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Extending Removed Sets Revision to partially preordered belief bases

Mariette Sérayet *, Pierre Drap, Odile Papini

LSIS-CNRS 6168, Université de la Méditerranée, ESIL — Case 925, Avenue de Luminy, 13288 Marseille Cedex 9, France

Most of belief revision operations have been proposed for totally preordrered information.
However, in case of partial ignorance, pieces of information are partially preordered and
few effective approaches of revision have been proposed. The paper presents a new frame-
work for revising partially preordered information, called Partially Preordered Removed
Sets Revision (PPRSR). The notion of removed set, initially defined in the context of the
revision of non ordered or totally preordered information is extended to partial preorders.
The removed sets are efficiently computed thanks to a suitable encoding of the revision
problem into logic programming with answer set semantics. This framework captures
the possibilistic revision of partially preordered information and allows for implementing
it with ASP. Finally, it shows how PPRSR can be applied to a real application of the VENUS
european project.

1. Introduction

Belief revision has been extensively studied in the domain of knowledge representation for artificial intelligence, mainly
for totally preordered information. A characterization of belief revision has been provided by Alchourron, Gardenfors,
Makinson (AGM) with a set of postulates that any revision operation should satisfy [22]. Katsuno and Mendelzon (KM)
reformulated AGM’s postulates and provided a representation theorem that characterizes revision operations based on total
preorders [30]. Belief revision has been discussed within different frameworks (probabillity theory, Sphon’s conditional
functions, Grove’s system of spheres, ...) and several revision operations have been proposed like the possibilistic revision
[20,21] or adjustment revision [46], the linear-based revision [38], the natural revision [12], the lexicographic-based revi-
sion [1,37,34], the revision with memory [2,40], and more recently several works on iterared revision [10,28,11,19]. As
pointed out by Delgrande et al. [18], the different approaches proposed in the literature can be classified according to three
different points of view. Given a plausibility ordering on interpretations describing the background knowledge and a new
piece of information, belief revision as defeasible inference (BRDI) amounts to find the most plausible interpretation satis-
fying the input information, belief revision as incorporation of evidence (BRIE), amounts to change the plausibility ordering
in presence of a new piece of information and belief revision of background knowledge (BRBK) means revising the back-
ground knowledge by a generic information.

In order to provide effective revision operations, strategies have to be chosen. When a new piece of information is incon-
sistent with the initial beliefs, the revision problem is related to the problem of consistency restoration. This problem has
been addressed according to three main families of approaches: construction of preferred consistent (or maximal consistent)

* Corresponding author.
E-mail addresses: serayet@esil.univmed.fr (M. Sérayet), drap@esil.univmed.fr (P. Drap), papini@esil.univmed.fr (O. Papini).



subsets of formulae [42,1,15], forgetting some variables responsible of the inconsistency [36,33,9], inconsistency minimiza-
tion [41,14,25,48].

Some approaches have been implemented [47,17], among them, Removed Sets Revision which has been initially proposed
in [48] for revising a set of propositional formulae. Contrary to consistency maximization, this approach stems from remov-
ing a minimal number of formulae, called removed set, to restore consistency. The Removed Sets Revision (RSR) and then a
prioritized form of Removed Sets Revision, called Prioritized Removed Sets Revision (PRSR) [8] have been encoded into an-
swer set programming and allowed for solving a practical revision problem coming from a real application in the framework
of geographical information system.

However in some applications, an agent has not always a total preorder between situations at his disposal, but is only able
to define a partial preorder between situations, particularly in case of partial ignorance and incomplete information. In such
cases, an epistemic state can be represented by either a partial preorder on interpretations or a partially preordered belief base.

The revision of partially preordered information has been less investigated in the literature, however Lagrue and cowork-
ers [6] pointed out that the KM’s postulates are not appropriate for partial preorders and proposed a suitable definition of
faithful assignment, called P-faithful assignment, a new set of postulates and a representation theorem. Some revision oper-
ations initially defined for total preorders, such as revision with memory and possibilistic revision have been successfully
extended to partial preorders [4].

This paper proposes a new framework for revising partially preordered information and provides an efficient implemen-
tation thanks to answer set programming. The main contributions of this paper are the following:

o It extends the Removed Sets Revision to partially preordered information, called Partially Preordered Removed Sets Revi-
sion (PPRSR). The paper shows how the notion of removed set, roughly speaking, the subsets of formulae to remove to
restore consistency, initially defined in the context of non ordered [48] or totally ordered [8] information is extended
to the case of the revision of partially preordered information.

¢ It provides an implementation of PPRSR with ASP. The revision problem is translated into a logic program with answer set
semantics and a one-to-one correspondence between removed sets and preferred answer sets is shown. The computation
of answer sets is performed with any ASP solver.

o It shows that the possibilistic revision of partially preordered information can be captured within the PPRSR framework
allowing for an efficient implementation with ASP.

The rest of this paper is organized as follows. Section 2 fixes the notations and gives a refresher on the Removed Sets Revi-
sion (RSR), on answer set programming and on partial preorders. Section 3 presents the Partially Preordered Removed Set
Revision (PPRSR) and shows how it captures the possibilistic revision. Section 4 details the encoding of PPRSR into logic pro-
gramming with answer set semantics and the computation of answer sets thanks to ASP solvers. It then shows the one-to-
one correspondence between removed sets and preferred answer sets. Section 5 illustrates how PPRSR can be applied in the
context of the VENUS project before concluding.

2. Background and notations
2.1. Notations

In this paper we use propositional calculus, denoted by £, as knowledge representation language with usual connectives
-, A, V, —, <. Let X be a set of propositional formulae, we denote by Cons(X) the set of logical consequences of X. We denote
by W the set of interpretations of £» and by Mod(y/) the set of models of a formula v, that is Mod(y) = {®w € W, ® E ¥}

where F denotes the inference relation used for drawing conclusions.

2.2. Removed Sets Revision
We briefly recall the Removed Sets Revision approach. Removed Sets Revision [48] deals with the revision of a set of prop-
ositional formulae by a set of propositional formulae.! Let K and A be finite sets of clauses. Removed Sets Revision (RSR) focuses

on the minimal subsets of clauses to remove from K, called removed sets, in order to restore the consistency of K U A. More formally,

Definition 1. Let K and A be two consistent sets of clauses such that KU A is inconsistent. R a subset of clauses of K, is a
removed set of KU A iff

(i) (K\R) UA is consistent;
(ii) YR C K, if (K\R') UA is consistent then |R| < |R|*.

Let denote by R(K UA) the collection of removed sets of KU A, RSR is defined as follows:

! The initial approach considers propositional formulae in their equivalent conjunctive normal form (CNF).
2 |R| denotes the number of clauses of R.



Definition 2. Let K and A be two consistent sets of clauses,
KorsgA=ges \/ Cons((K\R) UA).

ReR(KUA)
According to a semantic point of view, |[NSk(w)| denotes the number of clauses of K falsified by an interpretation w and a
total preorder on interpretations is defined by:

Definition 3. w; < xw; iff NSk (w;)| < NSk (w;)].
Removed Sets Revision can be semantically defined by:

Definition 4. Let K and A be two consistent sets of clauses,

MOd(KORSRsemA) = mln(MOd(A) é,().
It minimizes the number of clauses falsified by the models of A and Mod(KogsgA) = Mod(Kogsg,,,A). In case of prioritized
belief bases, RSR has been extended to Prioritized Removed Sets Revision (PRSR) [8].

2.3. Partial preorders

A partial preorder, denoted by < on a set A is a reflexive and transitive binary relation. Let x and y be two members of A,
the equality is defined by x = y iff x < y and y < x. The corresponding strict partial preorder, denoted by ~, is such that,x <y
iff x <y holds but x = y does not hold. We denote by ~ the incomparability relation x ~ y iff x <y does not hold nor y < x. The
set of minimal elements of A with respect to <, denoted by Min(A, <), is defined as: Min(A,<)={x € A, Ay € Aty < x}.

An epistemic state allows for encoding the agent’s beliefs but also for encoding its relative confidence in alternative pos-
sible states of the world. Epistemic states can be represented by several means: preorders on interpretations [16,34], con-
ditionals [13,16], epistemic entrenchments [45,37], prioritized belief bases [2,3], ... When focusing on representations by
means of preorders, epistemic states are generally represented by total preorders on interpretations, however, as mentioned
in the introduction, in case of partial ignorance, the agent is unable to compare all situations between them and a partial
preorder seems to be more suitable to represent epistemic states.

Katsuno and Mendelzon [30] proposed a set of postulates and a representation theorem that characterize revision oper-
ations based on partial preorders. However, the proposed approach is not satisfactory since only one class of partial preor-
ders can be revised [6]. In particular, the concept of faithfull assignment defined in [30] is unable to represent all partial
preorders on interpretations. Let ¥ be an epistemic state represented by a partial preorder on interpretations, denoted by
=<y and let Bel( ) be its corresponding belief set. An alternative definition of faithfull assignment, called P-faithfull assign-
ment, is proposed in [6] as follows.

Definition 5. Let Bel(¥) = min(W, <y), <y is a P-faifhful assignment if

1. if w, w’FBel(¥) then w < w' does not hold,
2. if o' # Bel(P), then there exists w such that w=Bel(¥) and w < wo/,
3. if ¥ = & then <y ==X p.

Moreover, [6] gives a set of postulates an operation o has to satisfy and a representation theorem such that Mod(Bel( ¥
op)) = min(Mod(u), < ). An alternative syntactic but equivalent representation of an epistemic state, ¥ is a partially preor-
dered belief base, denoted by (£, < x), where X is a set of propositional formulae, and <y is a partial preorder on the formulae
of X. Several ways of defining a partial preorder on subsets of formulae belonging to X, called comparators, from a partial pre-
order on a set of formulae X have been proposed: inclusion-based [29], possibilistic [5], lexicographic [49] comparators. They
are such that the preferred formulae are kept in the belief base. In our approach, according to the Removed Sets strategy, we
adopt a dual point of view in the sense that we want to prefer the subsets of formulae to remove. For example, we rephrase the
possibilistic comparator (or weak comparator) used in [5], already defined in [35] and reused by Halpern [26] as follows. Y is
preferred to X if for each element of Y, there exists at least one element of X which is preferred to it, more formally:

Definition 6. Let <x be a partial preorderon X,Y C X and X C X.
Y is preferred to X, denoted by Y<, X iff V y € Y, 3x € X such that x < xy.

We now briefly recall the extension of the semantic possibilistic revision to partial preorders [4]. The semantics of pos-
sibilistic logic stems from the notion of possibility distribution [20], denoted by 7, which is a function from W, to [0,1]. (w)
evaluates to what extent w is compatible, or consistent with the available knowledge. () = 0 means that w is impossible,
while (@) = 1 means that w is totally possible. (') < n(w) means that w is more plausible than «'. A possibility distribu-
tion is said to be normalized or consistent if there exists an interpretation w such that w(w)=1.

An epistemic state ¥ is represented by (W, <y) where the partial preorder on interpretations < y is associated to a
possibility distribution as follows: Yo, € W, w=y@' iff n(w') < m(w). The possibilistic revision of ¥ by a propositional



formula u leads to the epistemic state ¥orpu, represented by (W, <y,.,) which considers all the counter-models of u as
impossible and preserves the relative ordering between the models of y. More formally,

Definition 7. ¥o,u corresponds to the following partial preorder:

1. if w, ' € Mod(u) then w=y,, ., iff ® < g,
2. if w, o' ¢ Mod(u) then w=y,,, @',
3. if w € Mod(p) and o' ¢ Mod(t) then w—<ypo, @',

2.4. Answer sets

A normal logic program is a set of rules of the form ¢ — ay,...,apnotby,...,not b, where c, a(1 <i<n), b1 <j<m)are
propositional atoms and the symbol not stands for negation as failure. For a rule r like above, we introduce head(r) = ¢ and
body(r)={a,...,anby,...,by,}. Furthermore, let body*(r)={ay,...,a,} denotes the set of positive body atoms and
body (r)={b1,.. ., b} the set of negative body atoms, and body(r) = body*(r) U body (r). Let r be a rule, r* denotes the rule
head(r) «— body*(r), obtained from r by deleting all negative body atoms in the body of r.

A set of atoms X is closed under a basic program P iff for any rule r € P, head(r) € X whenever body(r) C X. The smallest set
of atoms which is closed under a basic program P is denoted by CN(P). The reduct or Gelfond-Lifschitz transformation [24], P
of a program P relatively to a set X of atoms is defined by P* = {r*|r € Pandbody(r) n X = 0}. A set of atoms X is an answer set of
P iff CN(PX) = X.

3. Partially Preordered Removed Sets Revision (PPRSR)

Let ¥ be an epistemic state for partially preordered information and Bel( ) its corresponding belief set. ¥ can be inter-
preted according either a syntactic or a semantic point of view. ¥ is syntactically represented by (X, < =) where X is a finite
set of arbitrary formulae and < x is a partial preorder on X. Moreover, ¥ can also be semantically represented as a partial
preorder on interpretations such that the models of Bel(¥) are minimal with respect to this partial preorder.

3.1. The PPRSR framework

Revising partially preordered belief bases involves the definition of a partial preorder on subsets of formulae, called com-
parators [5,49]. We first present a general framework, Partially Preordered Removed Sets Revision (PPRSR) without specify-
ing a particular comparator. We start with the syntactic approach then with the semantic one for revising an epistemic state
¥ by a formula z.

PPRSR Syntactic Approach. The original Removed Sets Revision was proposed for revising belief bases consisting of prop-
ositional formulae in conjunctive normal form, we now extend Removed Sets Revision to arbitrary formulae. Obviously, the
Removed Sets Revision of arbitrary formulae does not lead to the same results than the Removed Sets Revision of formulae in
CNF. However, only considering formulae in CNF, we loose the syntactic structure of the initial beliefs. Moreover, in some
applications, it does not make sense to only remove part of formulae to restore consistency. In [32] the approach concen-
trated to the construction of maximal consistent subbases from the initial belief base while our strategy is to focus on subsets
of formulae to remove to restore consistency. More precisely, our strategy is to determine the preferred subsets (with respect
to the initial preorder on formulae) to remove, called removed sets.

According to the syntactic point of view, the revision of the epistemic state ¥ by a formula u leads to an epistemic state
denoted by Yo pt and represented by a new partially preordered belief base (2o i, <x.. ) Where the partial preorder
Ssou 1S such that u is preferred to any formula of X and the relative ordering between the formulae of X is preserved. More
formally,

Definition 8. Let (%, <x) be a syntactic representation of ¥, the revision of ¥ by a formula u leads to the revised epistemic
state denoted by ¥o4 u represented by a partially preordered belief base (Zoﬂuu, 520550 where

o Soo it =2 U{u},
o j)}mcu : (I)Vlﬁ S Zyﬂ*ZOSC;Lw and (ii)Vlﬁ, d) S 27 !ﬁjzmcyfﬁ iff w j b ¢

Since U {u} may be inconsistent, we have to provide the consistent belief set, denoted by Bel(¥o..t), corresponding to
the revised epistemic state. In order to syntactically compute Bel(¥o._ ) we focus on the preferred subsets of formulae, with
respect to the initial partial preorder, to remove from X, in order to restore consistency. We first define the potential re-
moved sets as follows:

Definition 9. Let (X, < x) be a syntactic representation of ¥. Let i be a formula such that X U {u} is inconsistent. R, a subset
of formulae of %, is a potential removed set of £ U {u} iff (X\R) U {u} is consistent.



a aV-b
! l
b —-avb

Fig. 1. Partial preorder on formulae of X.

Example 1. Let X = {a,b,a Vv —b,~a Vv b} and <5 be a given partial preorder illustrated by Fig. 1 where b «— a means that
b <xa. We revise £ by u=-av -b. £ U{u} is inconsistent. The potential removed sets are Ry = {a,aV -b}, Ry = {a,av
-b,-aVvb}, R, ={a,b,av-b}, Ry={a,b,av-b,~av b}, Ry={b,~aVvb}, Rs ={b,av-b,-~aVvb}, Re={a,b,—avb}, R, ={a,b}.

Let R(X U {u}) be the set of potential removed sets. Among them, we want to prefer the potential removed sets which
allow us to remove the formulae that are not preferred according to <x. This leads to define a partial preorder on subsets
of formulae of X, called comparator [5,49], denoted by <. We now generalize the notion of removed sets to subsets of par-
tially preordered formulae. We denote by R¢(Z U {u}) the set of removed sets of X U {u}.

Definition 10. Let (X, <y) be a syntactic representation of . Let u be a formula such that £ u {u} is inconsistent. R C X is a
removed set of X U {u} iff

1. R is a potential removed set.
2. AR € R(Zu{u}) such that R C R.
3. AR € R(Zu{u}) such that R<R.

Example 2. In the examples, we will use the weak comparator, denoted by <,, and defined in Section 2.3. We have Ry<,, R,
because a < sa and —a v b=<sa Vv —-b. The partial preorder on the potential removed sets is illustrated in Fig. 2.

Remark. We could refine the notion of removed set with an extra preference according to a strategy P (cardinality or mini-
mality). Rcp(X U {u}) denotes the set of removed sets of X U {u} according to the strategy P. In this case, a preferred removed
set according to a strategy P is a removed set R such that AR € Rc(Z U {u}) such that R’ < pR. According to the cardinality,
Ry < carpRx iff |Ry] < |Rx| with |X| the cardinality of the set X. According to the minimality, Ry < ynRx iff
[Ry N MIN| < |Rx N MIN| with MIN = {x|x € 2, Ay € 2,y < =X}.

Example 3. We can apply strategies: Ry carp(Z U {1t}) = {Ro,R7} and Ry an(Z U {t1}) = {Ro}.
Stemming from the above notion of removed set, the belief set corresponding to the revised epistemic state, denoted by
Bel(¥ o4 1), is defined as follows:

Definition 11. Let (%, <x) be the syntactic representation of ¥ and let i be a formula, the belief set corresponding to the
revised epistemic state Woq i is Bel(¥oq. ft) = \pep iy CONS((Z\ R) U {u}).

Example 4. According to the Example 1, ¥ is syntactically represented by (X, <x) and revising by u using the weak com-
parator gives:

Yog 1= {a,b,av-b,—~avb,~av -b},
Bel(Wogy, ut) = Cons({b,—a Vv b,-a Vv -b}) v Cons({aVv —-b,-a Vv b,-av -b}) and =s., , as shown by Fig. 3.

R3 =y Ry =w B5 = R
N\
R: Rz

b el
Ry Ry

Fig. 2. Partial preorder on the potential removed sets.

a aV-b
l l
b -avb

N/

—a 'V —b

Fig' 3. ﬁZoqw g



PPRSR semantic approach According to a semantic point of view, the epistemic state ¥ can be equivalently represented by
a partial preorder on interpretations such that Mod(Bel( %)) is minimal in this preorder. We now construct a partial preorder
on interpretations applying the comparator to the set of formulae of X falsified by the interpretations. Let @ be an interpre-
tation, Fx(w) denotes the set of formulae of X falsified by w. More formally,

Definition 12. Let ¥ be an epistemic state syntactically represented by (=, <x), the partial preorder <, on interpretations is
such that:

Yo, @ eW, o=$0 iff Fs(w)IcFs(o).

Using this definition, the semantic representation of ¥ is (W, <$) and is such that Mod(Bel(¥)) = min(W, <§,). We are
now able to define the semantic counterpart of PPRSR as follows:

Definition 13. Let (W, <{,) be a semantic representation of ¥, the revision of ¥ by a formula u leads to the semantically
revised epistemic state ¥oqen it such that

Mod (Bel(%ﬂéem,u» = min(Mod(p), <%).

The revised epistemic state is semantically represented by <W, jf,,oqm u>' where < is a new partial preorder on
-C

Wo_sem
-C

interpretations, as illustrated in Fig. 4a). This partial preorder is defined from the sets of formulas belonging to X U {u} fal-
sified by the interpretations. More formally:

Definition 14. Let ( Zoq.u, <x.. . ) be the representation of the syntactically revised epistemic state. The partial preorder on

. . P ;
interpretations j%ﬂsgmﬂ is such that

Yo, o e W, =

%ﬂsgm#a)’ lff onqcu(w)ﬁcl:zoﬁcﬂ(w,).

PPRSR agrees with the notion of P-faithful assignment and the following proposition holds.

Proposition 1. Let ¥ be an epistemic state and <$, be a partial preorder on W associated to ¥. Then, < is a P-faithful
assignment.
The proof of the Proposition 1 (provided in Appendix A) follows from the construction of partial preorder <.
According to the Proposition 1, the revision operation o™ satisfies the postulates P; — P; proposed in [6] that extend the
KM-postulates to the revision of partially preordered belief bases.

3.2. PPRSR in the case of the weak comparator

We now focus on the weak comparator <,, defined in Section 2.3. We show that the semantic counterpart captures the
extension of possibilistic revision to partial preorders. Moreover, we refine the semantic counterpart given in Definition 13,
in order to provide an equivalence between the PPRSR syntactic and semantic approaches.

When we select the weak comparator the PPRSR framework can capture the possibilistic revision, illustrated in Fig. 4b,
recalled in Section 2.3 and the following proposition holds.

Proposition 2. Let o be the possibilistic revision operator.

Yo, o' e W, o=y, " iff W=y 0.

Woﬂswimﬂ
T v
(Z,%x) W, <§) (Z,%5) W, =¥)
Odch =W Onfl

(E Odeo My ﬁZDﬂCp.) -~ (W: ﬁgo‘_j&emy) (E o4, U, 5509..,»“) -~ (Wr j‘lﬁoslguem,u)

(a) (b)

Fig. 4. The syntactic and semantic representation of the revised epistemic state.



Table 1
The sets of formulae falsified by the interpretations.

w; a b Fs(ay) Fyo., (@)
o -a -b {a,b} {a,b}
(o) -a b {a,a Vv -b} {a,av -b}
> a -b {b,—aV b} {b,-avV b}
w3 a b 0 {—a v -b}
w9 w3 w3
v N 4 L
Wo w1 w2 w2
N e "4 N "4 N
Wws Wo w1 Wo W
w w
(@ =y (b) SWogsemp (€) 2wo,u

Fig. 5. Partial preorders between interpretations.

Example 5. Let (%, <x) be the syntactic representation of ¥ from the Example 1 with X = {a,b,a Vv —b,-a v b}. Using the
Definition 12 with the weak comparator, we construct a partial preorder on interpretations. The sets of formulae of X fal-
sified by the interpretations is illustrated in Table 1 and the partial preorder <Y is given by the Fig. 5a. Therefore (W, <¥)
is the semantic representation of ¥ and is such that Mod(Bel(¥)) = min(W, <) = {ws}.

Let (Zoq, 1, =5.., u) e the syntactic representation of the epistemic state ¥ revised by p. Using the Definition 12 with the
weak comparator, we construct a new partial preorder on the interpretations. The sets of formulae of o u falsified by the

interpretations are illustrated in Table 1 and the partial preorder <y._, is given by the Fig. 5b. Therefore (W, <Y ) is

<sem Wo_gsem
the semantic representation of ¥ revised by p and with the Proposition 3 is such that Mod(Bel(Woq, 1)) =
min(Mod(u), <) = {wo, w1}.

If we apply, the semantic possibilistic revision of (W, <) by u which preserves the relative ordering between the models
of 1 and considers all the counter-models of x4 as impossible, we obtain the partial preorder <y, illustrated in Fig. 5c.

Therefore (W, <w > = (W, 2o p)-

—Wo_sem 1
“w

As illustrated in the following example, the semantic counterpart defined in the general case does not provide the equiv-
alence between syntactic and semantic approaches.

Example 6. We consider the following counter-example. Let @ be an epistemic state and (I, <) be the syntactic
representation of @ such that I' = {a, b, ~c} and =< is illustrated by the Fig. 6a. We revise I" by yt=a — b A c. We obtain the
following syntactic representation of the revised epistemic state: I'og, it = {a,b,—c,a — b Ac} and =r._ , is illustrated by
the Fig. 6b.

From a syntactic point of view, we obtain two removed sets Ry = {a} and R; = {—c} and the belief set corresponding to the
revised epistemic state is Bel(®oq, i) = Cons({b,—~c,a — b A c})\/ Cons({a,b,a — b A c}). From a semantic point of view, the

b
b v N
/ % —C a
C a L
a—bAc
(a) j]:‘ (b) jl"ogwu

Fig. 6. Partial preorder on formulae.



Table 2
The sets of formulae falsified by the interpretations.

; a b c Fr{w;) Fro.,, 1(w;)
wo —-a -b —C {a,b} {a,b}
[oN -a -b c {a,b,—c} {a,b,~c}
Jon -a b ~C {a} {a}
w3 -a b c a,—c a,—C
[N a -b - {b} {ba - bnc}
ws a -b c {b,~c} {b,~c,a— bAc}
[ a b -c 0 a—-bAc
w7 a b c {~c} {—c}
—w —w
wq =$ w3 Wq _(POSfuemM ws _(Doﬂffm“ We
o e g i
—w
wo =g W2 w5 =g wr Wi =Foggemp W3
\ / L - ~ .
—w Fl
L‘{'Il wU —@Dsguzm'u w2 UJ?
We
w
(a) j%’ (b) j@cg&emp

Fig. 7. Partial preorders between interpretations.

sets of formulae falsified by the interpretations are illustrated in Table 2. We construct the partial preorder <Y according to

the Definition 12 and the partial preorder =&o_semp According to Definition 14 as it is illustrated in Fig. 7.
From the partial preorder <7, , and from the Definition 13, we have Mod(Bel(®o«n 1)) = {wo, 2, w7}. But the models

of Bel(®oq4, 1t) are m, and w7. So, the syntactic and the semantic approaches are not equivalent.

In order to obtain the equivalence between syntactic and semantic approaches, we refine the semantic counterpart. When
defining the removed sets within the syntactic approach, we consider minimal (with respect to inclusion) subsets of formu-
lae, this minimality has to be taken into account in the semantic approach too.

Definition 15. Let (W, <¥) be a semantic representation of ¥, the revision of ¥ by a formula p leads to the semantically
revised epistemic state ¥oen it such that
Mod(Bel(¥Wogsem 1)) = {w|w € min(Mod(p), <y) and Aw',Fs., (@) C Fso, u(®)}.
The equivalence between the semantic and the syntactic PPRSR is given by the following proposition.

Proposition 3. Let Yo, 1t be the syntactically revised epistemic state by a formula p and let o .en pt be the semantically revised
epistemic state by a formula p.

Mod(Bel(¥ou, 1t)) = Mod(Bel(Wosn pt)).
Sketch of proof of Proposition 3 (provided in Appendix A): follows from the definition of Mod(Bel(¥ossen 1t)).

Example 7. We first consider the Exemple 1, in this context, we have Mod(Bel(¥o<, 1)) = {wo, @1} and Mod(Bel(¥ogen 1)) =
{wo, w1}. The Definition 15 has no effect on Mod(Bel(¥o 4. ft)) because the sets of formulae of = U {u} falsified by wg and w4
are minimal with respect to inclusion.

We now consider the Exemple 6, we have Mod(Bel(®ox, ) = {w2, @7} and Mod(Bel(Pown 1)) = {@p, 2, w7}. If we
apply the Definition 15, Mod(Bel(®oqsm 1)) = {3, @7} because Fr., ,(®2) C Fro_, u(wo). We have Mod(Bel(®oq, 1t)) = Mod
(Bel(®on 1)).

4. Encoding PPRSR in answer set programming

As mentioned in the previous section, the original RSR approach was proposed for revising belief bases consisting of for-
mulas in CNF. RSR was formalized in terms of answer set programming by the construction of a logic program with the same



spirit of [39] and the smodels system [44] was adapted in order to compute the preferred answer sets corresponding to the
removed sets [8]. More recently, the extension of RSR to fusion, Removed Sets Fusion (RSF) has been proposed for merging
belief bases consisting of arbitrary propositional formulae, and a suitable encoding in answer programming enables the
computation of removed sets with any ASP solver equipped with the minimize statement [27]. We now extend this method
to the revision of partially preordered information.

We first translate our revision problem into a logic program with answer sets semantics, denoted by ITs ). The set of
answer sets is denoted by S(ITs,,;). We then define a partial preorder between answer sets of Ilx g, and we show a
one-to-one correspondence between removed sets of X U {u} and preferred answer sets of ITx .

Let X be a set of partially preordered formulae and u a formula such that £ U {u} is inconsistent. The set of all positive
literals of ITx (. is denoted by V" and the set of all negative literals of ITx,,; is denoted by V~. The set of all rule atoms rep-
resenting formulae is defined by R = {r{f € X} and Fy(ry) represents the formula of X corresponding to ryin ITx,;, namely
Vrr€ R*, Fo(ry) = f. This translation requires the introduction of intermediary atoms representing subformulae of f. We denote
by p’f the intermediary atom representing f which is a subformula of f € =. To each answer set S of MMxyqy), an interpretation
of X u {u} is associated. Each interpretation of ¥ U {u} corresponds to several potential removed sets denoted by Fo(R" N'S).

1. In the first step, we introduce rules in order to build a one-to-one correspondence between answer sets of ITx,; and
interpretations of V*. For each atom, a € V* two rules are introduced: a « not @’ and a’ — not a where a’' € V™ is the neg-
ative atom corresponding to a.

2. In the second step, we introduce rules in order to exclude the answer sets S corresponding to interpretations which are
not models of (X\F) U {u} with F={f]ry € S}. According to the syntax of f, the following rules are introduced:

e If f=gea, the rule ry— not a is introduced;

o If f=us—f", the rule ry — notp;: is introduced;

o Iff=gof' V.-V f", the rule ry — pp, ..., ppm is introduced;

o If f=g4f" A---Af™, it is though necessary to introduce several rules to the program. These rules are introduced:
V1 <j<mrp— pg.

3. The third step rules out answer sets of I, which correspond to interpretations which are not models of p. According

to the syntax of g, the following rules are introduced:

e If u =4, the rule false — not a is introduced;

o If p=4er—f", the rule false — notp; is introduced;

o Ifu= dejfl v---v f™ the rule false — Ppis-- -5 P 1s introduced;

o If u=gef' A---A S, the rules V1 <j < m, false — Py are introduced.

In order to rule out false from the models of y, the following rule is introduced: contradiction — faslse, not contradiction.

Example 8. For the previous example, the logic program Ils, g, is the following:

a«—notd b — not b’ e < not a Tav-b “— Pas Pop
ad—nota b —notb ry,—notb 1.y Pas Py
p,<—nota p, a py,—notb p, b

false — p_,.p_, contradiction < false, not contradiction

If f = —a v b belongs to a removed set, then r_,,;, should belong to an answer set. f has to be falsified and so —f, i.e. a A b, has
to be satisfied that is why the rules r_qyp < p_q, P, P-a=— @ and pj, < not b are introduced to Iy,

From the logic program, we show how we obtain a one-to-one correspondence between the preferred answer sets of
Iz g and the removed sets of = U {u). Let S be a set of atoms, we define the interpretation over the atoms of SN V* as
Is = {ala € S} U {—ala’ € S} and the following result holds.

Proposition 4. Let p a rule atom or an intermediary atom.

pe cw(n;um) iff I94Fo(p).

The correspondence between answer sets of ITx, ) and interpretations of (X\Fo(R* N S)) U {u} is given in the following
proposition:

Proposition 5. Let X be a set of partially preordered formulae. Let S C V be a set of atoms. S is an answer set of Ils iff S
corresponds to an interpretation Is of V* which satisfies (X\Fo(R* N S)) U {1}.

The proofs of the Propositions 4 and 5 (provided in Appendix A) are both based on the rules construction.

Example 9. The answer sets of IIx ) are: So = {a’,b,1q vV =b,14},S1 = {a,b',r oV b,ry} and S, = {a',b', 14, 1p}.

In order to compute the answer sets corresponding to the removed sets, we introduce new preference relations between
answer sets according to a partial preorder. We define the notion of preferred answer sets of Ilx ) according to the weak
comparator denoted by Sy (ITsyg.)-



Definition 16. Let <x be a partial preorder on X,u be a formula such that X U {u} is inconsistent, S e S(ITsygy). S is a
preferred answer set of ITx iff

e 35S € S(IIxyyy) such that Fo(S' NR") C Fo(SNRY),
o 35 € S(ITsy,y) such that Fo(S' N R )<awFo(S N RY).

Example 10. We have FO(SO n R+)<1WF0(51 N R+) and FO(SZ n R+)<WF0(S1 N R+) So, SW(HZU{,U}) = {50,52}.

Remark. As previously, it is possible to refine the notion of preferred answer set with an extra preference according to a
strategy P. Let Sy, Sy € Suw(IIxyy)-Sy is preferred to Sx according to CARD (resp. MIN) iff [Fo(Sy N R")| < [Fo(SxNR")| (resp.
|[Fo(Sy " R™) N MIN| < |Fo(Sx N R*) N MIN)).

Example 11. We have S is as preferred as S, according to CARD and S, is preferred to S, according to MIN.
The one-to-one correspondence between preferred answer sets of ITx () and the removed sets is given by the following
proposition:

Proposition 6. Let X be a finite set of partially preordered formulae and p be a formula such that X U {u} is inconsistent. X is a
removed set of = U {1} iff there exists a preferred answer set S of Ilx such that Fo(R*NS)=X.

Sketch of the proof of the Proposition 6 (provided in Appendix A): we show that the set of removed sets of X U {} equals
the set of preferred answer sets of IIx .

Example 12. We have Fo(So NR*) = {a,a v -b} and Fo(S; N R") = {a,b} which correspond to the removed sets Ry and R; found
in the previous section.

Performing PPRSR The theoretical computational complexity of the decision problem “is the formula phi a weak con-
sequence of ¥ o,u ? " is not already known, however a lower bound A} and an upper bound IT5 have been provided
in [7]. However, some applications, as illustrated in the following section, require the revision of partially preordered
belief bases. We choose the removed set approach rather than the dual one based on preferred maximal consistent
subbases because the removed set approach allows for an efficient implementation with ASP. Within the framework
of the VENUS project, we conducted an experimental study on an inconsistency handling method stemming from re-
moved sets for partially preordered archaeological information and we obtained interesting results. The practical com-
plexity was reasonable, and therefore encouraged us to investigate further in this direction, as well as to test on
revision problem.

Regarding the implementation, CLASP [23] gives us the answer sets of Ils ;. But our method requires to partially
preorder the answer sets with the comparator <,, to obtain the preferred answer sets corresponding to removed sets.
This step is not yet implemented in ASP. We used a java program to partially preorder the answer sets to obtain the
preferred answer sets. We denote by N the number of answer sets given by CLASP. The computation of the partial pre-
order between them can be realized in less than w comparisons. Indeed, as it showed in [32], it is sufficient to com-
pare the minimal formulae according to <sx of each answer set and so using the following proposition, we reduce the
cost of the computation

Proposition 7. Let <s be a partial preorder on X, u be a formula such that X u{u} is inconsistent and S, S’ € S(Tls )
Fo(SNRY)<,Fo(S' NR*) iff Yy € Min(Fo(SNR"), < 5),3x € Min(Fo(S' NR*), < 5) such that x < sy where Min(Fo(SNR*), <5)=
{X|x € Fo(SNR*), By € Fo(SNR"), y < =x}.

Moreover, the determination of the minimal answer sets according to this partial preorder does not increase the compu-
tational cost since CLASP and SAT both belong to the NP-complete complexity class.

5. VENUS application

The european VENUS project (Virtual ExploratioN of Underwater Sites) no (IST-034924)* aims at providing scientific meth-
odologies and technological tools for the virtual exploration of deep underwater archaeology sites. In this context, technologies
like photogrammetry are used for data acquisition and the knowledge about the studied objects is provided by both archaeology
and photogrammetry. We constructed an application ontology in [43] from a domain ontology which describes the vocabulary
on the amphorae (the studied artefacts) and from a task ontology describing the data acquisition process (Fig. 8). This ontology
consists of a set of concepts, relations, attributes and constraints like domain constraints: an amphora must have only one typol-
ogy and for example, this typology is either short Dressel 2-4 or long Dressel 2-4. Our knowledge base contains our ontology and

3 http://www.venus-project.eu.
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Fig. 8. Application ontology constructed in the context of the european VENUS project.
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Fig. 9. Extract of the application ontology.

observations. The ontology represents the generic knowledge which is preferred to observations. The observations on the same
amphora can be preordered according to the reliability of the experts who provide them. In this context, we revise the obser-
vations by more reliable observations. We only consider a small part of the ontology (Fig. 9) and some observations in order to
provide a very simple example where the knowledge base is expressed in propositional logic.

We use the following propositional variables: m; for the measurable item, ar; for the archaeological item, g; for the am-
phora item, a for the amphora, my, m, for the metrologies, ds for the short Dressel 2-4 typology, d, for the long Dressel 2-4
typology, hm, , hi, for has_metrology, hy, h;, for the total heights, I, I, for the total lengths. The propositional translation of the
extract of the ontology can be resumed by the set of formulae:

G= {a — a; N\ (ds\/dl), a; — ary, ary — m;, m; — hm1 \/hm27 hm] — My, hmz — My, My — l] /\h]7 m; — lz /\hz,
(ds \Y dl) A (—\ds \Y —\dl)}.
Then we have two sets of observations provided by two different experts. The observations of the first expert {a,ds,l;,h;} lead
to the instance denoted by
Il = {a7 a;, ar;, d57 my, m, h’m]7 ll» hl}
and the observations of the second one is {a,d, 5, h,} lead to the instance denoted by:
IZ = {a7 a;, ar;, dla mp, m, hmp lZ» hZ}

By hypothesis, the ontology and the constraints which are also called the generic knowledge cannot be modified. Moreover,
we consider that the second expert is more reliable than the first one. We revised the first observations X = I;\(I; N ) by

11
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Fig. 10. =5, u.

M = G U I, where G is the generic knowledge and I, is the second set of observations and the revised preorder is represented
by Fig. 10 and we obtain Yo, M = Cons((X \ RuU M) with R = {d,}.

The revision presented in the Section 3 is the first step of the revision to apply in the VENUS context. Indeed, the revision
could be defined as follows:

o Zoo M = Vg, iz CONS((E\ R) UM) with =1, \(I nI,) and M=G U L.
® ZTogM:
(i) Y, € M,y=<so, Mo iff W < mb,
(ii) Vi, ¢ € Z,Y=<so, m¢ Iff Y < 54,
(iii) V¢ € X, u € M, U=so. mip.

6. Conclusion

This paper presents a new framework for revising partially preordered information called Partially Preordered Re-
moved Sets Revision (PPRSR) which extends the Removed Sets approach to partial preorders. The paper shows that PPRSR
can be successfully encoded into answer set programming and proposes an implementation stemming from ASP solvers.
It shows that the extension of the possibilistic revision to partial preorders can be captured within the PPRSR framework
allowing for an efficient implementation with ASP. It illustrates how PPRSR can be applied within the context of the VE-
NUS european project dealing with archaeological information. An experimental study has now to be conducted in the
context of the VENUS project in order to provide a more accurate evaluation of the performance of PPRSR. We have to
deeper investigate the use of ASP solver statements in order to directly define a partial preorder between answer sets.
A future work will investigate the use of the lexicographic comparator for defining revision operations within the frame-
work of PPRSR.
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Appendix A. proofs

Proposition 1. Let ¥ be an epistemic state and <, be a partial preorder on W associated to W. Then, <$, is a P-faithful
assignment.

Proof. Let X be a set of formulae. The preorder on the interpretations is defined as follows: Vo, @' € W, w=<¢ o' iff Fs(w)
<cFs(@'). We want to show that <§ is a P-faithful assignment.

1. We show that if @, @' € Mod(Bel( %)) then w<$®' is impossible.
Let w, @' € Mod(Bel(?)), then Fx(w) =) and Fx(®') = 0. So, we have Fx(®) = ¢ Fx(®') and w=%®'.

2. We show that if «’ # Bel(¥), then there exists € W such that wF Bel(¥) and w=<§w'.
Let o' ¥ Bel(¥) then Fx(w') # (. We show that there exists w such that wFBel(¥) and w<§w'.
¥ is an epistemic state, represented by (X, <x). So there exists w such that wkBel(¥) and Fx(w) = (. We have Fs(w') # ()
and Fs(w) =0, so Fs(w)<¢ Fs(w'). Therefore, w<$@'.

3. We show that if ¥ = @ then <§ = <§.
Let ¥ be an epistemic state and let <§ be the associated partial preorder on the interpretations. If ¥ =@ then
<G == O

Proposition 2. Let o, be the possibilistic revision operator.

Yo, e W, o=y, o' Iff W=y, @'

quf;m,u
Proof (Possibilistic equivalence). We can distinguish three cases:

1. We want to show that:
Ifo € Mod(p) and ' € Mod(p) then w=y, o iff o<y’

We have:

wjgoﬂ‘%m‘uw/ iff onqwﬂ(a)) S‘szchu(w’)

iff V¢ € Fs.o, n(®), 3¢ € Fs., (') such that ¢p=s.,, ¢

Since w € Mod(u) and o’ € Mod(u) therefore ¢ Fs,,, (@) et p ¢ Fxo, (@)
According to the Definition 8 of oo, , Vi, ¢ € Z: =5, ¢ iff Y <50
Thus:

Oy @ Uf Y € Fro, (), 3¢ € Fr.., () such that ¢p=x¢.
Since Yoo, u =2 U {u}:

=Yy " iff V¢ € Fyypy (@), 3¢ € Fyygy (') such that ¢p=z¢.

— Yo _sem it
Tw

Moreover, since w e Mod(u) and ' € Mod(u) thus u¢ Fsy(w) and u¢ Fsyy(@'). Therefore Fsyqpy(w)=Fs(w) and
Feygy(@') = Fs(a).
D=, @ Iff V¢ € Fx(w), 3¢ € Fx(') such that ¢p=s¢
iff FE(CO)SIWFz(CU/)
iff =<y’
2. We want to show that:
If w¢ Mod(u) and @' ¢ Mod(u) then w:Y’V"’ﬂism”w/'
We have w ¢ Mod(u) and ' ¢ Mod(u) then o and o falsify the formula w so u € Fs._, (@) and p € Fso_ (@),
According to the definition of the partial preorder <s._ ,, we have:
V¢ € Frou,u(®), 3¢ € Fxo,, p(e) (in this case p) such that ¢ =<y, x¢ and thus 0=y, @' By symmetry, we have o'<y, o
therefore w=Y, @' " "

3. We want to show that:
Ifw € Mod(p) and ' ¢ Mod(u) then w=<Y, '

— lpoqsem 1 :
“w

13



We have w € Mod(u) and ' ¢ Mod() then e does not falsify the formula ¢ and o falsifies the formula p thus i ¢ Fx,_ (@)
and p e Fs,, u(@).
We have: V¢ € Fs._, (), 3¢ € Fx.,, (') (in this case u) such that ¢~<s._ ¢ and so w=Yy w. O

Wo_sem [
<sem |

Proposition 3. Let Yo, 1 be the syntactically revised epistemic state by a formula p and let Woqem u be the semantically revised
epistemic state by a formula p.

Mod(Bel(¥o, 1)) = Mod(Bel(¥osn i1)).

Proof. We want to show that Mod(Bel(o., 1)) = Mod(Bel(¥ousm 1)), according to the Definition 15, Mod(Bel(Wogsem 1)) =
{w|w € min(Mod(w), <%) and Aw',Fs. (') C Fso, u(w)}. We show that

Mod(Bel(¥oq, 1t)) = {w|w € min(Mod(u), <) and 3@, Fz,., (@) C Fyo,,u(w)}.

1. We show that:
Mod(Bel(¥oq, 1t)) C {w|w € min(Mod(p), <) and A, Fx,., (') C Fso,, u(@)}.

VY € Mod(Bel(Wo., 1)), there exists at least one removed set Re R,(ZU{u}) such that w e Mod((Z\R)U {u}).
Let Fs(w) be the set of formulae falsified by w. Since w € Mod((Z\R) U{u}) thus w does not falsify the formulae
from (X\R) U {u} but o falsifies the formulae belonging to the removed set R. Therefore Fsx(w)=R. We want to show
that:

(a) w € min(Mod(u), <%). Suppose w ¢ min(Mod(u), <%) there exists @’ € Mod(u) such that @’<Y®. By Definition 12,
w'<%o iff Fs(w') <wFs(w). However Fs(w) =R thus Fs(w')<,R which contradicts the fact that R is a removed set.
Therefore & € min(Mod (), <%).

(b) A, Fso.,,u(@') C Fso_,u(®). Suppose 3, Fs, (@) C Fs,. u(®). Since Fx(w) = R, we have Fsx.__,(w’) € R which con-
tradicts the fact that R is a removed set. Therefore Aw’, Fxo,, u(®') C Fxo,, ().

2. We show that:

{w|w € min(Mod(u), =Y) and A, Fs,, u(@') C Fx..,u(w)} C Mod(Bel(¥ou, 11)).

vV € {w|w € min(Mod(u), <Y) and Aw',Fs._ (') C Fs., u(®)},Fz(w) # 0 because X U {u} is inconsistent. Fs(w) c X and
wkEp et wE(Z \Fx(w)). Since Fe(w) N {u} = 0 thus wE(Z\Fs(w)) U {u} and (X\Fx(w)) U {u} is consistent. We show that Fx(w)
is a removed set. We show that:
(a) A’ € Mod(u) such that (X \Fx(w')) U {u} is consistent et Fx(w') C Fx(w).
Suppose there exists o’ € Mod(u) such that (Z\Fs(w')) U {u} is consistent and Fsx(w') ¢ Fx(w). This contradicts the
starting hypothesis: w € {w|w € min(Mod(u), <y) and Aw',Fs,,, (') C Fg,,, u(W)}.
(b) Aw’ € Mod(u) such that (£ \Fx(w')) U {u} is consistent and Fx(w')<yFs().
Suppose there exists &’ € Mod(ut) such that (X\Fx(')) U {u} is consistent and Fx(w' )<y, Fs(®). According to Definition
12, o’'<Yw donc w ¢ min(Mod (), <%) which contradicts the starting hypothesis. O

Proposition 4. Let p a rule atom or an intermediary atom.

p € CN(IT;

Zu{p}) iff IsjéFo(p)

Proof. The proof is obvious according the rules construction. O

Proposition 5. Let X be a set of partially preordered formulae. Let S C V be a set of atoms. S is an answer set of s iff S cor-
responds to an interpretation Is of V* which satisfies (X\Fo(R* n'S)) U {u}.

Proof

1. We first show that if S is an answer set of ITx, then Is is an interpretation of V* that satisfies Z\Fo(R* N S) U {u}.
Let S be an answer set of Ty .. We have Is = {ala € S} U {—a|a’ € S} that is to say if a e S then a € Is and if a’ € S then
-a e ls.
e We first show that Is is an interpretation of V.
- To do that, we show the mutual exclusion that is to say Va € V*, either a € S or @’ € S because:

*

Ifa¢Sand a ¢S then the rule a — not @ is applied and a € CN H;U{M), yet S is an answer set of ITx thus
S= CN(H%U(H}) thus a € S which contradicts the hypothesis.

ifa € Sand a' € S then the only rule allowing to deduce a is a < not a'. For that a is true, it is necessary that @’
is false, thus a’ ¢ S which contradicts the hypothesis.
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- We show too that false ¢ S and contradiction ¢ S. Suppose that false € S, there are two cases:

*

Let contradiction ¢ S. the rule contradiction — false,not contradiction is applied and contradiction € CN(HSEU{M),
yet S is an answer set of Ils g, thus S= CN(H%U(”}) thus contradiction € S which contradicts the initial
hypothesis.

Let contradiction € S. The only rule allowing to deduce contradiction is contradiction «— false,not contradiction.
In order to have contradiction true, it is necessary that false is true and contradiction is false thus contradic-
tion ¢ S which contradicts the hypothesis.

Thus, Is is an interpretation of V*.

e We then show that Is satisfies Z\Fo(R* N S) U {u} that is to say Is € Mod(Z\Fo(R* NS) U {u}).

- We show that [s is a model of u. Suppose that Is¢ Mod(u) then Is# p. The rule introduced by (3), we get
false € CN(H%U{#}), yet S is an answer set of Ils,; thus S = CN(H%U{M}) thus false € S which is impossible since
false ¢ S. Thus Is € Mod( ).

- Suppose that Is ¢ Mod(Z\Fo(R* N'S) U {u}). Then there exists a formula f € Z\Fo(R* N'S) U {u} such that Is ¥ f. Since
Is € Mod(u) then f# = u thus f€ 3 \Fo(R" N S). According to the rule introduced by the step 2 concerning f, we get
rr € CN(IT3, ;) yet S is an answer set of [Ty, thus S = CN(IT3, ) thus rye S.If rye S then f € Fo(R N S) and thus
fé¢ Z\Fo(R"Nn'S) u{u} which contradicts the hypothesis.

As a consequence Is satisfies Z\Fo(R" NS) U {u}.

2. Then, we show that, if I is an interpretation of V* which satisfies Z\Fo(R" N S) U {u} then S is an answer set of ITx (). From
Is, we build a set S such that S = {a|a € Is} U {@'|—-a € Is} thatis to say if a € s then a € S and if —a € [s then @’ € S. We then
add rule atoms and intermediary atoms. We show that S = CN(HSZU(M).

e We first show that SC CN(H%U{M). Let a € S be an atom. There are two cases:

- Let a e V' is an interpretation of V*,-a ¢ V' et @ ¢S. the rule a «— nota’ implies that a € CN(H;U{M>.

- Let a € V".The proof is similar.

Moreover, if p is a rule atom or an intermediary atom. We know that if p € S then p CN(H;U{M) according to the
Proposition 4.
e Then we show that CN(I‘[;U{M) CS. Clearly, we have CN(I‘I;U{M> C V U {false, contradiction}.

- We first show that CN(H%U{H)> N (V\R") CS. Suppose that there exists a € CN(I3,,(,,) N (V \ R") such that a¢S.
There are two cases:

*

Let a € V'.a’' € S because Is is an interpretation of V* and we know that SC CN(H%U(M) thus @' € CN(Hiu{M).

But the only rule allowing the deduction of a is a « not @ thus a ¢ CN(HSEU{M)WhiCh is impossible since
ae CN(IT§,,,,) N (V\R"). Thus a € S.
Let a € V™. The proof is similar.

Moreover, if p is a rule atom or an intermediary atom such that p € CN(HSZU(H}) N(V\R") and p ¢S. According to

the Proposition 4, we know that p CN(H;U(M) N (V\ R") implies that Is=Fo(p). But, if p ¢ S then Is ¥ Fo(p) which is
contradictory.
- Then, we show that CN(H%U{#}) NR" CS. Suppose that there exists a € CN(H‘;U{M) NR" such that a¢ S. Then a =1y

thus rre S and Is is an interpretation of V*. The only rule concerning fis introduced in 2. The body of the rule belongs
to CN(H;U(M). Since CN(HS‘ZU(M) N (V\R") CS then it belongs to S too. That implies that Is#f. But Is is a model of
Z\Fo(R" N S) and r¢¢ S which contradicts the hypothesis.

Moreover, if p is a rule atom or an intermediary atom such that p € CN(HSEU{M> NR* and p ¢ S. According to the

Proposition 4, we know that p € CN(va_UW)S NR* implies that Is=Fo(p). But, if p ¢S then Is# Fo(p) which is
contradictory.
- Finally, we show that false ¢ CN (l’l;uw). Suppose that false € CN (HSZU{H)>, then the rule introduced in 3 is such that

its body belongs to CN (H;U{m> and since CN(H%U{M) N (V\ R") C S then it belongs to S too. But that is to say that
the formula p is not satisfied by Is which is impossible since Is is a model of p. Thus false ¢ CN(H%U(M) and by con-
sequence contradiction ¢ CN(HiU{m).

We have CN(H%U{M}) C V U {false, contradiction} and we have shown that CN(H%U{M) N(V\RY)CS, CN(HiU{M}) NR"CS,
false ¢ CN(H;U{M) and contradiction ¢ CN (H;U{M) thus

CN(IT5,,,) CS. O
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Proposition 6. Let X be a finite set of partially preordered formulae and p be a formula such that X U {u} is inconsistent. X is a
removed set of = U {u} iff there exists a preferred answer set S of Iy such that Fo(R* N S) =X.
To proof this proposition, we use the following intermediary results which are a consequence of the Proposition 5:

Proposition 8. Let R C X. If (X\R) U {u} is consistent then there exists a set of atoms S such that S is an answer set of Iz, and
Fo(R"NS) C R

Proof. Let R C X be such that (X\R) U {1} be consistent. We show that there exists a set of atoms S such that S is an answer
set of ITx 3 and Fo(R"NS) C R.

(2\R) U {u} is consistent, then there exists an interpretation Iz which satisfies (X\R) U {u}. From this interpretation Iz, we
can build a set of atoms S such that S = {aa € Iz} U {d'|-a € Iz} U{pl|Ir |= Fo(p)} and S is an answer set of ITx ;). R contains
all the formulae falsified by the interpretation Iz. But R may also contain formulae satisfied by Ig. There is no one-to-one
correspondence between answer sets and potential removed sets. An answer set may corresponds to several potential
removed sets. O

Corollary 1. Let R C X be such that (X\R) U {u} is consistent. If it does not exist R C R such that (X\R') U {u} is consistent, there
then exists a set of atoms S such that S is an answer set of Iz ,y and Fo(R"NS)=R.

Proposition 9. If there exists a set of atoms S such that S is an answer set of ITx , then (Z\Fo(R* NS)) U {u} is consistent.

Proof. Let S be a set of atoms such that S is an answer set of IIx ). We show that (X\Fo(R* nS)) U {u} is consistent.

From S, we build an interpretation Is = {ala € S} U {—a|a’ e S}. According to the Proposition 5, we know that all the rules r¢
which do not appear in S correspond to formulae f satisfied by the interpretation Is. Thus (Z\Fo(R"NS))u {u} is
consistent. O

Proof (One-to-one correspondence). Let S,(I1x ) be the set of preferred answer sets of ITx,; according to the compar-
ator ¢ Let Ry(Zu{p}) be the set of removed sets of X uU{u}. We want to show that: {Fo(R"n S)|S € Su(IIxugy)} =
R(Z U {u}).

1. We show that {Fo(R" N S)|S € Sw(Izy(y)} © Ru(Z U {u}). Let S be a preferred answer set of ITx . i.€. S € Su(Ixyy) such
that R=Fo(R" n S). We want to show that R € R,(Z u {u}) i.e.:

e Ris a potential removed set of X U {u}: (X\R) U {u} is consistent.

e R is minimal according to the inclusion: AR C X such that (X\R') U {u} is consistent and R' C R.

e R is preferred according to the comparator <¢: AR C X such that (Z\R') U {u} is consistent and R'<y, R.

According to the Proposition 9, (X\R) U {u} is consistent. Suppose that R ¢ R,(X U {u}) then, we have two possibilities:

(a) R is not minimal according to the inclusion: 3 R* C X such that (X\R') U {u} is consistent and R’ C R.

(b) R is not preferred according to the comparator <c:3R" C X such that (X\R') U {u} is consistent and R'<,R.

Let " C X such that (X\R') U{u} is consistent, then there exists an interpretation I which satisfies (X\R') U {u}. Let

S ={alaclp}u{d|-ac Iy} U{p|x¥Fo(p)}. Clearly, Iy = {ala € S’} U {-a|a’ € S'} is an interpretation of V" which satisfies

(Z\R) U {p} and such that R = Fo(R* n §'). According to the Corollary 1, §' is an answer set of Iy ,;. Moreover,

(a) if R C R, then Fo(R"NS') C Fo(R* N S) which contradicts the hypothesis S € Sy (ITs )

(b) if R'<awR then Fo(R" N )<, Fo(R* NS) which contradicts the hypothesis S € S,(ITx ).

Thus R € Ry(Z U {u}).

2. We show that Ry(Z U {u}) C {Fo(R"n S)|S € Suw(ITxyqm))- Let R be a removed set of = U {1} according to the comparator
<c. We have (X\R)u{u} is consistent, so, there exists an interpretation Iz which satisfies (Z\R)u {u}. Let
S={ala e Ix} u{d|-a € Ir} U {p|lr¥Fo(p)} be a set of atoms. Clearly, R = Fo(R" N S). According to the Corollary 1, S is an
answer set of Ils,,). Suppose that S is not a preferred answer set of TIs ), i.e. S¢ Su(ITsygy), we then have two
possibilities:

(a) S is not minimal according to the inclusion: 3 §' € S(IIx,y) such that Fo(S' NR*) C Fo(SNR"). Since R=Fo(R" N S),
Fo(S' N R*) C R. Moreover, Fo(S'N R) € = and (Z\Fo(S' N R"))u{u} is consistent. So R is not a removed set of
> U {u} which contradicts the hypothesis.

(b) S is not preferred according to the comparator <c:35' € S(ITx ) such that Fo(S' N R )awFo(SNR*). As R=Fo(R" -
=Fo(R" N S),Fo(S' N R")<wR. Moreover, Fo(S' NR*) € X and (X \Fo(S' N R")) U {u} is consistent. So, R is not a removed
set X U {u} which contradicts the hypothesis.

Therefore, S € Sy(Ilsyy). O
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