

## Pathogenic Eukaryotes in Gut Microbiota of Western Lowland Gorillas as Revealed by Molecular Survey

Ibrahim Hamad, Mamadou B. Keita, Martine Peeters, Eric Delaporte, Didier

Raoult, Fadi Bittar

### ► To cite this version:

Ibrahim Hamad, Mamadou B. Keita, Martine Peeters, Eric Delaporte, Didier Raoult, et al.. Pathogenic Eukaryotes in Gut Microbiota of Western Lowland Gorillas as Revealed by Molecular Survey. Scientific Reports, 2014, 4, 10.1038/srep06417 . hal-01478617

## HAL Id: hal-01478617 https://amu.hal.science/hal-01478617v1

Submitted on 27 May 2021  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

# SCIENTIFIC REPORTS

## **OPEN**

SUBJECT AREAS: PARASITOLOGY FUNGI PATHOGENS

> Received 4 June 2014

Accepted 2 September 2014 Published 18 September 2014

Correspondence and requests for materials should be addressed to F.B. (fadi.bittar@univamu.fr)

## Pathogenic Eukaryotes in Gut Microbiota of Western Lowland Gorillas as Revealed by Molecular Survey

Ibrahim Hamad<sup>1</sup>, Mamadou B. Keita<sup>1</sup>, Martine Peeters<sup>2</sup>, Eric Delaporte<sup>2</sup>, Didier Raoult<sup>1</sup> & Fadi Bittar<sup>1</sup>

<sup>1</sup>Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France, <sup>2</sup>Institut de Recherche pour le Développement, University Montpellier 1, UMI 233, Montpellier, France.

Although gorillas regarded as the largest extant species of primates and have a close phylogenetic relationship with humans, eukaryotic communities have not been previously studied in these populations. Herein, 35 eukaryotic primer sets targeting the 18S rRNA gene, internal transcribed spacer gene and other specific genes were used firstly to explore the eukaryotes in a fecal sample from a wild western lowland gorilla (*Gorilla gorilla gorilla*). Then specific real-time PCRs were achieved in additional 48 fecal samples from 21 individual gorillas to investigate the presence of human eukaryotic pathogens. In total, 1,572 clones were obtained and sequenced from the 15 cloning libraries, resulting in the retrieval of 87 eukaryotic species, including 52 fungi, 10 protozoa, 4 nematodes and 21 plant species, of which 52, 5, 2 and 21 species, respectively, have never before been described in gorillas. We also reported the occurrence of pathogenic fungi and parasites (i.e. *Oesophagostomum bifurcum* (86%), *Necator americanus* (43%), *Candida tropicalis* (81%) and other pathogenic fungi were identified). In conclusion, molecular techniques using multiple primer sets may offer an effective tool to study complex eukaryotic communities and to identify potential pathogens in the gastrointestinal tracts of primates.

The microbial communities residing in the gastrointestinal tracts of primates are complex and may play important roles in health and disease. The interactions between microbial cells and primate host cells could be either commensal or parasitic, and it is known that these interactions have an effect on the metabolic, developmental, and immunological status of the host<sup>1,2</sup>. The compositions and constituents of these communities are influenced by several factors, such as the host diet, geography, physiology, and disease state<sup>3,4</sup>.

Gorillas share a close phylogenetic relationship with humans, resulting in a high potential for pathogen exchange involving bacteria, viruses and gastrointestinal parasites<sup>5-7</sup>. Moreover, the presence of these pathogens in wild primates may also have negative consequences for public health and wildlife conservation management<sup>8</sup>. To date, there have been no studies examining the entire eukaryotic community residing in the intestinal tract of the gorilla; rather, most studies focus on the parasitological aspects of these eukaryotic communities using coprological studies to survey the presence of intestinal parasites in wild gorilla populations. Several such studies have been conducted in both mountain gorillas (Gorilla gorilla beringei) and western lowland gorillas (Gorilla gorilla gorilla) in different geographical locations<sup>9-13</sup>. The intestinal microbiota appears to be the same among social groups and individual gorillas living in the Bwindi Impenetrable Forest in Uganda and that the flora is largely dominated by entodiniomorph ciliates and helminths, while amoebae and flagellates appear to be absent<sup>9,10</sup>. The coprological studies involving western gorillas also reported many species of parasites, particularly entodiniomorph ciliates and strongylates<sup>11</sup>. Two studies examined fecal samples from western lowland gorillas living in the Dzanga-Ndoki National Park and at Bai Hokou, Central African Republic, and found that most of individuals were infected with strongylates, whereas ascaroids and threadworms were only moderately present<sup>12,13</sup>. Low prevalence of Entamoeba coli, Balantidium coli, and Iodamoeba butschlii have also been recorded in western lowland gorillas along with trichomonads, which were the only protozoans that were present in all gorilla age-sex classes<sup>12,13</sup>.

Despite these studies, the diversity of eukaryotic communities in primates, and particularly in gorillas, remains to be elucidated, particularly with regard to intestinal fungal diversity. In addition, the morphological descriptions of these eukaryotes are typically insufficient and thus cannot be considered in taxonomical studies. In this study, we present firstly, an extensive molecular data set of the occurrence of gastrointestinal eukaryotic microbiota including some human eukaryotic pathogens in a single fecal sample from a wild western lowland gorilla from Cameroon, and then followed by molecular detection of potential human eukaryotic pathogen in gastrointestinal tracts of wild population of gorillas.

#### Results

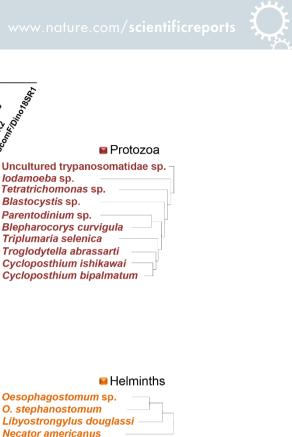
Eukarvotes retrieved from gut microbiota of gorilla. In total, 35 existing primer sets targeting the 18S rRNA and internal transcribed spacer (ITS) genes and other specific eukaryotic genes were used to explore the diversity of the eukaryotes that were found in a fecal sample that was obtained from a wild gorilla in Cameroon (Supplementary Tables 1). Seventeen positive PCR products were obtained. Two of them (TFR1/TFR2 and 18ScomF1/Dino18SR1) were sequenced directly as obtained sequences from these two primers yield no trouble sequences, but the remaining were problematic and were thus cloned. Overall, 1,572 clones were obtained from all of the cloning libraries that were constructed in this study (Supplementary Tables 2), resulting in the detection of 87 eukaryotic species in the fecal sample (Fig. 1). Most of the species that were present were fungi (52 species, Table 1), while 10 were identified as protozoa (Table 2), 4 as nematodes (Table 3), and 21 as plants (Table 4).

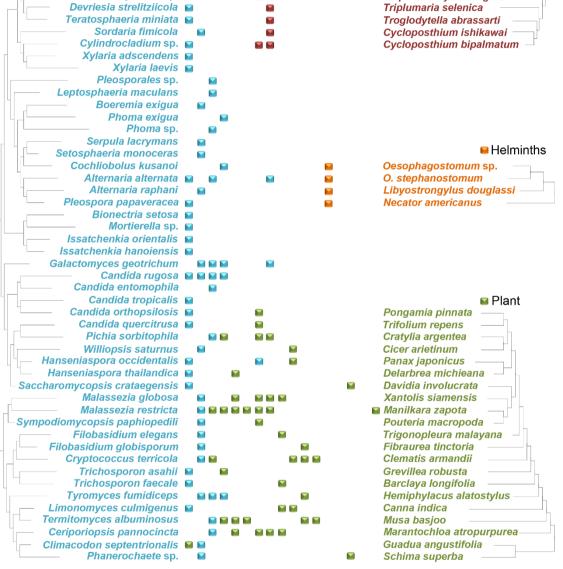
**Fungal diversity.** Fifty-two different species of fungi were retrieved from the gorilla fecal sample following the analysis of 428 fungal clones (accounting for 59.8% of the total species detected and 27.2% of the total clones retrieved in this study). These species were detected from different cloning libraries that were generated using various primers (Table 1, Fig. 1). Most of the detected taxa belonged to the phylum Ascomycota (36 species, 69.2% of the identified taxa), followed by taxa from the Basidiomycota (15 species, 28.8% of the detected taxa). The remaining 2% of the taxa were affiliated with the phylum Zygomycota (Table 1). Only 5 fungal species were isolated through culture-dependent methods, including *Alternaria alternata, Cladosporium* sp., *Malassezia restricta, Malassezia globosa*, and *Malassezia pachydermatis*.

All of the 171 sequenced clones from the fungal ITS clone library that were generated using the ITS1-F/ITS-4R primer set were related to fungal sequences that were found in the GenBank databases with the exception of one clone belonging to the Viridiplantae (green plants) (Tables 1 and 4, Fig. 1). This amplification alone allowed for the identification of 25 different fungal species (roughly half of the fungal species detected and 28.7% of all eukaryotic species recovered in this study) (Fig. 1). The majority of the fungal sequences in this clone library were of ascomycete origin (91.2% of the total number of clones and 80.8% of the species detected); the species were assigned to different taxonomic groups, including Saccharomycetales, Pleosporales, Capnodiales, Eurotiales, Hypocreales, and Xylariales (Table 1). Only 6.4% of the sequences that were retrieved from this ITS library were related to the basidiomycetes, belonging to both Tremellales and Corticiales (Table 1). Our ITS results also showed the presence of a few zygomycetes-related sequences that were represented by Mortierella sp. (Table 1).

The primer set NSI/FRI, targeting the fungal 18S rRNA gene, was also used in this study, resulting in a total of 17 fungal species (16 plus one species that was retrieved from fungal ITS amplification) (Table 1, Fig. 1). In contrast to the ITS clone library, the BLAST results for the 96 clones that were obtained from this library revealed that 58 sequences (60.4%) were most closely related to the basidiomycetes, whereas 38 sequences (39.6%) were ascomycetes (Table 1).

In addition to the 41 fungal species that were recovered by the aforementioned fungal-specific primer sets, 11 were identified in other clone libraries when universal eukaryotic primers targeting 18S rDNA were used (Table 1, Fig. 1). Among these 11 species, 8 were detected using the universal eukaryotic primer set Euk1A/ Euk516r.


The use of different specific and universal 18S clone libraries revealed a total of 30 fungal species in the stool sample (Fig. 1), while PCR methods using fungal ITS genes enabled the detection of 25 species (Fig. 1). Only 3 species, *A. alternata, Candida rugosa* and *Hanseniaspora occidentalis*, were detected in both the ITS and 18S amplifications, thus suggesting the complementarity of these approaches for the assessment of fungal communities in the gorilla intestinal tract.


Protozoal diversity. Ten different species of protozoans were detected in the gorilla fecal sample following both the sequencing of 246 protozoal-related clones (15.6% of all clones in this study) that were obtained from 8 different cloning libraries and the direct sequencing of the positive PCR product that were obtained with the TFR1/TFR2 primer set (Table 2, Fig. 1). Six species belonging to Ciliophora were detected from two of the cloning libraries, including Blepharocorys curvigula, Cycloposthium bipalmatum, Cycloposthium ishikawai, Parentodinium sp., Triplumaria selenica and Troglodytella abrassarti (Table 2, Fig. 1). Ninety-six sequences amplified by Leishmania specific primers were assigned to Trypanosomatidae family (Fig. 1, Table 2) as the best hit of BLAST results of these sequences was Leishmania sp. (with sequence coverage ranged between 69-79%). The remaining protozoans were identified as Blastocystis sp., Iodamoeba sp., and Tetratrichomonas buttreyi, belonging to the three taxa Stramenopiles, Amoebozoa and Parabasalia, respectively (Table 2, Fig. 1).

**Helminthic diversity.** Despite the use of several primers to detect the occurrences of trematodes, cestodes and nematodes in the gorilla fecal sample (Supplementary Tables 1), only the PCR amplifications using the latter primer pairs (NC1/NC2) yielded positive results; these PCR products were used to construct the nematode clone libraries (Table 3). Four nematode species, *Necator americanus, Libyostrongylus douglassi, Oesophagostomum* sp., and *Oesophagostomum stephanostomum*, were obtained from sequencing 192 positive clones in this library (Table 3, Fig. 1). The human parasitic nematode, *N. americanus*, accounted for 55.7% of this clone library (Table 3).

**Plant diversity.** Twenty-one plant species (Table 4) were retrieved in this study from 13 different cloning libraries that were generated using primer pairs targeting the 18S rRNA, ITS and chloroplast genes (Supplementary Tables 2). The plant-related clones constituted roughly 44.9% of all clones that were sequenced in this study. The majority of plant sequences that were detected in most of the cloning libraries belonged to *Manilkara zapota* and *Musa basjoo*, which comprised 28.6% and 16.7% of the total plant-related sequences, respectively (Table 4, Fig. 1). Only two plant species, *Schima superba* and *Davidia involucrata*, were detected from the chloroplast clone libraries that were constructed using the primer set rbcLZ1/rbcL19b; the 19 remaining plant species were retrieved from the 18S rRNA cloning libraries that were constructed from various 18S rRNA primer pairs (Table 4, Fig. 1).

**Eukaryotic human pathogens in fecal samples of gorillas**. Real time PCR examination (Supplementary Table 3) of 48 fecal samples from 21 individual of wild gorillas, sampled from Minton and Messok location in Cameroon, showed that 41 (18 gorillas, 86%) and 11 (9 gorillas, 43%) of gorillas' fecal samples harbor *Oesophagostomum bifurcum* and *N. americanus* respectively (Table 5). The results also showed that human pathogenic fungi such as *Candida tropicalis, Candida parapsilosis, C. rugosa, M. restricta, M. globosa, Trichosporon* spp. and *Trichosporon asahii* were also detected in feces of these wild animals as shown in Table 5. However, *Blastocystis sp., Candida albicans, M. pachydermatis* and *Rhodotorula mucilaginosa* were not detected in any gorillas' feces.





Primers

Figure 1 | The eukaryotic species that were retrieved from the gut of Gorilla gorilla gorilla according to the different primers used. A box indicates that the species was positive with the primer set used. Blue color = fungi; red color = protozoa; orange color = helminths; and green color = plants. The trees were constructed using the free software MEGA 5 and sequences that were retrieved from GenBank (ITS sequences for fungi and helminths and 18S rDNA for protozoa and plants).

#### Discussion

Previous studies focusing on the detection and identification of eukaryotic communities residing in the non-human primate gastrointestinal tract analyzed the gut microbiota using the morphological features of the flora9-13, limiting the acquisition of knowledge regarding the real eukaryotic intestinal contents of primates. Regardless of some limitations that are associated with culture-independent methods<sup>14</sup>, these methods have recently been used to explore the eukaryotic diversity of the human gut<sup>15-20</sup>, and these techniques have played a crucial role in providing novel insight into the true diversity and composition of the gut microbiota. Because very little is known about both the diversity of eukaryotic organism occurring in the digestive tract of non-human primates and the presence of potential pathogens in their guts, two general approaches were used in our investigation; firstly, culture dependent and independent methods were carried out in a single stool sample from gorilla then additional

🖬 Funai

Aspergillus sp.

Penicillium allii

Davidiella tassiana 🗖

Cladosporium sp.

Aspergillus versicolor

Eupenicillium crustaceum



Table 1 | Fungal species obtained from different cloning libraries in this study

| Closest relative in NCBI     | Similarity% | Таха | Taxonomic group   | Targeted gene | Primer (No. of clones/total)                                                            |
|------------------------------|-------------|------|-------------------|---------------|-----------------------------------------------------------------------------------------|
| Alternaria alternata         | 99          | a    | Pleosporales      | 18s rRNA, ITS | NSI/FRI (1/96); Euk1A/Euk 516r (20/126); ITS F/<br>ITS-4R (15/171)                      |
| Alternaria raphani           | 99          | a    | Pleosporales      | 18s rRNA      | NSI/FRI (3/96)                                                                          |
| spergillus sp.               | 99          | a    | Eurotiales        | ITS           | ITS F/ITS-4R (2/171)                                                                    |
| spergillus versicolor        | 99          | a    | Eurotiales        | ITS           | ITS F/ITS-4R (4/171)                                                                    |
| ionectria setosa             | 98          | a    | Hypocreales       | ITS           | ITS F/ITS-4R (2/171)                                                                    |
| oeremia exigua               | 99          | a    | Pleosporales      | 18s rRNA      | NSI/FRI (2/96)                                                                          |
| Candida entomophila          | 99          | a    | Saccharomycetales | 18s rRNA      | Euk1A/Euk 516r (1/126)                                                                  |
| Candida orthopsilosis        | 99          | a    | Saccharomycetales | ITS           | ITS F/ITS-4R (94/171)                                                                   |
|                              | 99          | a    | Saccharomycetales | ITS           | ITS F/ITS-4R (4/171)                                                                    |
| Candida quercitrusa          | 99<br>99    |      |                   |               | NSI/FRI (7/96); Euk1A/Euk 516r (28/126); E528                                           |
| Candida rugosa               |             | а    | Saccharomycetales | 18s rRNA, ITS | Univ1492RE (17/96); ITS F/ITS-4R (13/171)                                               |
| Candida tropicalis           | 99          | a    | Saccharomycetales | ITS           | ITS F/ITS-4R (6/171)                                                                    |
| Ceriporiopsis pannocincta    | 99          | b    | Polyporales       | 18s rRNA      | Euk1A/Euk 516r (1/126)                                                                  |
| ladosporium sp.              | 99          | a    | Capnodiales       | 18s rRNA      | Euk1A/Euk 516r (1/126)                                                                  |
| limacodon septentrionalis    | 99          | b    | Polyporales       | 18s rRNA      | NSI/FRI (2/96)                                                                          |
| Cochliobolus kusanoi         | 99          | a    | Pleosporales      | 18s rRNA      | E528F/Univ1492RE (2/96)                                                                 |
| Cryptococcus terricola       | 99          | b    | Tremellales       | 18s rRNA      | NSI/FRI (7/96)                                                                          |
| Sylindrocladium sp.          | 99          | a    | Hypocreales       | ITS           | ITS F/ITS-4R (4/171)                                                                    |
| Davidiella tassiana          | 99          | a    | Capnodiales       | ITS           | ITS F/ITS-4R (6/171)                                                                    |
| Pevriesia strelitziicola     | 99          | a    | Capnodiales       | ITS           | ITS F/ITS-4R (3/171)                                                                    |
| upenicillium crustaceum      | 99          | a    | Eurotiales        | 18s rRNA      | 121F/1147R (2/96)                                                                       |
| ilobasidium elegans          | 98          | b    | Filobasidiales    | 18s rRNA      | NSI/FRI (4/96)                                                                          |
| ilobasidium globisporum      | 99          | b    | Filobasidiales    | 18s rRNA      | NSI/FRI (5/96)                                                                          |
| Galactomyces geotrichum      | 99          | a    | Saccharomycetales | 18s rRNA      | NSI/FRI (5/96); Euk1A/Euk 516r (3/126); 121F/<br>1147R (1/96); E528F/Univ1492RE (27/96) |
| lanseniaspora occidentalis   | 98          | a    | Saccharomycetales | 18s rRNA, ITS | FunF/FunR (4/123); ITS F/ITS-4R (48/171)                                                |
| lanseniaspora thailandica    | 99          | a    | Saccharomycetales | ITS           | ITS F/ITS-4R (5/171)                                                                    |
| satchenkia hanoiensis        | 98<br>98    | a    | Saccharomycetales | ITS           | ITS F/ITS-4R (7/171)                                                                    |
| satchenkia orientalis        | 98<br>98    | a    | Saccharomycetales | ITS           |                                                                                         |
|                              | 90<br>99    |      |                   | 18s rRNA      | ITS F/ITS-4R (2/171)                                                                    |
| eptosphaeria maculans        | 99<br>99    | a    | Pleosporales      |               | ITS F/ITS-4R (2/126)                                                                    |
| imonomyces culmigenus        |             | b    | Corticiales       | ITS           | ITS F/ITS-4R (5/171)                                                                    |
| Nalassezia globosa           | 99          | b    | Malasseziales     | 18s rRNA      | NSI/FRI (13/96)                                                                         |
| Nalassezia restricta         | 99          | b    | Malasseziales     | 18s rRNA      | NSI/FRI (8/96)                                                                          |
| Nortierella sp.              | 99          | z    | Mortierellales    | ITS           | ITS F/ITS-4R (3/171)                                                                    |
| enicillium allii             | 99          | a    | Eurotiales        | ITS           | ITS F/ITS-4R (3/171)                                                                    |
| hanerochaete sp.             | 99          | b    | Polyporales       | 18s rRNA      | NSI/FRI (2/96)                                                                          |
| homa exigua                  | 99          | а    | Pleosporales      | 18s rRNA      | E528F/Univ1492RE (3/96)                                                                 |
| homa sp.                     | 98          | a    | Pleosporales      | 18s rRNA      | Euk1A/Euk 516r (2/126)                                                                  |
| ichia sorbitophila           | 98          | a    | Saccharomycetales | 18s rRNA      | Euk1A/Euk 516r (20/126)                                                                 |
| leospora papaveracea         | 99          | a    | Pleosporales      | ITS           | ITS F/ITS-4R (14/171)                                                                   |
| leosporales sp.              | 98          | a    | Pleosporales      | 18s rRNA      | Euk1A/Euk 516r (1/126)                                                                  |
| accharomycopsis crataegensis | 99          | a    | Saccharomycetales | ITS           | ITS F/ITS-4R (7/171)                                                                    |
| erpula lacrymans             | 99          | b    | Boletales         | 18s rRNA      | NSI/FRI (6/96)                                                                          |
| etosphaeria monoceras        | 99          | a    | Pleosporales      | 18s rRNA      | NSI/FRI (12/96)                                                                         |
| ordaria fimicola             | 99          | a    | Sordariales       | 18s rRNA      | NSI/FRI (7/96)                                                                          |
| ympodiomycopsis paphiopedili | 99          | b    | Microstromatales  | 18s rRNA      | NSI/FRI (5/96)                                                                          |
| eratosphaeria miniata        | 99          | a    | Capnodiales       | ITS           | ITS F/ITS-4R (4/171)                                                                    |
| ermitomyces albuminosus      | 99          | b    | Agaricales        | 18s rRNA      | Euk1A/Euk 516r (23/126)                                                                 |
| richosporon asahii           | 98          | b    | Tremellales       | ITS           | ITS F/ITS-4R (4/171)                                                                    |
| richosporon fecale           | 90<br>99    | b    | Tremellales       | ITS           | ITS F/ITS-4R (2/171)                                                                    |
| yromyces fumidiceps          | 99<br>99    | b    | Polyporales       | 18s rRNA      | Euk1A/Euk 516r (2/126); NSI/FRI (6/96); E528F                                           |
| Villionaia caturnus          | 00          | ~    | Saccharom cotal   | 190 rDN14     | Univ1492RE (1/96)                                                                       |
| Villiopsis saturnus          | 99          | a    | Saccharomycetales | 18s rRNA      | NSI/FRI (2/96)                                                                          |
| (ylaria adscendens           | 99          | а    | Xylariales        | ITS           | ITS F/ITS-4R (2/171)                                                                    |
| (ylaria laevis               | 99          | a    | Xylariales        | ITS           | ITS F/ITS-4R (1/171)                                                                    |

stool samples of wild gorillas were screened for pathogens by specific PCRs.

Fungal diversity and detection of human fungal pathogens. Culture-dependent approaches limited the number of fungi that were isolated, revealing less fungal diversity because of difficulties that were encountered in their growth using routine laboratory culture<sup>21</sup>. In contrast, the culture-independent methods were more effective and revealed a larger diversity of fungi<sup>16</sup>.

Although the molecular-based methods potentially detected a wide range of fungi in this study, but it is still difficult to predict whether they are the real symbiotic fungal components of gut in these animal or potential environmental fungal contaminants. The immediate collection of feces from animal in forest is a complicate process especially with these endangered wild animals and therefore the difficulties in preventing direct contact of feces bulk with its surrounding environment during and after defecation time are a major drawback in such studies. Moreover, the nature of some ascomyce-

| Closest relative in NCBI   | Similarity% | Таха           | Targeted gene | Primer (No. of clones/total)                                                             |
|----------------------------|-------------|----------------|---------------|------------------------------------------------------------------------------------------|
| Blastocystis sp.           | 98          | Stramenopiles  | 18s rRNA      | Ami6F1/Ami9R (4/96); BlastF/BlastR (39/48); DimA/DimB (9/96);<br>E528F/Univ1492RE (8/96) |
| Blepharocorys curvigula    | 99          | Ciliophora     | 18s rRNA      | 121F/1147R (7/96); FunF/FunR (5/123)                                                     |
| Cycloposthium bipalmatum   | 98          | Ciliophora     | 18s rRNA      | 121F/1147R (8/96); FunF/FunR (6/123)                                                     |
| Ćycloposthium ishikawai    | 98          | Ciliophora     | 18s rRNA      | 121F/1147R (1/96)                                                                        |
| lodamoeba sp.              | 98          | Amoebozoa      | 18s rRNA      | JVF/DSPR (44/96)                                                                         |
| Trypanosomatidae           | 98          | Kinetoplastida | ITS 1         | LeF/LeR (96/96)                                                                          |
| Parentodinium sp.          | 99          | Ciliophora     | 18s rRNA      | 121F/1147R (2/96); FunF/FunR (2/123)                                                     |
| Tetratrichomona's buttreyi | 99          | Parabasalia    | 18s rRNA      | TFR1/TFR2 (Direct sequencing)                                                            |
| Triplumaria selenica '     | 98          | Ciliophora     | 18s rRNA      | 121F/1147R (1/96)                                                                        |
| Troglodytella abrassarti   | 99          | Ciliophora     | 18s rRNA      | 121F/1147R (14/96)                                                                       |

| Table 2 | Protozoa | species | detected | oy various | clone | libraries | in this s | study |
|---------|----------|---------|----------|------------|-------|-----------|-----------|-------|
|         |          |         |          |            |       |           |           |       |

tous and basidiomycetous species that were detected in this study are considered to be saprobes and thus they possibly representing environmental fungal contaminants as they are often found in association with plants, animals and their interfaces<sup>22</sup>. For example several members of Saccharomycetales such as Hanseniaspora spp., Saccharomycopsis crataegensis, Pichia spp., Issatchenkia spp. and Candida quercitrusa regard as plant associated fungi and many of them described as common fermentative spoilage yeast<sup>23–27</sup>. Candida entomophila characterized by its ability to ferment glucose and D-xylose therefore it usually has been isolated from wood-inhabiting insects and decaying wood28. Furthermore, some members of orders Eurotiales, Hypocreales, Xylariales and Pleosporales that have been identified in this study are regarded as the most common environmental fungi and they abundantly occur in forest soils or on fading leaves of herbaceous and woody plants such as cosmopolitan genus of Penicillium (Eurotiales) which has been found to play important role as decomposers of organic materials in soil<sup>29</sup>, several species of Bionectria (Hypocreales) which can be found as common saprophytes on dead broad-leaf trees in forest<sup>30</sup>, along with members of the genus Xylaria (Xylariales) that usually occur as saprobes or as parasite on flowering plants in lowland forests<sup>31</sup> and finally some species of Pleosporales that occur as saprobic fungi on decaying leaf or animal dung<sup>32</sup>.

Another explanation for occurrence of these fungi in feces of gorillas is the fact that these apes are herbivore in their behavior and they feed on different parts of plants in which different fungi coexist. Therefore these fungi could also represent transient contaminants in the gut of gorillas. Moreover, several of the ascomycetous yeast that were detected in this study, such as Candida orthopsilosis, C. rugosa, C. tropicalis and Galactomyces geotrichum, have been previously described in the human gut<sup>15,19,33</sup>. Some of the basidiomycetous yeasts that were detected in our sample, such as the Malassezia and Trichosporon species, are regarded as human pathogens<sup>34,35</sup>. The remaining basidiomycetous fungi that were identified in our study including the saprotrophics, wood decomposers and symbiotic fungi, such as Termitomyces, which is generally regarded as a nutritional source for termites<sup>36</sup> that are in turn regarded as a source of food, and particularly of protein and vitamins, for wild gorillas<sup>37</sup>. Finally, using real-time PCR, many human fungal pathogens were detected in gorilla feces including species in the genera Candida, Malassezia and

*Trichosporon* with high prevalence of *C. tropicalis* (81%), *M. globosa* (43.5%) and *C. parapsilosis* (38%) through our survey (Table 5).

Protozoal Diversity. Numerous studies have been performed on the intestinal parasites of wild non-human primate species, especially on gorillas<sup>9-13</sup>; however, this study, to the best of our knowledge, is the first molecular study attempting to detect both parasitic and commensal protozoans in the gastrointestinal tract of the wild western lowland gorilla. In the present study, the majority of the intestinal protozoa that were detected in the fecal sample belonged to four different phyla: the Ciliophora, Amoebozoa, Parabasalia and Stramenopiles. The most prevalent protozoal species that were found in this study were ciliates; approximately 6 species were detected in the fecal sample, which is in agreement with results from previous studies that identified entodiniomorph ciliates in the majority of fecal samples that had been collected from wild western lowland gorillas at Bai Hokou, Dzanga-Ndoki National Park (Central African Republic) and the Lopé Reserve (Gabon)<sup>11-13</sup>. However, our results conflict with those from the study by Modry et al.<sup>38</sup>, in which T. abrassarti was the sole entodiniomorph ciliate that was detected in captive western lowland gorillas at the Prague Zoo in the Czech Republic. T. abrassarti has also been morphologically observed in fecal specimens from wild lowland gorillas<sup>39</sup>, where it appears to play an important role in digestion because of its ability to ferment polysaccharides in the hindguts of primates<sup>40</sup>.

Our study described the first report of *B. curvigula*, *Parentodinium* sp. and Cycloposthiidae species, including *C. bipalmatum*, *C. ishikawa* and *T. selenica* in the gastrointestinal tract of the wild gorilla.

Members of the Amoebozoa were detected at low frequencies despite the use of many primer sets that target the 18S rRNA genes of the major groups in this phylum (Supplementary Tables 1). Only *Iodamoeba* spp. were found in the present study. The low abundance of amoebae reported here agrees with studies by Freeman *et al.*<sup>13</sup> and Lilly *et al.*<sup>12</sup>, both of whom reported the low prevalence of amoebae in fecal samples of wild lowland gorillas. However, our results disagree with the study by Sleeman *et al.*<sup>10</sup>, who reported the high prevalence of amoebae in mountain gorillas. *Blastocystis* sp. was retrieved from the intestinal tract of one gorilla in this study. Screening the 48 samples from 21 individual of gorillas has demonstrated that this protozoan is not frequent within western lowland gorillas in

| Table 3   Nematode species detected by t | he NC1/NC2 clone lil | brary in this stuc | ly            |                              |
|------------------------------------------|----------------------|--------------------|---------------|------------------------------|
| Closest relative in NCBI                 | Similarity%          | Таха               | Targeted gene | Primer (No. of clones/total) |
| Libyostrongylus douglassi                | 99                   | Nematoda           | ITS           | NC1/NC2 (40/192)             |
| Necator americanus                       | 99                   | Nematoda           | ITS           | NC1/NC2 (107/192)            |
| Oesophagostomum sp.                      | 99                   | Nematoda           | ITS           | NC1/NC2 (39/192)             |
| Oesophagostomum stephanostomum           | 99                   | Nematoda           | ITS           | NC1/NC2 (6/192)              |

| Closest relative in NCBI  | Similarity% | Targeted gene | Primer (No. of clones/total)                                                                                                                                                       |
|---------------------------|-------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Barclaya longifolia       | 98          | 18s rRNA      | Ami6F1/Ami9R (2/96)                                                                                                                                                                |
| Canná indica              | 99          | 18s rRNA      | Ami6F1/Ami9R(1/96); JVF/DSPR (3/96)                                                                                                                                                |
| Cicer arietinum           | 99          | 18s rRNA      | JVF/DSPR (2/96)                                                                                                                                                                    |
| Clematis armandii         | 99          | 18s rRNA      | BlastF/BlastR (4/48); DimA/DimB (13/96); Euk1A/Euk516r (5/126); JVF/DSPR (41/96)                                                                                                   |
| Cratylia argentea         | 99          | 18s rRNA      | FunF/FunR (2/123); 121F/1147R (2/96); E528F/Univ1492RE (1/96)                                                                                                                      |
| Fibraurea tinctoria       | 99          | 18s rRNA      | DimA/DimB (54/96)                                                                                                                                                                  |
| Grevillea robusta         | 98          | 18s rRNA      | E528F/Univ1492RE (1/96)                                                                                                                                                            |
| Guadua angustifolia       | 99          | ITS           | ITS1-F/ITS-4R (1/171)                                                                                                                                                              |
| Hemiphylacus alatostylus  | 99          | 18s rRNA      | DimA/DimB (2/96)                                                                                                                                                                   |
| Manilkara zapota          | 98          | 18s rRNA      | FunF/FunR (79/123); 121F/1147R (36/96); Euk1A/Euk 516r (17/126);<br>E528F/Univ1492RE (23/96); E528F/Univ1391RE (24/72); EUKA/EUKB(23/72);<br>18ScomF/Dino18SR1 (direct sequencing) |
| Marantochloa atropurpurea | 99          | 18s rRNA      | Ami6F1/Ami9R (74/96); FunF/FunR (15/123); 121F/1147R(11/96);<br>E528F/Univ1391RE (3/72)                                                                                            |
| Musa basjoo               | 99          | 18s rRNA      | BlastF/BlastR (5/48); DimA/DimB (18/96); E528F/Univ1492RE (12/96);<br>E528F/Univ1391RE (33/72); EUKA/EUKB (49/72)                                                                  |
| Panax japonicus           | 98          | 18s rRNA      | JVF/DSPR (6/96)                                                                                                                                                                    |
| Pongamia pinnata          | 98          | 18s rRNA      | FunF/FunR (1/123)                                                                                                                                                                  |
| Pouteria macropoda        | 99          | 18s rRNA      | FunF/FunR (1/123)                                                                                                                                                                  |
| Trifolium repens          | 99          | 18s rRNA      | FunF/FunR (1/123)                                                                                                                                                                  |
| Trigonopleura malayana    | 99          | 18s rRNA      | Ami6F1/Ami9R (3/96)                                                                                                                                                                |
| Xantolis siamensis        | 99          | 18s rRNA      | Ami6F1/Ami9R (12/96); FunF/FunR (7/123); 121F/1147R (10/96);<br>E528F/Univ1391RE (11/72)                                                                                           |
| Schima superba            | 99          | rbcLgene*     | rbcLZ1/rbcL19b (72/96)                                                                                                                                                             |
| Davidia involucrata       | 98          | rbcLgene*     | rbcLZ1/rbcL19b (24/96)                                                                                                                                                             |
| Delarbrea michieana       | 98          | 18s rRNA      | E528F/Univ1391RE (1/72)                                                                                                                                                            |

Table 4 | Plant species retrieved from the fecal sample of a wild gorilla

Cameroon (Table 5). *Blastocystis* can be found in both humans and nonhuman primates<sup>41,42</sup>. In humans, it appears to be a causative agent of irritable bowel syndrome (IBS) in certain circumstances<sup>41</sup>, while in non-human primates, its role remains unclear.

Either none or very few enteric flagellate protozoa have been observed in the fecal samples of wild gorillas<sup>9-13</sup>; additionally, only some members of the trichomonads and *Giardia* sp. have been recorded in both captive and wild gorillas, respectively<sup>10,43</sup>. These previous studies are in partial agreement with our study, in which only *T. buttreyi*, a trichomonad, was detected. *T. buttreyi* has also been detected in ruminant feces, and it appears to be harmless to its host<sup>44</sup>.

Helminthic diversity and detection of human nematode pathogens. We attempted to determine the presence of trematodes, cestodes and nematodes in the fecal samples of the gorillas. Only parasites belonged to the phylum Nematoda were identified; we did not report the presence of any other groups of helminths. Previous studies that were conducted in wild lowland gorilla populations in Gabon and the Central African Republic showed also an absence of cestodes and a scarcity of trematodes in fecal samples<sup>11-13</sup>.

The presence of nematode species, such as O. stephanostomum, in the intestinal tract of gorillas has been morphologically confirmed by Sleeman et al.<sup>10</sup>. Oesophagostomum spp. can also infect ruminants, pigs and monkeys<sup>45</sup>. Some reports have described human infections with Oesophagostomum spp., particularly in northern Togo and Ghana where they have been known to cause serious health problems<sup>45,46</sup>. Another nematode that was recorded in our study was N. americanus, which is an obligate hookworm parasite that is responsible for most common chronic infections in humans, particularly in areas of rural poverty in the tropics and subtropics<sup>47</sup>. This hookworm is generally transmitted through contact with contaminated soil and resides in the intestinal tract of its host<sup>47</sup>. The hookworm's infection with N. americanus has been described previously in intestinal tract of both mountain gorillas (G. g. beringei) inhabiting at Bwindi Impenetrable National Park, South West Uganda<sup>48</sup> and western lowland gorillas (G. g. gorilla) residing at Dzanga-Sangha Protected Areas, Southwest of Central African Republic<sup>49</sup>. Finally, an ostrich-specific nematode (L. douglassi) was also detected in our sample. As this parasite commonly infects the ostrich proventriculus and can cause libyostrongylosis, which has a high mortality rate among juvenile birds<sup>50</sup>, the detection of this nematode in gorilla's

| Real time PCR            | Target | No. of positive fecal samples | No. of positive gorilla | Frequency |  |
|--------------------------|--------|-------------------------------|-------------------------|-----------|--|
| Necator americanus       | ITS    | 11                            | 9                       | 43%       |  |
| Oesophagostomum bifurcum | 18s    | 41                            | 18                      | 86%       |  |
| Candida parapsilosis     | ITS    | 15                            | 8                       | 38%       |  |
| Candida rugosa           | ITS    | 4                             | 2                       | 9.5%      |  |
| Candida tropicalis       | ITS    | 25                            | 17                      | 81%       |  |
| Malassezia globosa       | 26s    | 13                            | 9                       | 43%       |  |
| Malassezia restricta     | 26s    | 14                            | 8                       | 31%       |  |
| Trichosporon asahii      | ITS    | 2                             | 2                       | 9.5%      |  |
| Trichosporon spp.        | ITS    | 13                            | 7                       | 33%       |  |

feces in this study could be resulted either from environmental contamination or consumption of contaminated food items. Analyzing of more fecal samples is needed to further explaining the presence of this parasite in feces of this animal. In our survey, high percentage of both human parasitic worms; *O. bifurcum* and *N. americanus* (86% and 43% respectively) was discovered in the stool samples of western lowland gorillas from Cameroon (Table 5).

Residual plants in gut of gorilla. Gorillas are largely herbivorous and consume a wide variety of plant species (between 50 and 300)<sup>51,52</sup>. Studies of western gorillas have shown that fruit is an essential part of their diet53,54, but they also eat leaves, shoots, flowers, and the woody parts of plants<sup>51,52</sup>. In this study, we detected 21 different plant species in the fecal sample of a wild gorilla collected around the village of Minton. Primer sets targeting both 18S rRNA and the chloroplast rbcL genes were used to identify the residual plant species in the gorilla feces. Unexpectedly, only two phylotypes of plants were detected when the primer targeting the chloroplast *rbcL* gene was used. These results are in agreement with those of Bradle et al.55, who also detected few plants in western gorilla feces using the same primer set, which preferentially amplifies DNA from chloroplastrich tissues, such as leaves or stems, rather than fruits, flowers and seeds<sup>55</sup>. Not surprisingly, roughly 19 plant species were co-amplified along with other eukaryotes in this study when universal eukaryotic primers targeting 18S rRNA were used. These plant species belong to different families that may be consumed by wild western lowland gorillas.

In conclusions, this is the first study to characterize fecal eukarvotic diversity, including fungi, in non-human primates using a comprehensive extended molecular analysis. The multiple primer set approach used herein enabled us to recover a high diversity of eukaryotes from the intestinal tract of the wild lowland gorilla, which may include human pathogens as revealed by our real-time PCR assessments in gorillas' feces. Although the detection of fungi species should be interpreted cautiously because the possibility of environmental contamination, the presence of human parasites in gorillas should be viewed as an important public health concern, particularly for surrounding rural villages where habitat overlap is frequent. Additional studies from other geographic locations and using the methodological strategy presented here are required for detailed descriptions of the occurrences and abundances of eukaryotes, including pathogens, in the guts of non-human primates, which have until now been poorly described.

#### Methods

Source of fecal samples. A total of 48 fecal samples were collected from 21 individual western lowland gorillas (G. g. gorilla) in this study (Supplementary Tables 4). One fecal sample was collected in a site near Minton village which located in south-central Cameroon and was used in this study for exploring the occurrence of gut eukaryotes in gorilla intestinal tract through using PCR-based amplification using various primers, followed by cloning and sequencing, while the rest of 47 fecal samples were collected from different sites around Messok village which located in the south-east Cameroon and were used in this study for investigating the presence of human eukaryotic pathogens in gut of gorillas. The sample collection protocol was described previously56. The GPS position, time and date were recorded for all samples. The fecal samples were preserved in RNAlater (Ambion, Austin, TX) and kept at room temperature at base camps for less than 3 weeks then transported to a central laboratory and kept at  $-80^{\circ}$ C.The collection of the fecal samples was approved by the Ministry of Scientific Research and Innovation of Cameroon. No other permit was required for the described field as this research was non-invasive work and the collection of the samples from soil did not disrupt the wild fauna.

DNA extraction. Total DNA was extracted from the frozen fecal samples using a modification of the Qiagen stool procedure and the Qiamp® DNA Stool Mini Kit (Qiagen, Courtaboeuf, France)<sup>16</sup>. The inner part of the fecal bulk was used for extraction to avoid as much as possible an eventual contamination with soil organisms and/or environmental species during collection as previously described by<sup>14</sup>. Aliquots of 200 mg of this part were added into tubes containing a 200 mg mixture of 0.1, 0.5, and 2 mm zirconium beads and 1.5 ml of ASL buffer (Qiagen). The samples were mixed vigorously by agitation in a FastPrep BIO 101 agitator (Qbiogene, Strasbourg, France) at 3,200 rpm for 90 seconds. Agitation was followed

by heating at  $95^{\circ}$ C for 10 min to increase both the yield of DNA and proteinase K digestion before the DNA was bound to a column, washed, and eluted in TE buffer.

**Genomic amplification.** All universal and specific eukaryotic primers targeting both the ITS and 18S rRNA genes that were used in this study were adopted from previously published studies (Supplementary Tables 2). The 50  $\mu$ L PCR reaction mixture contained 5  $\mu$ L of dNTPs (2 mM of each nucleotide), 5  $\mu$ L of DNA polymerase buffer (Qiagen, Courtaboeuf, France), 2  $\mu$ l of MgCl<sub>2</sub> (25 mM), 0.25  $\mu$ L of HotStarTaq DNA polymerase (1.25 U) (Qiagen, Courtaboeuf, France), 1  $\mu$ L of each primer, and 5  $\mu$ L of DNA. The PCR cycling conditions for all amplifications were as follows: 1 cycle at 95°C for 15 min, 40 cycles at 95°C for 0.5 min, 48–60°C for 0.5–2 min (Supplementary Tables 2), and 72°C for 1–2 min, followed by a final cycle at 72°C for 5 min. All amplifications were performed in a PCR system 2720 thermal cycler (Applied Biosystems, Courtaboeuf, France). Amplification products were visualized on a 1.5% agarose gel that was stained with ethidium bromide and viewed under a UV light source. The PCR products were purified using the Nucleo-Fast® 96 PCR Kit (Marcherey-Nagel, Hoerdt, France) according to the manufacturer's instructions.

Cloning, Sequencing and phylogenetic analyses. The cloning and sequencing reactions were performed as previously described<sup>16</sup>. The PCR products were cloned separately using the pGEM® -T Easy Vector System Kit (Promega, Madison, USA). Aliquots (150 µl) of cell suspensions were plated onto LB (Luria-Bertani Broth) agar plates that were supplemented with ampicillin (100 mg/mL), X-GAL (80 mg/mL) and IPTG (120 mg/mL), and the plates were incubated overnight at 37°C. Positive clones were suspended in 25  $\mu$ L of distilled water and stored at  $-20^{\circ}$ C. The presence of the insert was confirmed by PCR amplification using the M13 forward  $(\hat{5}')$ GTAAAACGACGGCCAG-3') and M13 reverse (5'-AGGAAACAGCTATGAC-3') primers (Eurogentec, Seraing, Belgium). The purified PCR products were sequenced in both directions using the BigDye® Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems). The sequencing products were run on an ABI PRISM 3130 automated sequencer (Applied Biosystems). Finally, intestinal eukaryotes were identified by comparing the resulting sequences with those that were deposited in GenBank using the basic local alignment search tool (BLAST), which is available at the National Center for Biotechnology Information (http://blast.ncbi.nlm.nih.gov/). Phylogenetic analyses were performed using MEGA5.04 and a distance matrix neighbor-joining (NJ) approach<sup>57</sup>.

**Real-Time PCR Assay for Detection of human pathogen.** Primers and probes specific to some human eukaryotic pathogens were used as described previously (Supplementary Table 3). For the primers and probes used for first time in this study, sequences corresponding to each species were collected in GenBank and aligned using multiple sequence alignment ClustalW2, and the PRIMER 3 software<sup>58</sup> was used to design primer sets in the conserved regions of aligned sequences. The specificity of each primer was tested using the basic local alignment search tool (BLAST), which is available at the National Center for Biotechnology Information (http://blast.ncbi. nlm.nih.gov/). The real-time PCR reactions were conducted using 25 µL total volumes and analyzed for 44 cycles using a CFX96<sup>TM</sup> Real-Time PCR Detection System (BIO-RAD, Life Science, Marnes-la-Coquette, France) following methods recommended by the manufacturer. Amplification reactions were done as follows: 95°C for 15 min, 60°C for 0.5 min, and 72°C for 1 min.

Species confirmation and Microsatellite analyses. The DNA was extracted from gorilla fecal samples in order to determine the number of individuals that carrying human eukaryotic pathogens. Total of 48 samples were genotyped at 7 polymorphic loci (D18s536, D4s243, D10s676, D9s922, D2S1326, D2S1333 and D4S1627) as described previously<sup>56</sup>. The gender of gorillas was determined by amplification of a region of the amelogenin gene that contains a deletion in the X, but not the Y chromosome<sup>56</sup>. To exclude the allelic dropout, all loci were amplified four times. Aliquot 1  $\mu$ L of PCR products was mixed with 10  $\mu$ L of formamide and 0.25  $\mu$ L of the ladder marker (ROX GeneScan 400HD, Applied Biosystem), The resulting amplifications were analyzed by 3130xl Genetic Anlayser sequencer (Applied Biosystem, Foster City,CA). Amplification products were visualized and sized using Genemapper 3.7 software (Applied Biosystem).

**Culturing and identification of fungal species.** The fecal samples were serially diluted, and six-fold dilutions were spread onto potato dextrose agar (Fluka® Analytical, France), Czapek dox agar (Fluka® Analytical, France) and Dixon agar. The plates were incubated aerobically at room temperature. The colonies exhibiting different morphologies were restreaked to obtain pure cultures. The fungi were amplified using fungal primers (ITS1-F/ITS-4R) and identified as previously described<sup>16</sup>.

**Nucleotide sequence accession numbers.** All sequences obtained in this work have been deposited in GenBank database with the accession numbers JX158488 to JX159965.

- Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).
- Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. *Nat.Rev.Immunol.* 9, 313–323 (2009).



- Dale, C. & Moran, N. A. Molecular interactions between bacterial symbionts and their hosts. *Cell* 126, 453–465 (2006).
- Parfrey, L. W., Walters, W. A. & Knight, R. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. *Front Microbiol.* 2, 153 (2011).
- 5. Raoult, D. The apes as reservoir of human pathogens. *Clin. Microbiol. Infect.* **18**, 513 (2012).
- Peeters, M. & Delaporte, E. Simian retroviruses in African apes. Clin. Microbiol. Infect. 18, 514–520 (2012).
- Chapman, C. A., Gillespie, T. R. & Goldberg, T. L. Primates and the Ecology of their Infectious Diseases: How will Anthropogenic Change Affect Host-Parasite Interactions? *Evol. Anthr.* 14, 134–144 (2005).
- 8. The Mountain Gorilla Veterinary, P. Risk of Disease Transmission between Conservation Personnel and the Mountain Gorillas: Results from an Employee Health Program in Rwanda. *EcoHealth* **1**, 351–361 (2004).
- Ashford, R. W., Lawson, H., Butynski, T. M. & Reid, G. D. F. Patterns of intestinal parasitism in the mountain gorilla *Gorilla gorilla* in the Bwindi-Impenetrable Forest, Uganda. *J.Zool.* 239, 507–514 (1996).
- Sleeman, J. M., Meader, L. L., Mudakikwa, A. B., Foster, J. W. & Patton, S. Gastrointestinal parasites of mountain gorillas (*Gorilla gorilla beringei*) in the Parc National des Volcans, Rwanda. *J.Zoo.Wildl.Med.* **31**, 322–328 (2000).
- Landsoud-Soukate, J., Tutin, C. E. & Fernandez, M. Intestinal parasites of sympatric gorillas and chimpanzees in the Lopé Reserve, Gabon. *Ann.Trop.Med.Parasitol.* 89, 73–79 (1995).
- Lilly, A. A., Mehlman, P. T. & Doran, D. Intestinal Parasites in Gorillas, Chimpanzees, and Humans at Mondika Research Site, Dzanga-Ndoki National Park, Central African Republic. *International Journal of Primatol.* 23, 555–573 (2002).
- Freeman, A. S., Kinsella, J. M., Cipolletta, C., Deem, S. L. & Karesh, W. B. Endoparasites of western lowland gorillas (*Gorilla gorilla gorilla*) at Bai Hokou, Central African Republic. *J.Wildl.Dis.* 40, 775–781 (2004).
- Hamad, I., Delaporte, E., Raoult, D. & Bittar, F. Detection of termites and other insects consumed by African great apes using molecular fecal analysis. *Scientific reports* 4, 4478 (2014).
- Scanlan, P. D. & Marchesi, J. R. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. *ISME.J.* 2, 1183–1193 (2008).
- 16. Hamad, I., Sokhna, C., Raoult, D. & Bittar, F. Molecular detection of eukaryotes in a single human stool sample from Senegal. *PloS One* 7, e40888 (2012).
- Scupham, A. J. *et al.* Abundant and diverse fungal microbiota in the murine intestine. *Appl.Environ.Microbiol.* 72, 793–801 (2006).
- 18. Nam, Y. D. *et al.* Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people. *J.Microbiol.* **46**, 491–501 (2008).
- Chen, Y. et al. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. *Diagn.Microbiol.Infect.Dis.* 70, 492–498 (2010).
- 20. Li, Q. *et al.* Use of 18S ribosomal DNA polymerase chain reaction-denaturing gradient gel electrophoresis to study composition of fungal community in 2 patients with intestinal transplants. *Hum.Pathol.* **43**, 1273–1281 (2012).
- Bills, G. & Polishoot, J. Abundance and diversi ty of microfungi in leaf litter of a lowland rain forest in Costa Rica. *Mycologia* 86, 187–198 (1994).
- Suh, S. O., Blackwell, M., Kurtzman, C. P. & Lachance, M. A. Phylogenetics of Saccharomycetales, the ascomycete yeasts. *Mycologia* 98, 1006–1017 (2006).
  Charabai charaitet A. Burgurger, B. & Burgin, B. C. Statistical and S. S. Saccharomycetales and S. Saccharomycetales
- Chanchaichaovivat, A., Ruenwongsa, P. & Panijpan, B. Screening and identification of yeast strains from fruits and vegetables: Potential for biological control of postharvest chilli anthracnose (*Colletotrichum capsici*). *Biol. Control* 42, 326–335 (2007).
- Lages, F., Silva-Graca, M. & Lucas, C. Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. *Microbiol.* 145 (Pt 9), 2577–2585 (1999).
- Kurtzman, C. & Wickerham, L. Saccharomycopsis crataegensis, a new heterothallic yeast. Antonie van Leeuwenhoek 39, 81–87 (1973).
- 26. Phaff, H. J. & Starmer, W. T. Yeasts associated with plants, insects and soil. In: (Rose, A.H. and Harrison, J.S. eds) *The yeast* Vol. **1** 2nd (eds Rose, A. H. & Harrison, J. S.) 123–179 (Academic Press London, 1987).
- 27. Sláviková, E., adkertiov, R. & Vránová, D. Yeasts colonizing the leaves of fruit trees. *Ann. Microbiol.* **59**, 419–424 (2009).
- Toivola, A., Yarrow, D., van den Bosch, E., van Dijken, J. P. & Scheffers, W. A. Alcoholic Fermentation of d-Xylose by Yeasts. *Appl.Environ.Microbiol.* 47, 1221–1223 (1984).
- Visagie, C. M., Roets, F. & Jacobs, K. A new species of *Penicillium*, *P. ramulosum* sp. nov., from the natural environment. *Mycologia* 101, 888–895 (2009).
- Jia-Rong, G. U., Yu-Ming, J. U. & Huan-Ju, H. Bionectriaceous fungi collected from forests in Taiwan. *Bot.Stud.* 51, 61–74 (2010).
- Poinar, G. O., Jr. *Xylaria antiqua* sp. nov. (Ascomycota: Xylariaceae) in Dominican amber. J. Bot. Res. Inst. Texas 8, 145–149 (2014).
- 32. Kruys, A., Eriksson, O. E. & Wedin, M. Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. *Mycol.Res.* 110, 527–536 (2006).
- Tavanti, A., Davidson, A. D., Gow, N. A., Maiden, M. C. & Odds, F. C. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J. Clin.Microbiol. 43, 284–292 (2005).

- Lee, Y. W. *et al.* Distribution of *Malassezia* species on the scalp in korean seborrheic dermatitis patients. *Ann.Dermatol.* 23, 156–161 (2011).
- Wolf, D. G. *et al.* Multidrug-resistant *Trichosporon asahii* infection of nongranulocytopenic patients in three intensive care units. *J.Clin.Microbiol.* 39, 4420–4425 (2001).
- 36. Sawhasan, P., Worapong, J., Flegel, T. & Vinijsanun, T. Fungal partnerships stimulate growth of *Termitomyces clypeatus* stalk mycelium in vitro. *World J. Microb. Biot.* 28, 1–2311 (2012).
- Deblauwe, I. & Janssens, G. P. New insights in insect prey choice by chimpanzees and gorillas in southeast Cameroon: the role of nutritional value. *Am.J Phys.Anthropol.* 135, 42–55 (2008).
- Modry, D. *et al.* The occurrence and ape-to-ape transmission of the entodiniomorphid ciliate *Troglodytella abrassarti* in captive gorillas. *J.Eukaryot.Microbiol.* 56, 83–87 (2009).
- Tokiwa, T., Petrzelkova, K., Modry, D., Ito, A. & Imai, S. Morphological observations of Troglodytella abrassarti (Entodiniomorphida, Troglodytellidae) from the lowland gorilla (*Gorilla gorilla gorilla*). *Jpn. J. Protozool.* 41 (2008).
- Profousov, I. *et al.* The ciliate, Troglodytella abrassarti, contributes to polysaccharide hydrolytic activities in the chimpanzee colon. *Folia Microbiol.(Praha)* 56, 339–343 (2011).
- Yakoob, J. et al. Blastocystis hominis and Dientamoeba fragilis in patients fulfilling irritable bowel syndrome criteria. Parasitol.Res. 107, 679–684 (2010).
- 42. Alfellani, M. A. *et al.* Diversity and distribution of *Blastocystis* sp. subtypes in nonhuman primates. *Parasitol.* **140**, 966–971 (2013).
- Smejkalov, P., Petrzelkov, K. J., Pomajbikov, K., Modry, D. & Cepicka, I. Extensive diversity of intestinal trichomonads of non-human primates. *Parasitol.* 139, 92–102 (2012).
- Castella, J., Munoz, E., Ferrer, D. & Gutierrez, J. F. Isolation of the trichomonad *Tetratrichomonas buttreyi* (Hibler et al., 1960) Honigberg, 1963 in bovine diarrhoeic faeces. *Vet.Parasitol.* **70**, 41–45 (1997).
- Polderman, A. M. & Blotkamp, J. Oesophagostomum infections in humans. Parasitol. Today 11, 451–456 (1995).
- Krepel, H. P., Baeta, S. & Polderman, A. M. Human Oesophagostomum infection in northern Togo and Ghana: epidemiological aspects. Ann. Trop. Med. Parasitol. 86, 289–300 (1992).
- de Silva, N. R. *et al.* Soil-transmitted helminth infections: updating the global picture. *Trends Parasitol.* 19, 547–551 (2003).
- Kalema, G. Epidemiology of the intestinal parasite burden of mountain gorillas, *Gorilla gorilla beringei*, in Bwindi Impenetrable National Park, South West Uganda. B.V.Z.S. 14, 18–34. (1995).
- Hasegawa, H. *et al.* Humans and great apes cohabiting the forest ecosystem in central african republic harbour the same hookworms. *PLoS Negl. Trop. Dis.* 8, e2715 (2014).
- Ederli, N. B. & Oliveira, F. C. Differential localization of Libyostrongylus douglassii (Cobbold, 1882) Lane, 1923 and L. dentatus Hoberg, Lloyd, and Omar, 1995 (Nematoda: Trichostrongylidae) in ostrich (Struthio camelus Linnaeus, 1758) proventriculi. J. Parasitol. 95, 757–759 (2009).
- Calvert, J. Food selection by western gorillas (*G.g.Gorilla*) in relaction to food chemistry. *Oecologia* 65, 236–246 (1985).
- Rogers, M., Maisels, E., Fernandez, M. & Tutin, E. Gorilla diet in the Lopé Reserve Gabon: a nutritional analysis. *Oecologia* 84, 326–339 (1990).
- Goldsmith, M. L. Ecological Constraints on the Foraging Effort of Western Gorillas (*Gorilla gorilla gorilla*) at Bai Hoköu, Central African Republic. Int. J. Primatol. 20, 1–23 (1999).
- Yamagiwa, J. Socioecological factors influencing population structure of gorillas and chimpanzees. *Primates* 40, 87–104 (1999).
- Bradley, B. J. et al. Plant DNA sequences from feces: potential means for assessing diets of wild primates. Am. J. Primatol. 69, 699–705 (2007).
- Neel, C. et al. Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas. J. Virol. 84, 1464–1476 (2010).
- Tamura, K. *et al.* MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28, 2731–2739 (2011).
- Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. *Methods Mol Biol.* 132, 365–386 (2000).

#### Acknowledgments

Fadi BITTAR was supported by a Chair of Excellence IRD provided by the Institut de Recherche pour le Développement/IHU Méditerranée Infection. We thank Amandine Esteban for microsatellite analyses. This work was supported in part by grants from the National Institute of Health (RO1 AI 50529) and the Agence Nationale de Recherches sur le SIDA (ANRS 12255).

#### Author contributions

D.R. and F.B. designed the experiments; I.H., M.K. conducted the experiments; I.H., M.K., M.P., E.D., D.R. and F.B. analyzed the results; I.H. and F.B. prepared the figure; I.H. and F.B. wrote the manuscript. All authors reviewed the manuscript.

#### **Additional information**

Supplementary information accompanies this paper at http://www.nature.com/ scientificreports

Competing financial interests: The authors declare no competing financial interests. How to cite this article: Hamad, I. et al. Pathogenic Eukaryotes in Gut Microbiota of Western Lowland Gorillas as Revealed by Molecular Survey. Sci. Rep. 4, 6417; DOI:10.1038/srep06417 (2014).



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http:// creativecommons.org/licenses/by-nc-nd/4.0/