. Test and validate a modified Precipitation Runoff Mod-
eling System (PRMS) and assess the model perfor-
mance in the basin.

2. Assessing the impacts of land cover and climate change
scenarios on the catchment’s streamflow.

For this study a physically based distributed-parameter
catchment scale hydrological model called PRMS was se-
lected. The model was then modified to accommodate the
prevailing conditions of the catchment as described below.

2 Description of PRMS

PRMS is a modular-design, physically based deterministic,
distributed-parameter modeling system developed by the US
Geological Survey to evaluate the impacts of various com-
binations of precipitation, climate, and land use on stream-
flow, sediment yields, and general basin hydrology (Leaves-
ley et al., 1983). Basin response to normal and extreme rain-
fall events can be simulated to evaluate changes in water-
balance relationships, flow regimes, flood peaks and vol-
umes, soil-water relationships, sediment yields, and ground-
water recharge (Leavesley et al., 1983). PRMS is physically
based in that each component of the hydrological system is
simulated with known physical laws or empirical relations
formulated on the basis of measurable watershed characteris-
tics. The modular design of PRMS provides a flexible model-
ing capability while allowing changes and adaptations to cer-
tain specific catchments. Detailed description of the model
as well as the model itself can be obtained from Leavesley et
al. (1983) and the USGS website.

PRMS is integrated in the Modular Modeling System
(MMS), which is a modeling platform that has parameter-
optimization, sensitivity analysis as well as real-time display
capabilities. PRMS can be run in daily and storm mode time
scales. The daily mode simulates daily average runoff and

the storm mode simulates runoff at time intervals that may
be shorter than a day.

PRMS components are designed around the concept of
partitioning a watershed into units on the basis of char-
acteristics such as slope, aspect, vegetation type, and soil
type and precipitation distribution. Each unit is con-
sidered homogeneous with respect to its hydrological re-
sponse and is called a hydrological response unit (HRU)
(Leavesley et al., 1983; Flugel, 1995).

A water balance and an energy balance are computed
daily for each HRU. The sum of the responses of all HRU’s,
weighted on a unit area basis, produces the daily system re-
sponse and streamflow from the watershed. Partitioning pro-
vides the ability to impose land use or climate change on
parts or all of a watershed, and to evaluate the resulting hy-
drological impacts on each HRU and on the total watershed.
In PRMS a watershed is conceptualized as a series of reser-
voirs whose outputs combine to produce the total watershed
response: the impervious-zone reservoir, the soil-zone reser-
voir, the unsaturated subsurface reservoir and the groundwa-
ter reservoir (Leavesley et al., 1983). Daily total streamflow
from the watershed’s outlet is the sum of surface runoff, sub-
surface interflow and baseflow.

One of the compelling reasons for the choice of this model
is that it has already been tested in the same region with an
apparent success (Legesse et al., 2003). Although the two
catchments have similar watershed and climatic contexts,
they also exhibit differences. One marked difference is the
fact that the Meki River traverses a vast wetland area that
modifies its hydrological behavior. Since wetlands are not
explicitly represented in the original PRMS, it was modified
to take into account the wetland as one HRU. This is more ap-
propriate than trying to use the original model as it is, which
may well provide a ’good’ result through calibration, a sit-
uation which Goswami and O’Connor (2010) referred to as
models that are “right for the wrong reason”.

2.1 Model building using the modular modeling system

The original PRMS doesn’t take wetlands and lakes into ac-
count and hence couldn’t be directly used for this study.
The original soil moisture balance module was replaced by a
new one modified by Mastin and Vaccaro (2002). The gen-
eral schematics of the various modules constituting PRMS is
shown in Fig. 1.

In the modified soil moisture balance module, a new soil
type representing water-covered areas was added (Mastin
and Vaccaro, 2002). For this soil type, the actual evapotran-
spiration was set to 1769 mm, which approximates the mean
annual evaporation from Lake Ziway (Vallet-Coulomb et al.,
2001). Moreover, land cover parameters were made to repre-
sent bare ground as suggested by Mastin and Vaccaro (2002).
This way the vast wetland area in the Meki catchment was
modeled as one HRU.

Hydrol. Earth Syst. Sci., 14, 2277–2287, 2010 www.hydrol-earth-syst-sci.net/14/2277/2010/
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Figure 1:  Specific modules linked to build PRMS for Meki CatchmentFig. 1. Specific modules linked to build PRMS for Meki Catchment.

3 Description of the Meki Basin

The Meki River basin, which is part of the Ziway-Shalla
basin, is located in the northern part of the Main Ethiopian
Rift (Fig. 2). The area extends from a chain of mountains
upstream, called the Guraghe Mountains, to the low-lying
Ziway Lake. The total gauged basin area of Meki is about
2154 Km2. Topography of the area is primarily determined
by the rift system of faulting. The study area lies within alti-
tudes ranging from 3600 m a.s.l. in the west to 1600 m a.s.l.
in the rift floor with a mean elevation of 2056 m a.s.l. The
upper riches of the basin are steep and mountainous while
the lower basin is flat with a broad valley (Fig. 3).

The western plateau of the Gurage highlands with eleva-
tion ranging from 3500 to 3600 m a.s.l. are the perennial
sources of the Meki River while the tributaries in the escarp-
ment and rift floor are intermittent sources. The Meki River
drains the western mountains and escarpments including a
vast swampy area and travels for about 100 km before drain-
ing to Ziway Lake. The highland is characterized by higher
drainage density than the escarpments and the flat rift floor
areas. Rift faults have affected the drainage of the area both
by determining the river courses and by impounding river
water and causing some marshy areas (Chernet, 1982).

The land cover of the study area can be categorized mainly
as agricultural, with open woodlands, forest, and water bod-
ies. Some Irrigation activities are practiced along the courses
of the Meki River. Teff (Eragostis tef) is a leading cereal
crop on the hilly areas covered by deep soils and higher rain-
fall while maize and wheat are more prevalent on the valley
floor with lower rainfall. Haricot beans (Phaseolus vulgaris),
horse beans (Vicia fabal L), peas (Pisum sativum L), chick-
peas (Cicer arietinum L) and Lentil (Lens culinaris Medik)

Figure 2:  Location Map of the Meki Catchment with in the Ziway-Shalla basin in the main Ethiopian Rift (MER)
Fig. 2. Location Map of the Meki Catchment with in the Ziway-
Shalla basin in the main Ethiopian Rift (MER).

are major pulse crops cultivated in the area. Onion, tomato,
cabbage, chili pepper, carrot, and fruits are also widely culti-
vated.

The study area has soils closely related to the parent ma-
terial and the degree of weathering (Makin et al., 1976).
Basalt, ignimbrite, acidic lava, volcanic ash and pumice, and
riverine and lacustrine alluvium are the main parent mate-
rials (Di Paola, 1972). Generally, soil types in the area
could be grouped into three. The first group is a well-
drained deep reddish brown to red friable clays to clay loams
with strong structure. The second group of soil is a well-
drained, moderately deep-to-deep dark gray or brown, fri-
able silty loam to sandy loam soils with moderate structure
and good moisture storing properties. The third group of soil
is dark grayish, free draining friable silty loam to sandy loam
with moderate structure and good moisture storing properties
(Fig. 3). The soil data for this study was extracted from the
Soil and Terrain Database for northeastern Africa CD-ROM
(FAO, 1998).

Climate of the study area consists of three ecological
zones: humid to dry humid, dry sub-humid or semi arid and
semiarid or arid lands (Makin et al., 1976). Temperature and
rainfall in the area show strong variations with altitude. Mean
annual temperature ranges from about 15◦C in the highlands
to around 20◦C in the rift (Fig. 4). The average annual rain-
fall also varies spatially and ranges from around 650 mm in
the rift floor to more than 1200 mm in the highlands.

The Indian and Atlantic Oceans are the sources of mois-
ture for almost all rains in Ethiopia (Degefu, 1987). Three
main seasons characterize the study area: the first one is
the long rainy season in summer, which lasts from June to

www.hydrol-earth-syst-sci.net/14/2277/2010/ Hydrol. Earth Syst. Sci., 14, 2277–2287, 2010
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Figure 3:  a) Drainage network, b) Soil map, c) Topographic elevation m.a.s.l and d) Generalized 
land use map of Meki River CatchmentFig. 3. (a) Drainage network,(b) Soil map,(c) Topographic ele-

vation m a.s.l. and(d) Generalized land use map of Meki River
Catchment.

September and locally known as “kiremt”. The “kiremt”
season is primarily controlled by the seasonal migration of
the Inter Tropical Convergence Zone (ITCZ), which lies to
the north of Ethiopia at that time. According to Degefu
(1987), the “kiremt” rain represents 50–70% of the average
yearly total. The second is the dry period, which extends be-
tween October and February and locally known as “bega”. In
“bega” the ITCZ lies to the south of Ethiopia when the north-
easterly trade winds traversing Arabia dominates the region.
Degefu (1987) indicated that occasional rains during this pe-
riod bring 10–20% of the yearly average. The “bega” season
is known as the main harvest season in the area. The third
season, which is locally known as “belg” is of a “small rain”
season accounting for 20–30% of the annual amount, and
stays from March to May. Figure 4 shows mean monthly
rainfall distribution for stations in the Meki catchment.

4 Model application to Meki River Basin

4.1 Model data preparation

In this study PRMS was calibrated and verified using the
daily-mode flow simulation. Measured daily runoff data
from the Meki town gauging station was obtained from the
Ministry of Water Resources and used in this study directly
with no adjustments. Missing values were replaced by−9.99
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Figure 4:  Mean Monthly rainfall at some stations in the Meki Catchment

Fig. 4. Mean Monthly rainfall at some stations in the Meki
Catchment.

in the model and these periods were avoided from model cal-
ibration and validation.

Measured climate data including daily rainfall and maxi-
mum and minimum air temperatures were obtained from the
National Meteorological Services Agency (NMSA). Since
solar radiation data was not available for any of the stations
in the study area, daily solar radiation data measured at Addis
Ababa (about 160 Km North of the study area and found at
mean elevation of about 2500 m) was used. After estimating
correlation coefficients between adjacent stations and load-
ing factors, statistical regression method was used to fill in
missing climatic data values, which represent less than 5%
of the total data. All the available climatic and hydrolog-
ical data cover a period of 25 years from January 1980 to
December 2005.

4.2 Delineating Hydrological Response Units (HRUs)

The distributed parameter capabilities of PRMS are enabled
by partitioning a watershed into sub-areas that are assumed to
be homogeneous in their hydrological responses, termed hy-
drological response units (HRUs). There is no hard and fast
rule on how to delineate hydrological response units (Leaves-
ley et al., 1983). The crucial assumption for each HRU is that
the variation of the hydrological process dynamics within
the HRU must be small compared with the dynamics in a
different HRU. Heterogeneity within an individual HRU is
accounted for by computing spatially weighted averages for
each characteristic (Flügel, 1995).

In this study partitioning was made based on basin charac-
teristics such as soil, vegetation, elevation, slope, aspect and
mean annual rainfall distribution using ESRI’s ArcGIS®.
Topographic maps at a scale of 1:50 000 were digitized to
generate Digital Elevation Model, slope, and aspect maps
needed to delineate the HRUs. Existing digital soil map
(FAO, 1998) and satellite image derived land use/ land cover
map were integrated in a GIS.

Daily precipitation data recorded at five meteorological
stations (four in the catchment and one nearby station were
interpolated using kriging technique to obtain mean monthly
and annual spatial distribution maps of the precipitation in

Hydrol. Earth Syst. Sci., 14, 2277–2287, 2010 www.hydrol-earth-syst-sci.net/14/2277/2010/
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Figure 5: Delineated HRUs and their respective numbers.
Fig. 5. Delineated HRUs and their respective numbers.

the basin. These layers were brought together and spatial
overlay analysis was used to delineate the HRUs. After sim-
plification of the resulting polygons obtained from the over-
lay process, 28 HRUs were delineated for the basin (Fig. 5).

In this study, initial estimates of parameter and coeffi-
cient values for the basin were taken largely from a previous
PRMS modeling study (Legesse et al., 2003) on Ketar River
basin, an adjacent basin, with similar hydrological context,
except for the physical parameters. Physical parameter val-
ues were computed for the watershed using GIS analysis.

Soil texture and available water holding capacity are the
two soil characteristics that are used to define model parame-
ters in the PRMS. Soil texture classes and depth were derived
from the FAO Soil and Terrain database. The other impor-
tant soil parameter is the available water holding capacity of
the soil profile in the study area, which depends on both soil
texture and the rooting depth of the predominant vegetation.
Unfortunately, very little is known about the rooting depths
of plants in the region. For this study, values estimated by
Leopold et al. (1989) based on relationships linking vegeta-
tion class, soil texture, rooting depth and moisture capacity
of soil were adopted.

The depth of the upper soil layer is user-defined and was
assumed to consist of the top half of the maximum root zone
since this is the area in which more than half the root density
is found (Evans and Sneed, 1996). PRMS has predefined
land cover types and hence original land cover classes were
assigned one of the four vegetation types defined in PRMS
(bare soil, grass land, shrubs or trees). Vegetation cover den-
sity (percentage of green vegetation on a patch of land, HRU

in this case) was estimated using normalized difference veg-
etation index (NDVI) from Landsat ETM+ satellite images.

Although the geology of the Meki River watershed is
non-uniform, one subsurface and one groundwater reservoirs
were used to describe the unsaturated subsurface and the
groundwater systems. In other words, excess soil-zone water
from each of the 28 HRUs in the Meki River watershed is
routed into the same subsurface and groundwater reservoirs.
Values representing the physical characteristics of the HRUs
are summarized in Table 1.

4.2.1 Model calibration, validation and results

The availability of concurrent runoff and climate data primar-
ily dictated the selection of the time periods used for model
calibration and validation. A period of one year (1980–1981)
was used for model initialization. The purpose of model ini-
tialization is to estimate initial conditions in the basin at the
beginning of a simulation period. The model calibration and
validation periods in this study were divided in to three. The
calibration period was a five years period (1981–1986). The
validation period was divided in to two: validation 1 (1986–
1991) and validation 2 (1996–2002). This was due to missing
discharge records between the two validation periods.

The model was first run in a daily runoff-prediction mode
with parameter values that were largely adopted from an ear-
lier similar work in the adjacent Ketar River catchment by
Legesse et al. (2003). After selection of initial parameter
values, a daily sensitivity analysis was run to identify pa-
rameters that had the most effect on predicting daily runoff
during the calibration period.

Results of the sensitivity analysis indicated that the basin
response is more sensitive to the rainfall correction fac-
tor (RAIN ADJ), a monthly temperature adjustment fac-
tor for calculation of PET (jhcoef), soil moisture re-
lated parameter SOILMOIST MAX and subsurface flow
related parameter SSRCOEFLIN and surface runoff re-
lated parameter CAREAMAX. The model results were
also fairly sensitive to two other parameters related to sur-
face runoff (SMIDXEXP) and (SMIDXCOEF). These pa-
rameters were selected for the calibration process. After
preliminary model results were examined, the purpose of
model calibration was to estimate realistic model parameter
and coefficient values for the study area so that the PRMS
model closely simulates the hydrological processes of the
watershed.

A trial and error adjustment of the selected parameters was
performed in an attempt to adjust volume and timing and the
flow components of the simulated runoff hydrograph. Se-
lected parameter values were adjusted upward and downward
manually between each model run for the calibration pe-
riod (1981–1986). Finally, an automatic calibration method
provided by MMS, the Rosenbrock optimization technique
(Leavesley et al., 1983, 1996), was applied to better improve
the model performance.

www.hydrol-earth-syst-sci.net/14/2277/2010/ Hydrol. Earth Syst. Sci., 14, 2277–2287, 2010
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Table 1. Some physical characteristics of HRUs delineated for Meki Catchment.

HRU Area (Km2) Cover typea Soil typeb Elevation (m) Slope (%) Aspect SMAX (mm)c

1 87.05 3 3 2158.80 9.89 S 350
2 54.03 1 3 2401.81 17.98 E 75
3 122.49 3 3 2022.95 8.51 S 350
4 112.79 3 3 2922.84 33.65 E 350
5 46.92 3 3 2410.96 20.58 E 350
6 75.51 3 3 2456.17 21.31 SE 350
7 148.51 1 2 2173.22 7.64 E 200
8 39.35 1 3 2592.99 8.84 E 75
9 22.69 3 3 3140.54 21.60 SE 350

10 456.27 1 2 1907.02 3.34 E 200
11 61.45 1 3 2939.50 15.73 E 75
12 136.41 1 2 1906.49 4.49 E 200
13 23.03 1 3 2409.17 12.33 SE 75
14 108.21 0 4 1843.82 2.16 SE 1769δ

15 22.90 3 3 2153.64 18.64 SE 350
16 2.83 0 4 1820.56 0.57 NE 1769δ

17 116.12 1 2 1814.10 4.59 SE 200
18 69.83 1 3 2730.40 12.03 E 75
19 23.82 1 3 2895.68 10.66 E 75
20 90.55 1 3 1959.50 7.06 SE 150
21 20.20 1 3 1886.73 3.32 E 150
22 107.02 1 2 1719.62 1.39 E 200
23 39.95 1 2 1671.28 1.04 E 200
24 25.15 1 2 1856.00 6.36 E 200
25 29.89 1 3 1931.19 7.31 E 150
26 42.65 1 2 1886.41 4.71 S 200
27 27.62 1 3 2171.14 9.46 SE 150
28 41.10 3 3 2062.53 19.75 SE 350

a 0 = Bare or Water Body, 1 = Grass (includes cultivated lands), 2 = Shrub, 3 = Trees (includes mature forests and woodlands); b 1 = Sand, 2 = Loam, 3 = Clay, 4 = Water; c Maximum
available water holding capacity of the soil profile in mm; d (Ayenew, 1998).

Simulation results from the modified PRMS model were
examined both graphically and statistically (Figs. 6, 7, Ta-
ble 2). We used the coefficient of determinationr2, de-
fined as the squared value of the coefficient of correla-
tion according to Bravais- Pearson, Nash-Sutcliffe efficiency
E (Nash and Sutcliffe,1970), and Index of agreementd

(Willmott, 1981). Each of these methods of efficiency cri-
teria has its merits and demerits as is well explained in
Krause et al. (2005).

The mean volume of the simulated runoff is generally
greater than the observed runoff values for most of the simu-
lation periods. The model performed well in simulating dry
season flows (base flow) for both validation and calibration
periods. It also produced reasonably good results in simu-
lating peak discharge values. However, some of the more
complex hydrographs are not well-captured. This could be
attributed eithre to discharge measurement errors or inade-
quate model conceptualization for some of the more complex
flow regimes. The coefficients of efficiency were 0.71 for the
calibration period and 0.69 and 0.66 for validation periods 1
and 2, respectively.

Overall, it can be concluded that the PRMS model sim-
ulated the timing and volume of streamflow for the water-
shed reasonably well. The three components of the hydro-
graph are well represented (Fig. 7). A Nash-Sutcliffe effi-
ciency (E) of 0.71 and an index of agreement (d) of 0.9 are
obtained between the observed and simulated runoff values
for the calibration period indicating a very good fit between
the two. Moreover, the very close mean and standard devia-
tion values between the two indicates that the model has well
simulated the overall flow both during peaks and low flows.
Though relatively small, the Nash-Sutcliffe simulation effi-
ciency values fulfilled the requirements suggested by Santhi
et al. (2001) forENS>0.5.

One of the main objectives of the calibration was to have
a realistic flow component of the simulated flow hydrograph.
The simulated hydrographs for the calibration period were
composed mostly of subsurface flow (43.4%) followed by
groundwater flow (32.1%) and finally surface runoff (24.5%;
Fig. 7). A simple base flow separation done on the Meki
River discharge has also shown a similar trend for the base
flow (Dribssa, 2006). The relative proportion of the surface

Hydrol. Earth Syst. Sci., 14, 2277–2287, 2010 www.hydrol-earth-syst-sci.net/14/2277/2010/
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Figure 6: Daily observed and simulated discharge of Meki river for the a) Calibration period, b) 

validation period 1 and c) Validation Period 2Fig. 6. Daily observed and simulated discharge of Meki river for
the(a) Calibration period,(b) validation period 1 and(c) Validation
period 2

Figure 7:  The three flow components of the daily simulated discharge at the outlet of the Meki River

Fig. 7. The three flow components of the daily simulated discharge
at the outlet of the Meki River.

runoff is smaller due to the fact that there is a vast wetland in
the middle part of the catchment that may act as a retention
basin favoring more subsurface flow.

The fit between observed and simulated runoff is even bet-
ter at a monthly time step indicating that it has well captured
the seasonality (Fig. 8). Results of mean monthly runoff sim-
ulations seemed to correspond better with observed values
with R2 value of 0.81 for the calibration period. The monthly
coefficient of efficiency was calculated to be 0.74 and 0.72
for the first and second validation periods, respectively.

Table 2. Statistical summary of simulation results for the calibra-
tion and validation periods. Meki River catchment.

Calibration Validation1 Validation2

Mean Observed 8.2 7.27 6.12
Mean Simulated 9 6.59 6.9
Std. Dev. Observed 12.9 9.68 9.17
Std. Dev. Simulated 14.8 10.07 9.58
R2 0.7 0.53 0.61
Nash-Sutcliffe,E 0.71 0.69 0.66
Index of agreement,d 0.9 0.79 0.88

4.3 Scenario simulations

Water resources are likely to be severely affected by chang-
ing climate. This is mainly because of the fact that even a mi-
nor long-term change in temperature and precipitation may
have significant impacts on the hydrological cycle especially
at the basin scale (Loe et al., 2001). Consequently, it is quite
essential to identify the level of impact on such resources.

In this study simulations under different scenario condi-
tions have been performed in order to analyze the impacts of
possible climate and in land cover changes on streamflow.
This involves calibrating and validating the hydrological
model using present conditions and running the model with
parameters and input data corresponding to the proposed sce-
nario conditions and comparing the two simulations.

4.3.1 Climatic scenarios

In this study we used the “delta-change” method to perturb
observed historical climatology (Prudhomme et al., 2002) in
the form of change factors that are applied to each day. Such
scenarios do not necessarily present a realistic set of changes
(Fowler et al., 2007). They are usually adopted for exploring
system sensitivity prior to the application of more credible,
model-based scenarios (Mearns et al., 2001). In this study
a 20% change in precipitation (during summer and spring
rainy seasons as well as dry season) and a 1.5◦C increase in
temperature were considered. Although arbitrary, this kind
of increase in rainfall is not unrealistic as it has already been
proposed to explain the formation of the once joined large
lake of the Ethiopian Rift Valley (Street, 1979) and which
now has shrunk to from the current lakes.

Results of the simulated scenarios revealed that the runoff
volume is sensitive to both temperature and rainfall changes.
The runoff was found to be more sensitive to increase in
rainfall than to its decrease. It also showed that increase
in temperature also reduces the runoff significantly. Sim-
ulated runoff values for all scenarios were compared with
simulated runoff values for the first validation period (1986–
1991). An increase in temperature by 1.5◦C resulted in 13%
decrease in simulated runoff and an increase of potential
evapotranspiration by 6.02%. An increase in daily rainfall
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Figure 8: Mean monthly simulated and observed discharge at the outlet of Meki River for a) the calibration period,  
b) Validation period 1 and   c) Validation period 2
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Fig. 8. Mean monthly simulated and observed discharge at the out-
let of Meki River for (a) the calibration period,(b) Validation pe-
riod 1 and(c) Validation period 2

over the entire year by 20% resulted in 80% increase in sim-
ulated runoff while a decrease in rainfall by the same mag-
nitude led to 61.9% decrease in simulated runoff. For the
summer season (June to September), an increase in rainfall
by 20% brought about 50% increase in simulated runoff and
a decrease in rainfall by similar magnitude caused a decrease
in simulated runoff by 38%. For the spring season (March
to May), an increase in runoff by 27% resulted from an in-
crease in rainfall by 20% and the simulated runoff decreased
by 20.6 % for a decrease by the same amount. The results of
the rainfall and temperature scenario analysis are shown in
Figs. 9 and 10, respectively.

The very high rainfall elasticity of streamflow observed for
the 20% increase in daily rainfall throughout the year may in
part be attributed to errors in calibration or model structure
as discussed by Sankarasubramanian et al. (2001). However,
the strong similarity of these results with those from the adja-

Figure 9: Simulated discharge for validation period 1 and selected rainfall scenarios

Fig. 9. Simulated discharge for validation period 1 and selected
rainfall scenarios.

Figure 10: Simulated discharge for validation period 1 and temperature scenario

Fig. 10. Simulated discharge for validation period 1 and tempera-
ture scenario.

cent Ketar catchment (Legesse et al., 2003) may suggest that
the approach is reproducible at least in a similar hydrological
context but with appropriate model formulation.

4.3.2 Land cover scenario

Land use/land cover changes occur in the country as a
whole and in the Ziway-Shala basin in particular (Woldu and
Tadesse, 1990) due to increasing population, which has al-
most doubled in the country over the past 40 years (CSA,
1999). It is thus essential to analyze the possible impacts of
these changes on streamflow at different scales. In this study,
one scenario of land cover change was assumed to assess the
impact of this change on the runoff.

Parameters that were adjusted with respect to changes in
the vegetation cover included maximum soil water holding
capacity (SMAX), and maximum interception storage. The
change in runoff resulting from the change in land cover is
determined by comparing the simulated flows using the cal-
ibrated parameters with that obtained with parameters esti-
mated for the assumed land cover change.

Assuming that the currently intensively cultivated land be-
tween 2000 and 3000 m a.s.l. was once covered by dense
woodland and by introducing the corresponding parameters
to this change, the model produced an increase in daily evap-
otranspiration of 2.2% and a decrease in the mean daily
river flow of about 11.8% with respect to the actually sim-
ulated value. This decrease could be attributed to the in-
creased water retention capacity by the more vegetated areas
there by reducing quickflow. However, the impacts of land
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cover change on streamflow is a rather contentious one as
is well illustrated by some previous works (Seibert and Jef-
fery, 2008; Andreassian, 2004; Hewlett, 1982). This kind of
change detection modeling could give a better result if used
with a model that treats vegetation in a dynamic way. Here,
the changes made are static and assume a one-time change.
However, it still is considered as a better way of evaluating
these impacts (Seibert and Jeffery, 2010).

5 Concluding remarks

In this study a modified precipitation modeling system
(PRMS) was developed to assess the impacts of climate and
land cover changes on the runoff of Meki River basin using
the Modular Modeling System (MMS). Initial parameter es-
timates were taken mainly from literature during preliminary
model run, which were later modified through calibration.
Both manual and automatic calibration techniques were used
in this study on selected model parameters.

According to the analysis of the flow components of the
simulated hydrograph, majority of the streamflow comes
from subsurface flow, which was estimated to be 42% on av-
erage for the entire simulation period. The contribution of the
groundwater flow to streamflow was also significant, 39% on
average. The contribution of surface runoff to streamflow
was found to be the least which was estimated to be about
19% on average for the entire simulation period.

An arbitrary 20% change in rainfall and 1.5◦C increase
in temperature were considered using the ’delta-change’
method. Rainfall change scenarios were introduced both on
the entire year and on seasonal basis. This was to assess the
sensitivity of the catchment runoff to both seasonal and year-
round rainfall changes. This kind of analysis is particularly
important for the region as it has a bi-modal rainfall distribu-
tion. Much of the agricultural activity in the region is rain-
fed and often suffers from seasonal as well as annual rainfall
variability. Results of the scenario analyses showed that the
Meki River runoff is differently sensitive to temperature and
rainfall changes. The catchment was found to be more elastic
to rainfall increase than to temperature. The rainfall elasticity
is 4:1 for 20% increase in Rainfall and 3:1 for 20% reduction
in Rainfall.

Scenario analyses were performed considering one vari-
able at a time and keeping other values unchanged and hence
the combined effects resulting from a proposed scenarios are
not addressed in this study. One of the main reasons for not
considering combined scenario analyses is the fact that this
kind of models do not consider vegetation dynamics in a re-
alistic way. One way of addressing such impacts could be by
using a coupled dynamic vegetation – water-balance models.

Most physically based models cannot fully account for the
complexity and heterogeneity of processes occurring in the
watershed (Yeung, 2005). The accuracy of the model cali-
bration is dependent on the accuracy of the input data. Errors

associated with the assumed distribution of rainfall over the
watershed affect model results. For example, overestima-
tion of streamflow in the model in general may have resulted
from overestimation of rainfall in the watershed or the poor
performance of the model in basin with large wetland areas.
Rainfall distribution in the study area was calculated by us-
ing stations on highlands outside the catchment due to the
insufficient distribution of rainfall stations in the basin. The
available rainfall stations are not well distributed but rather
limited to lower altitude areas.

Meanwhile, this study should be extended by consider-
ing more scenarios of changes in land use and land cover,
soil conditions and other climate variables in addition to the
changes in precipitation and temperature. Continuing stud-
ies; however, should consider the wide range of uncertainties
associated with models and try to reduce these uncertainties
by the use of different GCM outputs, and appropriate down-
scaling techniques. Application of a number of GCMs can
help to generate a more “reliable” ensemble mean through
spatial and temporal downscaling. However, such a compre-
hensive work can only be more realistic at a regional scale
and can not completely replace the approach adopted in this
work.

The studied area is unique and the vital resources within
the broader Rift Valley Lakes System provide invaluable ben-
efits with regard to agriculture, recreation, drinking water
needs, industrial development, fish and wildlife habitat, and
biodiversity (Ayenew and Legesse, 2007). It is also one of
the most densely populated areas of the country. Lake Ziway,
which is directly fed by the flows from the Meki River catch-
ment, is highly susceptible to any natural and/or man-made
activities within the catchment. It is therefore essential that
appropriate watershed management policies be put in place
in order to promote a more sustainable environment. This
kind of study may contribute to this endeavors through the
application of different development scenarios.
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