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HYPERSURFACES IN WEIGHTED PROJECTIVE SPACES
OVER FINITE FIELDS WITH APPLICATIONS TO CODING

THEORY

YVES AUBRY, WOUTER CASTRYCK, SUDHIR R. GHORPADE,
GILLES LACHAUD, MICHAEL E. O’SULLIVAN, AND SAMRITH RAM

Abstract. We consider the question of determining the maximum
number of Fq-rational points that can lie on a hypersurface of a given
degree in a weighted projective space over the finite field Fq, or in other
words, the maximum number of zeros that a weighted homogeneous
polynomial of a given degree can have in the corresponding weighted
projective space over Fq. In the case of classical projective spaces, this
question has been answered by J.-P. Serre. In the case of weighted
projective spaces, we give some conjectures and partial results. Appli-
cations to coding theory are included and an appendix providing a brief
compendium of results about weighted projective spaces is also included.
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1. Introduction

Let q be a prime power and let Fq denote the finite field with q ele-
ments. Let d ≥ 0 and m ≥ 1 be integers. For any integer r, we define
pr := |Pr(Fq)| = qr + qr−1 + · · · + 1 for r ≥ 0 and pr := 0 for r < 0. In a
letter to M. Tsfasman in 1989, J.-P. Serre [15] proved that for any nonzero
homogeneous degree d polynomial F ∈ Fq[X0, X1, . . . , Xm], the hypersur-
face V (F ) consisting of Fq-rational zeros of F in the projective m-space Pm
satisfies

(1) |V (F )| ≤ dqm−1 + pm−2.

Note that if d ≥ q + 1, then dqm−1 + pm−2 ≥ pm = |Pm(Fq)|, and thus the
above bound is trivial in this case; moreover, the polynomialXd−q−1

0 (Xq
0X1−

X0X
q
1) is evidently homogeneous of degree d ≥ q + 1 and has pm zeros in

Pm(Fq). On the other hand, in the nontrivial case when d ≤ q+1, the bound
(1) is met by

(2) F =

d∏
i=1

(αiX0 − βiX1),

whenever (α1 : β1), (α2 : β2), . . . , (αd : βd) are distinct elements of P1(Fq).
It follows that if we let eq(d,m) denote the maximum possible number of
Fq-rational zeros in Pm that a nonzero homogeneous polynomial of degree d
in Fq[X0, X1, . . . , Xm] can admit, then

(3) eq(d,m) = min{pm, dqm−1 + pm−2}.
Alternative proofs of (1), and hence (3), can be found in [16] and [6], whereas
some extensions and generalizations are given in [5] and [7]. Serre’s result
has also been applied to determine the minimum distance of the projective
Reed-Muller codes, which were introduced by Lachaud in [11], and further
studied in [12] and [16].

In this paper we discuss how the bound (1) can possibly be generalized to
weighted projective spaces, along with a number of partial results and some
implications for coding theory. Let us recall that given any positive integers
a0, a1, . . . , am, the corresponding weighted projective space is defined by

P(a0, a1, . . . , am) :=
(
Fm+1
q \ {(0, 0, . . . , 0)}

)
/ ∼

where Fq denotes an algebraic closure of Fq and the equivalence relation ∼
is such that

(x0, x1, . . . , xm) ∼ (λa0x0, λ
a1x1, . . . , λ

amxm) for every λ ∈ F∗q .
The corresponding equivalence class is denoted by (x0 : x1 : . . . : xm) and
is called a weighted projective point. We say that the point is Fq-rational if
(x0 : x1 : . . . : xm) = (xq0 : xq1 : · · · : xqm). It can be shown using Hilbert’s
theorem 90 that every Fq-rational point has at least one representative in
Fm+1
q \ {(0, 0, . . . , 0)}. In fact, a finer analysis shows that it has exactly
q − 1 such representatives; see [14, §3]. In particular, the total number of
Fq-rational points equals pm, i.e. it is the same as in the non-weighted case.
The weighted projective spaces are fascinating objects. On the one hand,
they are analogous to classical projective spaces, but they are often difficult
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to deal with, partly since they can admit singularities. For the convenience
of the reader, and possible future use, we include at the end of this paper
a fairly self-contained appendix that provides a glossary of various notions
and results concerning weighted projective spaces.

Now let S = Fq[X0, X1, . . . , Xm] and consider a nonzero polynomial F ∈ S
which is homogeneous of degree d provided that we measure Xi with weight
ai for i = 0, 1, . . . ,m, so that

F (λa0X0, λ
a1X1, . . . , λ

amXm) = λdF (X0, X1, . . . , Xm) for all λ ∈ F∗q .

Thus it is meaningful to consider the weighted projective hypersurface V (F )
of Fq-rational points of P(a0, a1, . . . , am) at which F vanishes. Our object of
study is the quantity

eq(d; a0, a1, . . . , am) := max
F∈Sd\{0}

|V (F )|,

where Sd denotes the space of weighted homogeneous polynomials in S of
degree d. One caveat is that Sd might be trivial for certain values of d (namely
those values that are not contained in the semigroup a0Z≥0 + a1Z≥0 + . . .+
amZ≥0), in which case we say that eq(d; a0, a1, . . . , am) is not defined. Also
note that eq(d; a0, a1, . . . , am) is not necessarily increasing as a function in
d: for instance eq(5; 2, 3) = 2 while eq(6; 2, 3) = 1 since the only monomials
of degree 5 and 6 are constant multiples of X0X1 and X2

1 respectively.
Seeking inspiration in the example (2) that meets Serre’s bound, it is

natural to consider polynomials of the form

(4) F =

d/ars∏
i=1

(αiX
ars/ar
r − βiXars/as

s ),

where r, s ∈ {0, 1, . . . ,m} are distinct indices, ars is the least common mul-
tiple of ar and as, d is a multiple of ars satisfying d ≤ ars(q + 1), and the
(αi : βi)’s are distinct elements of P1(Fq). In Section 2 we will prove that
|V (F )| = (d/ars) q

m−1 + pm−2, leading to the following lower bound:

Lemma 1.1. Let a = min{ lcm(ai, aj) | 0 ≤ i < j ≤ m } and assume that
a | d. Then

eq(d; a0, a1, . . . , am) ≥ min{pm,
d

a
qm−1 + pm−2}.

In Section 2 we will also show that equality holds for m = 1. On the other
hand we will generalize the class of polynomials (4) to a larger family which
shows that the inequality may be strict if m > 1. We prudently conjecture
that the actual value of eq(d; a0, a1, . . . , am) is always attained by one of these
generalizations (as soon as it is defined), but elaborating this into a concrete
statement amounts to tedious additive number theory and is omitted.

One assumption that simplifies the combinatorics significantly is the prop-
erty a0a1 · · · am | d; in what follows we will usually suppose that this is the
case. Another hypothesis which turns out to simplify things considerably
is that one of the weights (say a0) equals 1. Under these assumptions, we
conjecture:
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Conjecture 1.2. If a0 = 1 and a1a2 . . . am | d, then the bound from
Lemma 1.1 is sharp. In other words, if we order the weights such that
a1 ≤ a2 ≤ . . . ≤ am, then

eq(d; 1, a1, a2, . . . , am) = min

{
pm,

d

a1
qm−1 + pm−2

}
.

This immediately specializes to Serre’s bound for a1 = . . . = am = 1. The
right-hand side equals d

a1
qm−1 + pm−2 if and only if d ≤ a1(q+ 1), which we

will be assumed in practice because the other case is again easy to handle.
In Section 3 we give the following evidence in favour of Conjecture 1.2:

Theorem 1.3. Conjecture 1.2 is true if m ≤ 2.

We already mentioned that the bound in Lemma 1.1 is sharp for m = 1, so
our attention will be entirely devoted to the case m = 2. The proof is done
by mimicking Serre’s original method. In order to do so, our main task is
to come up with a convenient notion of ‘lines’ inside the weighted projective
plane, which is not obvious a priori. The handy property of P(1, a1, a2) is
that it naturally arises as a completion of the affine plane A2, which leads
us to consider completed affine lines; as we will see, these indeed allow for a
working version of Serre’s proof. Even though P(1, a1, a2) is a very particular
case, we hope that our approach has the ingredients needed to establish
Conjecture 1.2 in full generality.

Finally, in Section 4, we introduce the natural weighted analogue of projec-
tive Reed-Muller codes, reinterpret Conjecture 1.2 in terms of the minimal
distance, and examine some further first properties. These codes do not
seem to have seen previous study, even though a different notion bearing the
name ‘weighted projective Reed-Muller codes’ was introduced and analyzed
by Sørensen [17]. As noted earlier, an appendix giving a formal introduction
to weighted projective spaces and many of its geometric aspects is provided
at the end.

2. Polynomials with many zeros

In this section we generalize the class of polynomials considered in (4). As
before, let S denote the polynomial ring Fq[X0, X1, . . . , Xm]. Fix a grading
on S with respect to weights a = (a0, a1, . . . , am) so that degXi = ai ≥ 1

(0 ≤ i ≤ m), and for a monomial M = Xi0
0 X

i1
1 · · ·Xim

m , the (weighted)
degree of M is degM = i0a0 + i1a1 + · · · + imam. We now define a useful
notion about pairs of monomials in S.

Definition 2.1. Let M0,M1 ∈ S be monomials different from 1. If
• degM0 = degM1,
• gcd(M0,M1) = 1, i.e. no variables appear in both M0 and M1,
• gcd(exponents appearing in the monomial M0M1) = 1,

then we call (M0,M1) a primitive pair. Denoting by si (i = 0, 1) the num-
ber of distinct variables appearing in Mi, we call (s0, s1) the corresponding
signature.

Example 2.2. For P(2, 3, 5), the pairs (X0X1, X2), (X3
0 , X

2
1 ) are primitive of

degrees 5, 6 and signatures (2, 1), (1, 1), respectively.
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Our generalized class consists of weighted homogeneous polynomials of
the form

(5) F`,s0,s1,σ0,σ1 = µ0µ1

∏̀
i=1

(M0 − tiM1)

where 1 ≤ s0 ≥ σ0 ≥ 0, 1 ≤ s1 ≥ σ1 ≥ 0 are integers and
• (M0,M1) is a primitive pair of signature (s0, s1),
• t1, . . . , t` are distinct elements of F∗q (in particular 0 ≤ ` ≤ q − 1),
• the (possibly trivial) monomial µi (i = 0, 1) is only divisible by vari-
ables that also appear in Mi; more precisely it is divisible by σi ≤ si
such variables.

It is allowed that ` = 0 but in that case we assume that σ0 = s0 and
σ1 = s1. In this case F is just a monomial in at least two variables. Strictly
speaking, since we assumed that s0 ≥ 1 and s1 ≥ 1, monomials in one
variable (or F = 1) are not covered by the construction, but in order to
have a chance of meeting eq(d; a0, a1, . . . , am) for every value of d one should
include them; since this is speculative anyway, we omit a further discussion
of such pathologies.

The construction indeed concerns a generalization of (4): modulo scaling,
the polynomial

d/ars∏
i=1

(αiX
ars/ar
r − βiXars/as

s )

is of the form Fd/ars−σ0−σ1,1,1,σ0,σ1 with σ0, σ1 ∈ {0, 1}, depending on whether
(1 : 0) or (0 : 1) are among the points (αi : βi). Here the underlying primitive
pair is (X

ars/ar
r , X

ars/as
s ).

Of course the polynomial F`,s0,s1,σ0,σ1 is not uniquely determined by the
integers `, s0, s1, σ0, σ1, but these are the parameters accounting for the num-
ber of Fq-rational points at which it vanishes:

Lemma 2.3. |V (F`,s0,s1,σ0,σ1)| = λqm+1−s0−s1 + pm−s0−s1 where

λ = ` · (q − 1)s0+s1−2

+ [(qs0 − (q − 1)s0)(qs1 − (q − 1)s1)− 1] /(q − 1)

+ (q − 1)s1−1qs0−σ0(qσ0 − (q − 1)σ0)

+ (q − 1)s0−1qs1−σ1(qσ1 − (q − 1)σ1).

In order to prove this, let us denote the variables appearing in M0 and
M1 by Y1, Y2, . . . , Ys0 and Z1, Z2, . . . , Zs1 , respectively. These are distinct
because of the primitivity of the pair (M0,M1). The points at which all
these variables vanish have the structure of a weighted projective space of
dimension m− s0 − s1. Since there are pm−s0−s1 such points which are Fq-
rational, our task easily reduces to the case where s0 + s1 = m+ 1, meaning
that each of the variables X0, X1, . . . , Xm appears among the Yi or Zi. In
the latter case we need to show that |V (F`,s0,s1,σ0,σ1)| = λ. We claim that,
respectively, the summands in the statement of Lemma 2.3 correspond to

(i) the zeros all of whose coordinates are nonzero,
(ii) the zeros for which at least one of the Yi’s is zero and at least one of

the Zi’s is zero,
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(iii) the zeros for which at least one of the Yi’s is zero, but none of the
Zi’s is,

(iv) the zeros for which at least one of the Zi’s is zero, but none of the
Yi’s is.

As for (i), this immediately follows from the lemma below, along with
the primitivity of (M0,M1) and the fact that every Fq-rational weighted
projective point has exactly q − 1 rational representatives by [14, §3].

Lemma 2.4. Let a1, a2, . . . , as0 , b1, b2, . . . , bs1 be (not necessarily mutually)
coprime integers and let α, β ∈ F∗q. Then the number of solutions in the torus
Ts0+s1
q (Fq) := (F∗q)s0+s1 of the equation

αxa11 x
a2
2 · · ·x

as0
s0 − βyb11 y

b2
2 · · · y

bs1
s1 = 0

is given by (q − 1)s0+s1−1.

Proof. Since a0, a1, . . . , as0 ,−b0,−b1, . . . ,−bs1 are coprime, these integers
can be viewed as the entries in the first row of a matrix M ∈ GLs0+s1(Z);
see [4]. Rewrite the equation as

xa11 x
a2
2 · · ·x

as0
s0 y

−b1
1 y−b22 · · · y−bs1s1 = α−1β.

Using M it is easy to find a monomial transformation (= an invertible sub-
stitution of the variables by Laurent monomials) that takes this equation
to

x1 = α−1β.

This transformation determines a bijection between the respective sets of
solutions inside Ts0+s1(Fq), from which the lemma follows. �

As for (ii), note that if a point (y1 : y2 : . . . : ys0 : z1 : z2 : . . . : zs1) satisfies
yi = 0 and zj = 0 for at least one pair yi, zj then it automatically concerns
a zero of F`,s0,s1,σ0,σ1 . There are

(qs0 − (q − 1)s0)(qs1 − (q − 1)s1)− 1

such points in Fs0+s1
q \{(0, 0, . . . , 0)}, and so we find the desired contribution,

again by using that every Fq-rational point has q − 1 representatives.
Concerning (iii): these are exactly the zeros of µ0 that were not counted

elsewhere. Once more we adopt the strategy of first counting the number
of Fq-rational representatives, after which we divide by q − 1. At least one
of the σ0 variables appearing in µ0 should be set to zero, accounting for
the factor qσ0 − (q − 1)σ0 , while the other Yi’s can be chosen freely and the
Zi’s must be chosen nonzero, accounting for the factors qs0−σ0 and (q−1)s1 ,
respectively.

The case (iv) follows by symmetry. This completes the proof of Lemma 2.3.
Example 2.5. Consider P(2, 3, 5), let d = 30, and assume q ≥ 5. Let

F4,2,1,2,1 = X0X1X2

4∏
i=1

(X0X1 − tiX2).

According to Lemma 2.3, the number of Fq-rational zeros of F4,2,1,2,1 is 7q−4.
We believe that this equals eq(30; 2, 3, 5), although we currently cannot offer
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a proof. But at least this shows that the lower bound from Lemma 1.1,
which relied on the polynomial

F3,1,1,1,1 = X3
0X

2
1

3∏
i=1

(X3
0 − tiX2

1 ),

can be strict: indeed, F3,1,1,1,1 has only 5q + 1 zeros. On the other hand,
for q = 4, this last polynomial trivially meets eq(30; 2, 3, 5) because it is
‘space-filling’, i.e., its set of Fq-rational zeros equals all of P(2, 3, 5)(Fq).

In the second part of this section, we prove the sharpness of the bound
in Lemma 1.1 in the base case where m = 1; in particular, we obtain Con-
jecture 1.2 in this case. Writing a = lcm(a0, a1), we want to prove that
eq(d; a0, a1) = min{p1, d/a}. Let F ∈ Sd \ {0} and note that

F (X0, X1)/X
d/a1
1

can be viewed as a univariate polynomial in T = X
a/a0
0 /X

a/a1
1 . Indeed, if

a monomial Xα0
0 Xα1

1 is weighted homogeneous of degree d, so that α0a0 +
α1a1 = d, then an easy calculation shows that

Xα0
0 Xα1

1

X
d/a1
1

=

(
X
a/a0
0

X
a/a1
1

)α0a0/a

.

By factoring and remultiplying with Xd/a1
1 , one finds that F splits as

F (X0, X1) = c ·Xak/a1
1 ·

d/a−k∏
i=1

(X
a/a0
0 − tiXa/a1

1 )

for some 0 ≤ k ≤ d/a, some roots ti ∈ Fq, and some leading coefficient
c ∈ F∗q . If ti ∈ Fq then by using Lemma 2.4 as before, we see that the
corresponding factor has a unique Fq-rational weighted projective zero. If
ti /∈ Fq then it clearly has none. So indeed |V (F )| ≤ d/a, as desired.
Remark 2.6. Alternatively and perhaps more geometrically pleasing, one
can use Delorme weight reduction, which in this particular case says that
P(a0, a1) ∼= P(1, 1) (see [9, (1.3.1)]) to reduce the proof to the case of the
classical projective line.

3. Hypersurfaces in Weighted Projective Planes P(1, a1, a2)

In this section we prove Theorem 1.3, i.e. we prove Conjecture 1.2 for
weighted projective planes P(1, a1, a2). Assume without loss of generality
that a1 ≤ a2. Let F ∈ Fq[X0, X1, X2] be a nonzero polynomial which is
weighted homogeneous of degree d with a1a2 | d. Assuming that d ≤ a1(q +
1), our task is to prove

(6) |V (F )| ≤ d

a1
q + 1.

This we will do by mimicking Serre’s original proof, for which we need a
convenient notion of ‘lines’ in the weighted projective plane. Note that if we
define lines merely as subsets that are cut out by a weighted homogeneous
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polynomial of degree 1, in general the resulting notion is too poor to be of
any use (we would usually only find X0 = 0).

An easy but crucial feature of having a0 = 1 is that every point (x0 :
x1 : x2) for which x0 6= 0 has a unique representative of the form (1 : x :
y). Moreover, the point is Fq-rational if and only if x, y ∈ Fq. Thus the
embedding

A2 ↪→ P(1, a1, a2) : (x, y) 7→ (1 : x : y)

identifies A2 with the chart X0 6= 0, in an equivariant way (i.e. the iden-
tification continues to hold if one restricts to Fq-rational points). We call
H∞ : X0 = 0 the ‘line at infinity’. Note that it naturally carries the structure
of the weighted projective line P(a1, a2).
Remark 3.1. We can think of P(1, a1, a2) as the affine plane to which a line
at infinity has been glued, albeit in a non-standard way. This can be made
precise geometrically (see, for example, Dolgachev [9]) and it turns out (see,
for example, Section 2 of the appendix) that, in general, the coordinate
points at infinity are singular (we will not use this).

The affine zeros of F are precisely the zeros of the dehomogenized poly-
nomial

F (1, x, y) ∈ Fq[x, y].

Conversely, given a polynomial in x and y, there is a natural way of homoge-
nizing it, by substituting x← X1, y ← X2 and adding to each term as many
factors X0 as minimally needed. We define a ‘line’ in P(1, a1, a2) to be either
a homogenized linear bivariate equation, or the line at infinity:

Definition 3.2. An Fq-rational line in P(1, a1, a2) is a subset defined by an
equation of one of the following types.

• Type 0: The line X0 = 0, which we shall denote H∞ (the line at
infinity). Points on this line may be called the points at infinity.
• Type 1: Lines of the form αXa1

0 + X1 = 0 with α ∈ Fq (vertical
lines).
• Type 2: Lines of the form αXa2

0 +βX1X
a2−a1
0 +X2 = 0 with α, β ∈ Fq

(non-vertical lines).

Remark 3.3. Note that using an Fq-rational change of variables that respects
the grading, any Fq-rational line of type i can be transformed into Xi = 0.
For instance, for the vertical line αXa1

0 +X1 = 0 this amounts to substituting
X1 ← X1 − αXa1

0 .

Lemma 3.4. Any Fq-rational line in P(1, a1, a2) contains exactly q + 1 ra-
tional points, and any pair of Fq-rational lines in P(1, a1, a2) has at least one
rational point in common.

Proof. Being a copy of P(a1, a2), it is clear that the line at infinity in
P(1, a1, a2) contains q + 1 rational points, while all other Fq-rational lines
contain q affine points along with a unique point at infinity: for the lines of
type 1, it is (0 : 0 : 1), while for the lines of type 2, it is (0 : 1 : 0) when
a1 < a2, and (0 : 1 : β) when a1 = a2. Thus it suffices to show that any two
Fq-rational lines in P(1, a1, a2) of types 1 or 2 meet each other in at least one
Fq-rational point. If these lines (or rather their affine parts) are non-parallel,
then there is an affine intersection point. In the parallel case the lines are
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either both of type 1, therefore meeting each other at (0 : 0 : 1), or both of
type 2 sharing the same value of β, therefore meeting each other at (0 : 1 : 0)
or (0 : 1 : β). �

The points at infinity (0 : 0 : 1) and (0 : 1 : 0) on the coordinate axes will
be denoted by P∞ and P ′∞, respectively.
Remark 3.5. Figure 1 illustrates the intersection behaviour of lines in P(1, a1, a2)
in the case where a1 < a2; the point P ′∞ acts as a vortex attracting all
lines of type 2. If a1 = a2, then this is no longer true: here the way in

P∞ = (0 : 0 : 1)

(0 : 1 : 0) = P ′∞

(1 : 0 : 0)

H∞

affine plane

type 0 (H∞)
type 1 (vertical line)
type 2 (non-vertical line)

Figure 1. Lines in P(1, a1, a2) in the case where a1 < a2.

which lines intersect is exactly as in the usual projective plane. This is
not a coincidence: using Delorme weight reduction it can be verified that
P(1, a1, a1) ∼= P(1, 1, 1) = P2; see [9, (1.3.1)].

We are now ready to prove the upper bound stated in (6). LetH1, H2, . . . ,Ht

in Fq[X0, X1, X2] be the distinct ‘linear’ factors of F , i.e. the divisors of F
having one of the three forms mentioned in Definition 3.2. Note that

d ≥ degH1H2 · · ·Ht ≥ 1 + (t− 1)a1,

which leads to t ≤ d/a1 since a1 | d. For each i = 1, 2, . . . , t we define
Li = V (Hi), and we similarly write L∞ = V (X0) for the set of Fq-rational
points on H∞. Let

L =

t⋃
i=1

Li.

As a first step in the proof, we show that |L| ≤ tq + 1 by induction on t.
The case t = 0 is trivial and the case t = 1 follows from Lemma 3.4. In the
general case we have

|L| = |
t⋃
i=1

Li| = |
t−1⋃
i=1

Li|+ |Lt| − |
t−1⋃
i=1

Li ∩ Lt|

≤ (t− 1)q + 1 + q + 1− 1

= tq + 1,

where the second step again uses Lemma 3.4.
To proceed, we distinguish between three cases.
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Case 1: Suppose that V (F ) \ L ⊆ L∞ \ {P∞}.
(1) If Li = L∞ for some i, then we have

|V (F )| = |L| ≤ (d/a1)q + 1

by the previous observation.
(2) Suppose Li 6= L∞ for all i. Then:

• either t = d/a1, which is possible only if all Hi’s are vertical
and V (F ) = L, so again the bound follows (note that this case
covers our example (4) proving sharpness),
• or t < d/a1, in which case the following estimate applies:

|V (F )| ≤ |L|+ |L∞ \ {P∞}|
= |L|+ q

≤ tq + 1 + q

≤ (d/a1 − 1)q + 1 + q

= (d/a1)q + 1.

This concludes the proof in Case 1.

Case 2: There exists a point P ∈ A2 that lies in V (F ) \ L. Let X denote
the set of pairs (P ′, H) of Fq-rational points and Fq-rational lines such that
P, P ′ ∈ V (F ) ∩H and P 6= P ′. We are going to estimate the cardinality of
X in two ways. On the one hand

|X| =
∑

P ′∈V (F )\{P}

|{L : L is a line with P, P ′ ∈ L}|

≥
∑

P ′∈V (F )aff\{P}

1 = |V (F )aff \ {P}|,

where V (F )
aff

= V (F ) ∩ A2 = V (F ) \ L∞. On the other hand, we have

|X| =
∑
H3P

H type 1

(|V (F ) ∩H| − 1) +
∑
H3P

H type 2

(|V (F ) ∩H| − 1)

↓ X1 = 0 P(1, a2) ↓ X2 = 0 P(1, a1)

≤ 1 ·
(
d

a2
− 1

)
+ q

(
d

a1
− 1

)
.

The first vertical arrow above indicates that in order to estimate |V (F )∩H|
for a line H of type 1, we can assume that H is defined by X1 = 0, by using
a change of variables if needed by the remark after Definition 3.2. But then
our task is to estimate the number of Fq-rational zeros of F (X0, 0, X2) in the
weighted projective line P(1, a2), which is bounded by d/a2 as observed in
Section 2, discussing the base case m = 1. Here we note that F (X0, 0, X2) 6=
0 because H contains P /∈ L. A similar justification goes along with the
second vertical arrow.

Combining both estimates, we find that

|V (F )aff \ {P}| = |V (F )aff| − 1 ≤ d

a2
− 1 + q

(
d

a1
− 1

)
.
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It follows that

|V (F )| ≤ d

a2
+ q

(
d

a1
− 1

)
+ |V (F ) ∩H∞|

↓ X0 = 0 P(a1, a2)

≤ d

a2
+ q

(
d

a1
− 1

)
+

d

lcm(a1, a2)

= q
d

a1
+ 1 +

d

a2
+

d

lcm(a1, a2)
− q − 1

= q
d

a1
+ 1 +

d

a2

a1 + gcd(a1, a2)

a1
− q − 1

≤ q d
a1

+ 1 +
d

a2

a1 + a2 − a1

a1
− q − 1

≤ q d
a1

+ 1.

The last inequality uses our assumption that d ≤ a1(q + 1). This concludes
the proof in Case 2.

Case 3: One has P∞ ∈ V (F ) \L. This case is similar but easier. Using the
same definition of X with P = P∞, one finds on the one hand that

|X| =
∑

P ′∈V (F )\{P}

|{L : L is a line with P, P ′ ∈ L}|

=
∑

P ′∈V (F )\{P}

1

= |V (F )| − 1,

and, on the other hand, that

|X| =
∑

H type 0

(|V (F ) ∩H| − 1) +
∑

H type 1

(|V (F ) ∩H| − 1)

↓ X0 = 0 P(a1, a2) ↓ X1 = 0 P(1, a2)

≤ 1 ·
(

d

lcm(a1, a2)
− 1

)
+ q

(
d

a2
− 1

)
.

Together, this combines to yield

|V (F )| ≤ d

lcm(a1, a2)
+ q

(
d

a2
− 1

)
≤ d

a1
+ q

d

a1
− q

≤ q d
a1

+ 1,

where the last step uses d ≤ a1(q + 1). Thus Theorem 1.3 is proved.

4. Weighted projective Reed-Muller codes

In this section, we outline how the considerations of the previous sections
can be applied to coding theory. Recall that a (q-ary) linear code of length
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n and dimension k is, by definition, a k-dimensional subspace of Fnq . The
minimum distance of such a code C is defined by

d(C) := min{wt(x) : x ∈ C with x 6= 0},
where for any x = (x1, . . . , xn), the Hamming weight wt(x) is the number
of nonzero coordinates in x, i.e., |{i : xi 6= 0}|. We usually say that a q-ary
linear code C has parameters [n, k, d] or that C is a [n, k, d]q-code if C has
length n, dimension k, and minimum distance d. We shall begin by reviewing
some classical families of linear codes.

4.1. Generalized Reed-Muller codes, projective Reed-Muller codes
and projective nested cartesian codes. The generalized Reed-Muller
code over Fq of order d and withm variables has been introduced by Delsarte,
Goethals and MacWilliams in 1970 in [8]. It is denoted by RMq(d,m) and
defined as the image of the evaluation map

c : Fq[X1, . . . , Xm]≤d −→ Fq
m

q given by c(f) = (f(P ))P∈Am(Fq),

where Fq[X1, . . . , Xm]≤d denotes the Fq-vector space of all polynomials in m
variables X1, . . . , Xm with coefficients in Fq and with degree ≤ d.

If d < q, then the evaluation map c is injective, and so the dimension of
RMq(d,m) equals dimFq Fq[X1, . . . , Xm]≤d, which is

(
d+m
m

)
. The minimum

distance can be deduced from a classical result of Ore (cf. noted in [13,
Thm. 6.13]), which implies that the maximal number of zeros in Am(Fq)
of a polynomial in Fq[X1, . . . , Xm] of degree d is equal to dqm−1. Thus we
have:

Proposition 4.1. If d < q, then the code RMq(d,m) has parameters[
qm,

(
d+m

d

)
, (q − d)qm−1

]
.

The projective Reed-Muller codes were introduced and studied by Lachaud
[11, 12] and Sørensen [16] by the late 1980’s and early 1990’s. They can be
defined as follows.

Choose representatives in Fm+1
q for Fq-rational points of the (usual) pro-

jective space Pm in such a way that the first nonzero coordinate is 1. Let
P1, . . . , Ppm be a fixed collection of such representatives for the points of
Pm(Fq). Now the evaluation map

c : Fq[X1, . . . , Xm]d −→ Fpmq given by c(f) = (f(P1), . . . f(Ppm))

is injective if d ≤ q and we define PRMq(d,m) to be the image of this map.
Using (3), we can deduce the following.

Proposition 4.2. If d ≤ q, then the code PRMq(d,m) has parameters[
pm,

(
d+m

d

)
, (q − d+ 1)qm−1

]
.

This construction has been generalized in [1] where the evaluation of the
homogeneous polynomials is done on the rational points of an hypersurface
of Pm(Fq), most notably on quadric hypersurfaces. The parameters of such
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codes have been improved in 3 and 4-dimensional projective spaces in a series
of papers (see, for example, [10]).

Recently, Carvalho, Lopez Neumann and López have proposed in [3] an-
other generalization of PRMq(d,m). In their paper, the evaluation of homo-
geneous polynomials is done on suitable representatives in Fm+1

q of projective
cartesian sets {(a0 : a1 : · · · : am) ∈ Pm(Fq) : ai ∈ Ai for i = 0, 1, . . . ,m},
where A0, A1, . . . , Am are nonempty subsets of Fq.

4.2. Weighted projective Reed-Muller codes. Let a0, . . . , am be pos-
itive integers such that gcd(a0, a1, . . . , am) = 1. Denote the (m + 1)-tuple
(a0, a1, . . . , am) by a. Consider an integer d which is a multiple of the product
of the ai’s, say d = ka0 . . . am.

We consider the weighted projective space P(a) = P(a0, . . . , am) of di-
mension m with weights a0, . . . , am over Fq, whose definition was recalled in
Section 1. Note that P(a0, . . . , am) is a disjoint union of W0,W1, . . . ,Wm,
where for 0 ≤ i ≤ m,

Wi := {(x0 : · · · : xm) ∈ P(a0, . . . , am) : x0 = · · · = xi−1 = 0, xi 6= 0}.
As before, let Sd denote the space of weighted homogeneous polynomials

of degree d. We define the Weighted Projective Reed-Muller code of order
d over P(a0, . . . , am)(Fq), denoted by WPRMq(d,m; a), as the image of the
linear map

c : Sd −→ Fpmq given by c(F ) = (cx(F ))x∈P(a)(Fq),

where for x = (x0 : x1 : · · · : xm) ∈ P(a)(Fq),

cx(F ) =
F (x0, . . . , xm)

x
d/ai
i

if x = (x0 : · · · : xm) ∈Wi.

Observe that the map c is well defined. Indeed, for a nonzero λ ∈ Fq, if
y = (λa0x0 : · · · : λamxm) = (x0 : · · · : xm) = x ∈Wi, then

cy(F ) =
F (λa0x0, . . . , λ

amxm)

(λaixi)d/ai
=
λdF (x0, . . . , xm)

λdx
d/ai
i

= cx(F ).

This argument shows also that cx(F ) ∈ Fq since every point x of P(a)(Fq)
has weighted homogeneous coordinates (x0 : x1 : · · · : xm) such that xi ∈ Fq
for i = 0, 1, . . . ,m.

4.2.1. Length and dimension. The length of WPRMq(d,m; a) is clearly pm =
qm + · · · + q + 1. Assume that d ≤ q. Then the linear map c in injective
and so the dimension of WPRMq(d,m; a) is equal to the dimension of the
Fq-vector space Sd, which is equal to the number of representations of d as
a nonnegative integer linear combination of a0, . . . , am:∣∣∣{(α0, . . . , αm) ∈ Zm+1

≥0 : α0a0 + · · ·+ αmam = d}
∣∣∣ .

Note that, using a theorem of Schur (see, e.g., [18, Thm. 3.15.2]), we have
an asymptotic formula

dim WPRMq(d,m; a) =
dm

m!a0 . . . am
+O(dm−1) when d→∞.



14 AUBRY, CASTRYCK, GHORPADE, LACHAUD, O’SULLIVAN, AND RAM

If we suppose that a0 = 1, then this dimension is equal to∣∣∣{(α1, . . . , αm) ∈ Zm+1
≥0 : α1a1 + · · ·+ αmam ≤ d}

∣∣∣ .
This can be viewed as the number of integral points in an integral convex
polytope and then the dimension can be obtained using Ehrhart polynomials
(see the examples below in dimension 2).

4.2.2. Minimum distance. The minimum distance of WPRMq(d,m; a) is equal
to the number of rational points on P(a)(Fq) minus the maximal number of
points on a hypersurface V of degree d of P(a)(Fq). Thus we can determine
it using the results of the previous sections.

First, suppose i, j ∈ {0, 1, . . . ,m} and d′ ∈ Z are such that

lcm(ai, aj) = min{lcm(ar, as), r 6= s}, and d′ :=
d

lcm(ai, aj)
.

Then from Lemma 1.1, we see that

(7) d(WPRMq(d,m; a)) ≤ (q − d′ + 1)qm−1.

Furthermore, if a0 = 1 and m = 2 and we assume, without loss of generality
that a1 ≤ a2, then from Theorem 1.3, we see that

(8) d(WPRMq(d, 2; a)) =

(
q − d

a1
+ 1

)
qm−1.

4.2.3. A particular case. Consider the particular case of the weighted pro-
jective plane P(1, 1, a), where a is a positive integer. Also let a = (1, 1, a).
Given a convex polytope ∆ whose vertices have integral coordinates, the
function which assigns to a nonnegative integer k the number |k∆ ∩ Zm| of
integral points in dilates k∆ of ∆ is a polynomial of degree m, called the
Ehrhart polynomial of ∆ (see, for example, [2]). For m = 2, this polynomial
can be written in the following way:

|k∆ ∩ Z2| = Vol(∆)k2 +
1

2
|∂∆ ∩ Z2|k + 1.

Hence we find that, for d = ka, the dimension of the code WPRMq(d, 2; a)
is equal to

1

2
ak2 +

a+ 2

2
k + 1 =

d2

2a
+

(a+ 2)d

2a
+ 1 =

(d+ a)(d+ 2)

2a
.

Since we have d′ = d in our case, we find from (8) that the minimum distance
of WPRMq(d, 2; a) is q2 − (d− 1)q.

Thus, the code WPRMq(d, 2; a) has parameters

[p2,
(d+ a)(d+ 2)

2a
, q2 − (d− 1)q]

and we can compare it to the parameters of the code PRMq(d, 2), which are[
p2,

(d+ 1)(d+ 2)

2
, q2 − (d− 1)q

]
.

We find here that the weighted projective Reed-Muller code has the same
length and the same minimum distance, but worse dimension than the pro-
jective Reed-Muller code.
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4.2.4. Another particular case. Let a, b be positive integers with a ≤ b and
let a = (1, a, b). Consider the particular case of the weighted projective plane
P2(1, a, b) and consider an integer d = kab with d ≤ q. Arguing as before,
we can deduce the following.

Proposition 4.3. The code WPRMq(d, 2; a) has parameters[
p2,

(d+ 2a)(d+ b) + (gcd(a, b)− a)d

2ab
, q2 −

(
d

a
− 1

)
q

]
.

In particular, if a = 2 and b ≥ 2, we see that the minimum distance
of WPRMq(d, 2; (1, 2, b)) is always better than the minimum distance of
PRMq(d, 2), but the dimension of WPRMq(d, 2; (1, 2, b)) is always worse than
the dimension of PRMq(d, 2).

4.2.5. Relative parameters. Recall that, for any code C, the transmission
rate R(C) and the relative distance δ(C) of C are defined by

R(C) =
dimC

lengthC
and δ(C) =

distC

lengthC
.

The number

λ(C) = R(C) + δ(C) = (dimC + distC)/ lengthC

is a parameter of C which measures the performance of the code C.
It is proved in [12] that if q ≥ d+ 1, m ≥ 2, and d ≥ 2m/(m− 1), then

λ(PRMq(d,m)) > λ(RMq(d,m)).

If q is sufficiently large then one can show that the performance of WPRMq(d, 2; (1, 2, 2))
is greater (and thus better) than the performance of PRMq(d, 2):

Proposition 4.4. If q ≥ 3k + 2, then

λ(WPRMq(4k, 2; (1, 2, 2))) ≥ λ(PRMq(4k, 2)).

Proof. Since the lengths of these codes are equal (namely to p2), we just
have to show that the sum of the dimension and the minimum distance is
greater for the first code when q is sufficiently large. Applying Propositions
4.2 and 4.3 yields the desired result. �

In the same way, it is easy to see that:

Proposition 4.5. If q ≥ 7k + 2, then

λ(WPRMq(8k, 2; (1, 2, 4))) ≥ λ(PRMq(8k, 2)).

More generally, using Propositions 4.2 and 4.3 we can show that:

Theorem 4.6. For any nonnegative integers a, β and k with a ≥ 2,

λ(WPRMq(ka
2β, 2; (1, a, aβ))) ≥ λ(PRMq(ka

2β, 2)),

provided

q ≥ kβ2a3 + 3βa− kβa− β − 2

2β(a− 1)
.
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Let us compare the performance over F19 and in degree 16 of the general-
ized Reed-Muller code over A2, the Projective Reed-Muller code over P2, and
the weighted projective Reed-Muller codes over the four different weighted
projective planes P(1, 2, 2), P(1, 2, 4), P(1, 2, 8) and P(1, 4, 4).

We find that RM19(16, 2) has parameters [361, 153, 57] and the projective
counterpart PRM19(16, 2) has parameters [381, 153, 76], whereas

• WPRM19(16, 2; (1, 2, 2)) has parameters [381, 45, 228],
• WPRM19(16, 2; (1, 2, 4)) has parameters [381, 25, 228],
• WPRM19(16, 2; (1, 2, 8)) has parameters [381, 15, 228], and
• WPRM19(16, 2; (1, 4, 4)) has parameters [381, 15, 304].

Then, the performances of the affine and projective Reed-Muller codes are:
λ(RM19(16, 2)) = 0.581... and λ(PRM19(16, 2)) = 0.601..., whereas the per-
formace of the above four weighted projective Reed-Muller codes are 0.716...,
0.664..., 0.637..., and 0.837..., respectively.
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Appendix A. Weighted projective spaces

This appendix is aimed at providing a handy reference for weighted pro-
jective spaces over arbitrary fields. While some proofs are occasionally out-
lined, for most part we provide complete statements of results and suitable
references where proofs can be found.

Definitions of weighted projective spaces

A.1. WPS as a Proj functor. Let k be a field and let a = (a0, . . . , am)
be a sequence of strictly positive integers. The condition

degXi = ai, i = 0, . . . ,m

defines a gradation of type Z on the polynomial algebra S = k[X0, . . . , Xm] :

S =
⊕
n≥0

Sn

such that Sn = 0 if n < 0.

If f = Xr0
0 . . . Xrm

m then a-deg f = n ⇐⇒ a0r0 + · · ·+ amrm = n

We assume that the characteristic p of k is coprime to all ai (0 ≤ i ≤ m),
and that gcd(a0, . . . , am) = 1. The weighted projective space (WPS) with
sequence of weights a over k is the scheme P(a) = ProjS(a). If a = (1, . . . , 1),
we recover the usual projective space:

P(1, . . . , 1) = Pm.

A.2. Quotients. Let G be an affine algebraic group over a field k acting on
an algebraic variety X over k. A categorical quotient of X by G, see [Do2,
p. 92], [Gr, Ch.V, §1], [MFK, Def. 0.5, p. 3], is a morphism p : X −→ Y ,
where Y is a variety over k, such that

(1) p is surjective.
(2) p is G-invariant, that is, G-equivariant, that is, p is constant on the

orbits of G.
(3) If f : X −→ Z is a k-morphism constant on the orbits of G, then

there exists a k-morphism ϕ : Y −→ Z such that f = ϕ ◦ p.
X

p
��

f

  
Y ϕ

// Z
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The couple (Y, p) is unique up to unique isomorphism. A categorical quotient
is called a geometric quotient, see [Do2, p. 92], [MFK, Def. 0.6, p. 4], if
moreover

(4) p is open.
(5) The fibres of p are the orbits of G in X.

A.3. WPS as a quotient of the punctured affine space. The gradation
a of S defines an action

σ : Gm × Am+1 Am+1

of Gm on Am+1 such that

σ(t).(x0, . . . , xm) = t.(x0, . . . , xm) = (ta0x0, . . . , t
amxm).

The corresponding morphism

σ[ : S k[T, T−1]⊗ S ' S[T, T−1]

is such that

[σ[f ](T,X0, . . . , Xm) = f(T a0X0, . . . , T
amXm).

The algebra S[T, T−1] is called the algebra of Laurent polynomials over S.
The group Gm operates as well on the pointed cone

V = Am+1 \ {0}.
Theorem A.1. The morphism

p : V V/Gm

is a geometric quotient, and there is an isomorphism

ι : V/Gm P(a)∼

Proof. [Do1, 1.21, p. 36], [Do2, Ex. 6.2, p. 96]. �

The scheme P(a) is a normal irreducible projective variety, of dimension
m [MFK, p. 5], [Do1, 1.3.3].

A.4. WPS as a finite quotient of the projective space. For any integer
n > 0, we denote by µn the finite group scheme of n-th roots of unity, with
coordinate ring k[X]/(Xn − 1). We put

G = Ga = µa0 × · · · × µam .

Then |Ga| = a, with a = a0 . . . am, and Ga ' µa if and only if a is the l.c.m.
of a0, . . . , am, that is, if and only if a0, . . . , am are pairwise coprime. There
is a linear action of G on Pm given by

(ζ0, . . . , ζm).(x0 : . . . : xm) = (ζ0x0 : . . . : ζmxm)

The morphism π0 : V→ V given by

π0(x0, . . . , xm) = (xa00 , . . . , x
am
m )
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induces a diagram

V
p

��

π0 // V
p

��
Pm π //

p

""

P(a)

Pm/G

∼
;;

Let G be an affine algebraic group over a field k acting on an algebraic variety
X over k. For the definition of a good geometric quotient of X by G, see
[Do2, p. 92]. We denote by G(x) the stabilizer or isotropy group of X. The
action is free at x if G(x) is trivial.

Proposition A.2. The morphism π : Pm −→ P(a) given by

π(x0 : . . . : xm) = (xa00 : . . . : xamm )

is a good geometric quotient of X by G, and therefore enjoys the following
properties:

(1) π is surjective, finite and submersive.
(2) The fibres of π are the orbits of G in Pm.
(3) If x ∈ Pm and y = π(x) ∈ P(a), the residual field κ(x) is a Galois

extension of κ(y) and the canonical homomorphism of G(x) in the
group Gal(κ(x)/κ(y)) of κ(y)-automorphisms of κ(x) is surjective.

Proof. See [Se, Ch. III, Prop. 19], [Gr, Ch. V, Prop.1.3 and 1.8], [Do2, Ex.
6.1, p. 95]. �

Notice that deg π = a0 . . . am. The Jacobian matrix of π is

dπ(x) = Diag(a0x
a0−1
0 , . . . , amx

am−1
m ),

and
det dπ(x) = (a0 . . . am)xa0−1

0 . . . xam−1
m

If we denote by Hi the hyperplane xi = 0, the ramification locus is

R =
⋃
ai>1

Hi.

Then π is étale outside R, which clearly contains the singular set.

Proposition A.3. The scheme P(a) is Cohen-Macaulay.

Proof. Cf. [BR, Th. 3A.1]. �

The singular locus

We say that the sequence of weights a is normalized [Di, p. 185] or well
formed [Ho, Def. 3.3.4] if

gcd(a0, . . . , âi, . . . , am) = 1 for every 0 ≤ i ≤ m.
Any weighted projective space is isomorphic to a well-formed weighted pro-
jective space [loc. cit ]. If p is a prime number, we put

I(p) = {i ∈ {1, . . . ,m} | p divides ai} .
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The set Σ = Σ(a) of prime numbers such that I(p) 6= ∅ is finite, and a is
normalized if and only if |I(p)| ≤ m− 1 for every p. The space

S(p) = {x ∈ P(a) | xi = 0 if i /∈ I(p)}
is a weighted projective space of dimension |I(p)|.
Proposition A.4. Assume that a is normalized.

(1) The decomposition of SingP(a) into irreducible components is

SingP(a) =
⋃
p∈Σ

S(p).

(2) Moreover

SingP(a) = {x ∈ SingP(a) | Gx 6= {1}} .
Proof. See Dimca [Di, p. 185]. �

Notice that dim SingP(a) ≤ m− 2, that is, P(a) is regular in codimension
one, as it already follows from normality.

Corollary A.5. Assume that a is normalized.
(1) If (x0 : . . . : xm) ∈ SingP(a), then xi = 0 for at least one i.
(2) If

gcd(aj , aj) = 1 for every couple (i, j) with j 6= i,

then
SingP(a) = {P0, . . . , Pm},

where Pi are the m+ 1 vertices (0 : . . . : 1 : . . . : 0).

Proof. From Proposition A.4 we deduce that if x ∈ SingP(a), then x ∈ S(p)
for some p ∈ Σ, hence, xi = 0 for at least one i. This proves (1). If a0, . . . , am
are pairwise coprime, then I(p) has only one element i, and S(p) = {Pi}.
This proves (2). �

Affine parts

A.5. Quotient of the affine space by a cyclic group. We shall define
an action of the cyclic group µai on Am, which is called the action of type

1

ai
(a0, . . . , âi, . . . , am).

Let Am{i} the affine hypersurface of V with equation Xi = 1. Our action is
defined by

ζ.(x0, . . . , 1, . . . , xm) = (ζa0x0, . . . , 1, . . . , ζ
amxm), ζ ∈ µai ,

and we get a finite quotient

p : Am{i} Am{i}/µai .

We have
k[Am{i}] = S/(Xi − 1) = k[X0, . . . , X̂i, . . . , Xm].

If
k[Am{i}]

inv = k[Am{i}/µai ] = k[Am{i}]
µai ,
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then [BR, Lem. 2.5, p. 11]

k[Am{i}]
inv =

⊕
k[Am{i}]nai .

If gcd(aj , ai) = 1 for j 6= i, then the only point x ∈ Am with non-trivial
isotropy subgroup is x = 0, and the projection Am{i} → Am{i}/µai is étale
outside 0.

A.6. Affine parts. For 0 ≤ i ≤ m, we consider the principal open subset

Vi = {x ∈ V | xi 6= 0} .
Then k[Vi] is the localization of S with respect to Xi, namely

k[Vi] = k

[
1

Xi

]
=

{
f

Xn
i

| f ∈ S

}
⊂ k(Am+1).

We put

Ui = p(Vi) = Vi/Gm = {x = (x0 : . . . : xn) ∈ P(a) | xi 6= 0}
and we consider the k-subalgebra of degree 0 elements of k[Vi]:

(9) k[Vi]
0 =

{
f

Xn
i

∈ S[i] | f homogeneous, n ≥ 0, deg f = nai

}
Then

k[Ui] = k[Vi]
0 = k[Vi]

Gm .

Proposition A.6. With the preceding notation:
(1) The projection p : Am{i} → Ui given by

p(x0, . . . , 1, . . . , xm) = (x0 : . . . : 1 : . . . : xm)

is surjective and induces an isomorphism

ϕ : Am{i}/µai Ui,
∼

with an inverse

ψ : Ui Am{i}/µai
∼

such that

ψ(x0 : . . . : 1 : . . . : xm) = (x0, . . . , 1, . . . , xm).

(2) The canonical homomorphism p[ : k[Ui]→ k[Am{i}] given by

p[
(
f

Xn
i

)
= f(X0, . . . , 1, . . . , Xm),

for f homogeneous, n ≥ 0, a-deg f = nai, is injective and induces an
isomorphism

ϕ[ : k[Ui] k[Am{i}]
inv,∼

with an inverse

ψ[ : k[Am{i}]
inv k[Ui]
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such that
ψ[(f) =

f

Xn
i

,

for f ∈ k[Am{i}]
inv, deg f = nai. In particular

ψ[
(
Xai
j

)
=
Xai
j

X
aj
i

.

Proposition A.6 leads to the two diagrams

Am{i} Vi V

Am{i}/µai Ui P(a)

⊂

p p

⊂

p

ϕ ⊂

k[Am{i}] k[Vi] S

k[Am{i}]
inv k[Ui]

⊃

∪ ∪

∼
ϕ[

p[

Proof of proposition A.6. 1. See [BR, Th. 2.6.b, p. 12], [Ho, 1.2.3], and
occasionally see also [Te, pp. 63-64] and [Re, pp. 4-5].

2. Let x and y be in Am{i}. If

(y0, . . . , 1, . . . , ym) = (ζa0x0, . . . , 1, . . . , ζ
amxm), ζ ∈ µai ,

then p(x) = p(y), and the existence of ϕ follows. Conversely, assume that
p(y) = p(x). Then we have in V, with some t ∈ Gm:

(v0, . . . , 1, . . . , vm) = (ta0u0, . . . , t
ai , . . . , tamum)

This implies that t ∈ µai , hence, p factors modulo µai , and ϕ is injective.
3. Let

Wi = {x = (x0 : . . . : ξi : . . . : xn) ∈ P(a0, . . . , 1, . . . , am) | ξi 6= 0}
and consider the morphisms

m : Wi Ui

given by

m(x0 : . . . : ξi : . . . : xm) = (x0 : . . . : ξaii : . . . : xm)

and
ψ0 : Wi Am{i}/µai

given by
ψ0(x0 : . . . : ξi : . . . : xm) = (

x0

ξa0i
, . . . , 1, . . . ,

xm
ξami

).

If m(x) = m(y), then ηi = tξi with t ∈ µai and ψ0(x) = ψ0(y). Hence, there
is a morphism

ψ : Ui Am{i}/µai
such that ψ0 = ψ ◦m:

Wi Am{i}/µai

Ui

ψ0

m ψ
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We have
ψ(x0 : . . . : 1 : . . . : xm) = (x0, . . . , 1, . . . , xm).

This implies ψ ◦ ϕ(x) = x if x ∈ Am{i}/µai , and ψ is surjective. On the other
hand, it is easy to see that ϕ◦ψ◦m(x) = m(x) if x ∈Wi, hence, ϕ◦ψ(x) = x
if x ∈ Ui, and ϕ is surjective.

4. The corresponding homomorphisms of algebras are respectively

m[ : S(i) = k[Ui] k[Wi]

given by

m[(f/Xn
i ) = f/Ξnai

i ,

for f homogeneous, n ≥ 0, a-deg f = nai, and

ψ[0 : k[Am{i}]
inv k[Wi]

given by

ψ[0(f) = f/Ξnai
i ,

for f ∈ R{i}, deg f = nai. Now the morphism

ψ[ : k[Am{i}]
inv k[Ui]

such that
ψ[(f) = f/Xn

i ,

for f ∈ k[Am{i}]
inv, deg f = nai, satisfies ψ[0 = m[ ◦ψ[, and we have a diagram

k[Wi] k[Am{i}]
inv

k[Ui]

ψ[
0

ψ[
m[

�

Remark A.7. Roughly speaking, we have

ψ(x0 : . . . : xi : . . . : xm) =

(
x0

x
a0/ai
i

, . . . , 1, . . . ,
xm

x
am/ai
i

)
.

This formula obviously makes sense if ai = 1 (see below).

From Proposition A.6 we get, see also [Ko, p. 81] and [Do1, Prop.
1.3.3(ii)]:

Corollary A.8. The space P(a) has cyclic quotient singularities.

Similarly, if k = R, the space P(a) is an orbifold (or V -variety) [Do1, Th.
3.1.6].
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A.7. A special case. The complement of the open set Ui is the hyperplane
Pi of P(a) with equation xi = 0. Then Pi is the weighted projective space
P(a′) of dimension m − 1, with a′ = (a0, . . . , âi, . . . , am), and we have the
standard “motivic” decomposition

(10) P(a) = Ui t Pi.
If we assume a = (a0, . . . , 1, . . . , am), with ai = 1, the set Ui is affine, since
k[Ui] = k[Y1, . . . , Ym], with

Y1 =
X0

Xa0
i

, . . . , Ym =
Xm

Xam
i

.

and Ui is isomorphic to Am. The morphism

ϕ : Am{i} Ui,
∼

is an isomorphism, with an inverse

ψ : Ui Am{i}
∼

given by
ψ(x0 : . . . : xi : . . . : xm) = (

x0

xa0i
, . . . , 1, . . . ,

xm
xami

).

Since Ui is isomorphic to Am, the space P(a) is a compactification of the
affine space Am.

A.8. Action of Gm. The action

σ : Gm × Am{i} Vi

is given by

σ(t).(x0, . . . , 1, . . . xm) = (ta0x0, . . . , t
ai , . . . , tamxm).

Let x = (x0, . . . , xm) and similarly for x′. If σ(t′).x′ = σ(t).x, then (t′)ai =
tai and t′ = ζ−1t with ζ ∈ µai . We thus have (x′0, . . . , x

′
m) = (ζa0x0, . . . , ζ

amxm)
and

σ(t′).x′ = σ(t).x ⇐⇒ t′ = ζ−1t and x′ = ζ.x, ζ ∈ µai .

Hence, the action σ factors through

(Gm × Am{i})/µai
with the action ζ.(t, x) = (ζ−1t, ζ.x). The canonical homomorphism

σ[ : k[Vi] k[Am{i}][T, T
−1]

is equal, for f a-homogeneous, to

σ[
(
f

Xn
i

)
= f(X0, . . . , 1, . . . , Xm) · T deg f−nai

which is injective, with image equal to k[Am{i}][T, T
−1]µai . Then:

Proposition A.9. The action σ induces isomorphisms

(Gm × Am{i})/µai Vi,
∼ k[Vi] k[Am{i}][T, T

−1]µai ,∼

and σ is an étale morphism.
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Proof. See [BR, Th. 2.6.c, p. 12]. �

Warning. These isomorphisms are not surjective on the sets of rational
points: think of the covering A1 → A1 given by z 7→ z2 !

Rationality

Let k be a field. A point y ∈ P(a) is rational if and only if p−1(y) is
invariant under the Galois group Γ = Gal(k̄/k). We denote as usual the
subset of rational points of P(a) by P(a)(k). The orbit of x = (x0, . . . , xm) ∈
V(k) with image p(x) = y is the rational curve

C(x) = p−1(y) = σ(k
×

).x =
{

(λa0x0, . . . , λ
amxm) | λ ∈ k×

}
⊂ V(k).

Lemma A.10. Let k be any field.
(1) Let x ∈ V. Then

p(x) ∈ P(a)(k) ⇐⇒ C(x) ∩ V(k) 6= ∅.
In other words, the map p : V(k) // P(a)(k) is surjective.

(2) The map p induces a bijection V(k)/R
∼ // P(a)(k) where R is the

equivalence relation whose classes are the subsets C(x) ∩ V(k).

Proof. It is sufficient to prove the first assertion. See [Pe, Lem. 6] and [Go,
Lemma 1.2]. �

Lemma A.11. Assume k = Fq. Recall that p is prime to all ai.
(1) If x ∈ V(k), then |C(x) ∩ V(Fq)| = σ(k×).x and

|C(x) ∩ V(Fq)| = q − 1.

(2) The map p induces a bijection

V(k)/σ(k×)
∼ // P(a)(k)

(3) We have

|P(a)(Fq)| = πm, with πm = |Pm(Fq)| =
qm+1 − 1

q − 1
.

Proof. (1) : See Goto [Go, Prop. 1.3] and Perret [Pe, Lem. 7]. Then (2)
follows from (1) and Lemma A.10(2), whereas (3) follows from (2). �

Corollary A.12. Let X be a hypersurface in a weighted projective space of
dimension m over Fq. Write |X(Fq)| for the number of Fq-rational points
on X and |(ConeX)(Fq)| for the number of affine solutions for the defining
equation of X in Am+1. Then

|(ConeX)(Fq)| = (q − 1)|X(Fq)|+ 1.

Proof. See [Go, Cor. 1.4]. �

If X is a hypersurface of degree d over Fq in Pm with m ≥ 1, then Serre’s
inequality is

|X(Fq)| ≤ dqm−1 + πm−2

(recall that πm−2 = 0), and hence,

|(ConeX)(Fq)| ≤ dqm − (d− 1)qm−1.
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The following result is a bit amazing:

Corollary A.13. Let Am{i} the affine hypersurface of V with equation Xi = 1,
and

p : Am{i} Am{i}/µai
the quotient map under the action of type

1

ai
(a0, . . . , âi, . . . , am).

Let Zi be the scheme Am{i}/µai . Then

|Zi(Fq)| = qm.

Proof. This is a consequence of (10) and of Lemma A.11(3). �

To be less amazed, observe that if q is odd and Z = A1/µ2, then |Z(Fq)| = q.

Weighted forms

A.9. Definition. Since the natural homomorphism π∗ defines an isomor-
phism

OP(a)(U)
∼−−−−→ π∗(OPm)G(U) = OPm(π−1(U))G,

for any open set U ⊂ P(a), we have a homomorphism of graded rings

π[ : k[X0, . . . , Xm] −−−−→ k[Xa0
0 , . . . , Xam

m ]

such that π[(Xi) = Xai
i . This leads to the isomorphism

S(a)
∼−−−−→ k[Xa0

0 , . . . , Xam
m ] = k[X0, . . . , Xm]G,

see [Do1, p. 37] and [Ho, Lemma 4.2.1].
Henceforth we write X = (X0, . . . , Xm) and denote by k[X] the algebra of

polynomials in (X0, . . . , Xm). A polynomial f ∈ k[X] is quasi-homogeneous
(or weighted homogeneous, or a weighted form) of a-degree d (or of degree d
w.r.t. a) if

f(λa0X0, . . . , λ
amXm) = λd(X0, . . . , Xm).

We denote by k[X]d the vector space of homogeneous polynomials of degree
d, and by ka[X]d the vector space of quasi-homogeneous polynomials of a-
degree d. Now

(11) f ∈ ka[X]d =⇒ π∗f ∈ k[X]d.

For a monomial m = Xr0
0 . . . Xrm

m , we have

m(λa0X0, . . . , λ
amXm) = λa0r0Xr0

0 . . . λamrmXrm
m

hence, m ∈ ka[X]d with

a0r0 + · · ·+ amrm = d,

and the dimension of ka[X0, . . . , Xm]d is equal to

{(r0, . . . , rm) ∈ Nm | a0r0 + · · ·+ amrm = d} .
This number can be calculated with the help of Ehrhart polynomials (see
[BD]).

Every f ∈ ka[X]d defines a hypersurface

Y = Yf = {(x0 : . . . : xm) ∈ P(a) | f(x0, . . . , xm) = 0} ,
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and we associate also to f the projective hypersurface of degree d:

X = Xf = {(x0 : . . . : xm) ∈ Pm | π∗f(x0, . . . , xm) = 0} ,
and the morphism π : Pm −→ P(a) induces a morphism

π : Xf −−−−→ Yf

providing a diagram

Xf
π //

p

""

Yf

Xf/G

∼
<<

and the morphism π enjoys the properties of Proposition A.2.

A.10. Weighted binary forms. Let a = (a0, a1) and assume a1 > 1. We
work with the weighted projective line P(a0, a1). It is known that P(a0, a1) '
P1, see [Do1, p. 38]. If P0 = (0 : 1) then P(a0, a1) = D0 ∪ {P0}.
Proposition A.14 (D’Alembert’s theorem for weighted binary forms). Let
a = (1, a1). Let f ∈ k[X0, X1] be a binary weighted form with weighted degree
d, where a1 | d. Then the finite set

Xf = {(x0, x1) ∈ P(1, a1) | f(x0, x1) = 0}
satisfies

|Xf | ≤
d

a1
.

Proof. Let a = (a0, a1), and assume a0a1 | d. We have

f(x0, x1) =
∑
r0,r1

cr0,r1x
r0
0 x

r1
1 (a0r0 + a1r1 = d)

and in decreasing powers of x1:

f(x0, x1) = c0,d/a1x
d/a1
1 + · · ·+ cr0,r1x

r0
0 x

r1
1 + · · ·+ cd/a0,0x

d/a0
0 .

Notice that a0 divides every index r1. If x0 = 0 the equation reduces to

c0,d/a1x
d/a1
1 = 0

and the equation has exactly one solution if c0,d/a1 = 0, namely P0, and none
otherwise. In D0, we have as well

f(x0, x1)

x
d/a0
0

= c0,d/a1

x
d/a1
1

x
d/a0
0

+ · · ·+ cr0,r1
xr11

x
a1r1/a0
0

+ · · ·+ cd/a0,0

= c0,d/a1

(
xa01

xa10

)d/a0a1
+ · · ·+ cr0,r1

(
xa01

xa10

)r1/a0
+ · · ·+ cd/a0,0 = f0(u),

with u = xa01 /x
a1
0 , and

f0(u) = c0,d/a1u
d/a0a1 + · · ·+ cr0,r1u

r1/a0 + · · ·+ cd/a0,0.
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This is a polynomial of degree ≤ d/a0a1 with strict inequality if c0,d/a1 = 0.
If a = (1, a1), the morphism ϕ : U0 → A1 given by

ϕ(x0 : x1) = u =
x1

xa10

is an isomorphism, with inverse morphism given by u 7→ (1 : u), and |Xf | ≤
d/a1. �

A.11. Weighted ternary forms. We are interested on weighted projective
plane curves in the weighted projective plane P(1, a1, a2), that is, m = 2 and
a = (1, a1, a2). We assume 1 < a1 < a2. Recall the notation: the morphism

ψ : U0
// A2

0

ψ(x0 : x1 : x2) = (1, y1, y2),

where
y1 =

x1

xa10

, y2 =
x2

xa20

,

corresponds to the morphism of algebras

ψ[ : k[X0, X1, X2] −−−−→ k[Y1, Y2]

where

Y1 =
X1

Xa1
0

, Y2 =
X2

Xa2
0

.

The morphism ψ is an isomorphism, with inverse ϕ : A2
0 → U0 given by

ψ(1, y1, y2) = (1 : y1 : y2).

The complement of U0 is the weighted projective line P(a1, a2), and P(1, a1, a2)
is a compactification of the affine plane.

Recall that Ore’s inequality (1922) for forms is the following : Let f be a
form in m+ 1 variables, of degree d, defined over Fq. Define

Xf = {x ∈ Pm | f(x) = 0} ,
and (Xf )aff = Xf ∩ U0. Then

|(Xf )aff(Fq)| ≤ dqn−1.

Proposition A.15. Let a = (1, a1, a2) and f ∈ k[X0, X1, X2] a ternary
weighted form with weighted degree d, where a1a2 | d. Define

Xf = {(x0, x1, x2) ∈ P(1, a1, a2) | f(x0, x1, x2) = 0} .
(1) Let (Xf )aff = Xf ∩ U0. Then

|(Xf )aff(Fq)| ≤
d

a1
q.

(Ore’s inequality for weighted ternary forms).
(2) We have

|Xf (Fq)| ≤
d

a1
q + 1.
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Proof. Proof of (1) : we write

f(X0, X1, X2) =
∑

ciX
pi
0 X

qi
1 X

ri
2 , pi + a1qi + a2ri = d.

The general term of f/Xd
0 is

Xpi
0 X

qi
1 X

ri
2

Xpi+a1qi+a2ri
0

=
Xqi

1

Xa1qi
0

· X
ri
2

Xa2ri
0

= Y qi
1 Y ri

2 .

If p1 = r1 = 0, then q1 = d/a2, if p2 = q2 = 0, then q2 = d/a2, and if
q0 = r0 = 0, then p0 = d. Hence,

f(X0, X1, X2) = c1X
d/a1
1 + c2X

d/a2
2 + · · ·+ c0X

d
0 ,

and

f(X0, X1, X2)

Xd
0

= c1Y
d/a1

1 + c2Y
d/a2

2 + · · ·+ Y qi
1 Y ri

2 + · · ·+ c0.

This is a bivariate polynomial of degree ≤ d/a1 in A2. we get the result
using usual Ore’s inequality. For a proof of (2), see Theorem 1.3 in the main
text. �
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