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Sliding-mode observers for systems with unknown inputs: application to estimating the road profile

Keywords: road profile, tyre-road friction, vehicle modelling, sliding-mode observers

In this paper, a sliding-mode observer for systems with unknown inputs is presented. The system considered is a vehicle model with unknown inputs that represent the road profile variations. Coefficients of road adhesion are considered as unknown parameters. The tyre-road friction depends essentially on these parameters. The developed observer permits these longitudinal forces acting on the wheels to be estimated. Then another observer is developed to estimate the unknown inputs. In the first part of this work, some results are presented which are related to the validation of a full-car modelization, by means of comparisons between simulations results and experimental measurements (from a Peugeot 406 as a test car).

INTRODUCTION

with the inertial profiling method, as currently used, is the impossibility of building up a three-dimensional Road profile unevenness through road-vehicle profile from the elementary measurements needed dynamic interaction and vehicle vibration affects for a road-vehicle interaction simulation package. It safety (tyre contact forces), ride comfort, energy conis worthwhile to mention that these methods do not sumption, and wear. The road profile unevenness is take into consideration the dynamic behaviour of the consequently basic information for road maintenvehicle. However, it has been shown that modifiance management systems [1]. In order to obtain this cations of the dynamic behaviour may lead to biased road profile, several methods have been developed. results. Measurement of road roughness has been the subject Finding a way to obtain a three-dimensional proof numerous research studies for more than 70 years file from the dynamic response of an instrumented [2-5]. Methods developed can be classified in two car driven on a chosen road section is the general types: the response type and the profiling method.

purpose of research engaged in at the Laboratoire Nowadays the profiling method, which gives a road Central des Ponts et Chausse ´es (LCPC) in cooperation profile along a measuring line, is generally preferred.

with the Laboratoire de Robotique de Versailles. These methods pertain to two basic techniques: the The method proposed estimates the unknown rolling-beam or the inertial profiling method. The inputs of the system corresponding to the height of latter method, which was first proposed in 1964 [6],

the road by the use of sliding-mode observers [8][9][10][11][START_REF] Xia | Observing systems with unmeasurable inputs[END_REF]. is now used worldwide. Inertial profiling methods

The design of such observers requires a dynamic consist in analysing the signal coming from displacemodel. In the first step, a model is built up for a ment sensors and accelerometers [5,7] Section 2 of this paper deals with the vehicle and damping respectively. M is the inertia matrix, B is related to the damping effects, and K is the spring description and modelling. Section 3 is devoted to some comparison results to evaluate the accuracy of stiffness matrix (Fig. 1).

A dynamic model of the vehicle can be defined as the full-car model. Then the observer design is presented in section 4. The main results are presented in section 5 to show the accuracy of the estimated road profile coming from the observer-based method.

m C v ˙x v ˙y v ˙z D =F
(3) Finally, section 6 concludes on the effectiveness of the method.

where v=[v x ,v y ,v z ]T is the vector of the vehicle velocities (along the x, y and z axes respectively)

VEHICLE DYNAMIC MODEL

and F is the vector of the tyre-road frictional forces. By assuming that the longitudinal forces are pro-When considering the vertical displacement along portional to the transverse forces, these forces can the z axis, the dynamic model of the system can be be expressed as written as (2) front and rear wheels respectively. Figure 2 represents the variations in the road where (q ˙, q ¨) represent the vectors of the velocities and accelerations respectively. G is related to the adhesion m with respect to the longitudinal slip l.

F xf =mF zf ( 

Many researchers have proposed different methods gravity effects, U=(u 1

,u 2 ,u 3 ,u 1 )T is the vector of unknown inputs which characterize the road profile, to measure these two coefficients. Bakker et al. [START_REF] Bakker | tire model with an application in vehicle dynamics studies[END_REF] proposed 'a magic formula'. In the linear area of The wheel angular motion is given by

J fi v ˙fi =T ei -rF xfi J ri v ˙ri =-rF xri (7)
where T ei , i=1, 2, is the engine torque, r is the wheel radius, and J fi and J ri are the wheel inertias.

Remark 1

The engine torque is deduced using the vehicle speed and the throttle position, without an explicit model for the engine behaviour. The steering and braking angles, the braking torque, and rolling resistance are measured. 

l= K v r -v x max(v r , v x )K (6) x ˙=f (x)+CU+DU ẏ=h(x)
where v r is the wheel velocity. Figure 3 represents the longitudinal slip during the (8) test reported here at a speed of 20 m/s.

where the state vector x=(x 11 , x 12 )T=(q, q ˙)T, and It should be noted that this longitudinal slip is y=q(yµR8) is the vector of measured outputs of located in the linear area (longitudinal slip is between the system. 0 and 0.1; see Fig. 2). Therefore, this justifies the use Thus, of the Burkhardt model in this work.

x ˙11 =x 12 x ˙12 =M-1(-Bx 12 -Kx 11 -G)+M-1(Cx 3 +Dx 4 ) x ˙3=x 4 x ˙4=0 (9)
where x 3 =U. Before developing the sliding-mode observer, the following assumptions must be considered.

1. The state is bounded (dx(t)d<2, Y t0). 2. The system is inputs bounded (Z a constant mµR4 such that: U ˙<m). 3. The vehicle rolls at constant speed on a defect road of the order of millimetres, without bumps. In the state form, the wheel angular motion

Convergence analysis becomes

The dynamics estimation errors can be written as

j ˙1=j 2 =J-1(C-RY ) x ˜11 =x ˜12 -H 1 sgn(x ˜11 ) y 1 =j 1 x ˜12 =-M-1(Bx ˜12 +Kx ˜11 ) (10) +M-1Cx ˜3+M-1Dx ˜4-H 2 sgn(x ˜11 ) x ˜3=x ˜4-H 3 sgn(x ˜11 ) j=(j 1 , j 2 )T where j 1 =y 1 =[v r1 , v r2 , v f1 , v f2
]T represents the measured angular velocity vector and j 2 is x ˜4=-H 4 sgn(x ˜11 ) the vector of angular accelerations.

(13) Because of small variations in the longitudinal forces, is assumed that Y ˙=0,

In order to study the observer stability and to find the gain matrices H i , i=1, …, 4, firstly, the convergence of x ˜11 to the sliding surface x ˜11 =0, in finite time t 1 , must be proved. Then, some conditions

J= C J r1 000 0 J r2 00 00 J f1 0 000 J f2 D about x ˜12
must be deduced to ensure its convergence towards 0. Finally, it must be proved that the input estimation errors (namely x ˜3 and x ˜4) converge towards 0. C = [0, 0, T e1 ,T e2 ]T, R = r 1 l (with lµR4×4 is the Consider the Lyapunov function identity matrix) and

Y=[F xr1 ,F xr2 ,F xf1 ,F xf2 ]T repre- V 1 = 1 2 x ˜T 11 x ˜11
(14) sents the vector of the longitudinal forces to be

The time derivative of this function is given by estimated.

V ˙1=x

˜T 11

[x ˜12 -H 1 sgn(x ˜11 )] (15) 

Observer design

By considering the gains matrix

H 1 =diag(h i1 ) with h i1 >|x ˜i2 |, i=1, …, 8, then V ˙1<0.
Therefore, from In order to estimate the state vector x and to deduce sliding-mode theory [START_REF] Utkin | Sliding mode observer[END_REF], the surface defined by both the unknown inputs vector U and its derivative x ˜11 =0 is attractive, leading x ˆ11 to converge towards U ˙, the sliding mode observer:

x 11 in finite time t 0 . Moreover, x ˜=0 Y tt 0 . Con-

x ˆ11 =x ˆ12 +H 1 sgn(x ˜11 )
sequently and according to equation (13), for tt 0 ,

x ˆ12 =-M-1(Bx ˆ12 +Kx ˆ11 +G) sgn eq (x ˜11 )=H-1 1 x ˜12 ( 16 
)
where sgn eq represents an equivalent form of the sgn +M-1(Cx ˆ3+Dx ˆ4)+H 2 sgn(x ˜11 ) function on the sliding surface. Then the equation x ˆ3=x ˆ4+H 3 sgn(x ˜11 ) system (13) can be written as 

x ˆ4=H 4 sgn(x ˜11 ) x ˜11 =x ˜12 -H 1 sgn eq (x ˜11 ) 0 (11) x ˜=-M-1Bx ˜12 +M-1Cx ˜3+M-1Dx ˜4-H 2 H-1 1 x ˜12 x ˜3=x ˜4-H 3 H-1 1 x ˜12 is proposed,
V ˙2=-x ˜T 12 (B+MH 2 H-1 1 )x ˜12 ( 22 
)
Recalling that M and H 1 are positive definite matrices, and by choosing H 2 of the form

H 2 =M-1(Q-B)H 1 ( 23 
)
such that Q=B+MH 2 H-1 1 is a positive definite diagonal matrix (with QµR8×8), then V ˙2<0. Therefore, the surface x ˜12 =0 is attractive, leading x ˜12 to converge towards x 12 . According to equations (18), it can then be deduced that the estimation error x ˜3 of the road profile and its time derivative x ˜4 also converge towards Fig. 4 LPA 0. The dynamic estimation error of j 1 is given by

j ˜1=-J-1RY ˜-L 1 sgn(j ˜1) ( 24 
)
The force estimation error Y ˜is defined by

Y ˜=-x-L 2 sgn(j ˜1) ( 25 
)
Consider the Lyapunov function

V∞ 1 = 1 2 jT 1 j 1 + 1 2 Y ˜TPY ˜(26)
where PµR4×4 is a diagonal positive matrix.

According to equations ( 24) and (25), the time derivative of this function gives

V ˙∞ 1 =j ˜T 1 j ˜1+Y ˜TPY =-j ˜T 1 L 1 sgn(j ˜1)-j ˜T 1 J-1RY ˜Fig. 5 Vehicle speed -Y ˜TPx-Y ˜TPL 2 sgn(j ˜1) (27) 
known. To mitigate this disadvantage, observers are vertical displacement z and the yaw angle y of the chassis are presented. It is shown that these displaceused to estimate the longitudinal forces which are ments can be estimated rapidly and fairly accurately. related to these parameters. The system outputs

The lower two plots of Fig. 7 represent the velocities. are the displacements of the wheels and the chassis, It can be seen that the estimated vertical velocity z ẇhich correspond to signals given by sensors.

is accurate compared with the true signal. Different measurements are made with the vehicle However, an error occurs concerning the estimoving at several speeds. mation of y ˙. This error is mainly due to sensor Figure 5 shows a vehicle speed average of 70 km/h calibration (the sensor that was used in the measure-(20 m/s) with an error which does not exceed ments had an error of calibration that could not be 1.2 m/s (Fig. 6). corrected). Figure 7 shows the measured and the estimated In Fig. 8, it can be seen that the estimated angular displacements. In the upper two plots of Fig. 7 the velocity of the wheel converges well towards the actual values in finite time. Indeed, there is a convergence time of only 1 s. The convergence of the states is very fast and the estimation is of good quality. The good reconstruction of these states allows the unknown inputs to be estimated.

In Fig. 9 the behaviour of the road profile estimator is presented. This figure presents both the measured road profile (measured using the LPA) and the estimated road profile. Thus it can be observed that the estimated values are quite close to the true values. These profiles have the same shape and the differences are not important. Figure 10 shows the power spectral density of the estimated road profile and the It should be noted that low and average waves of 5 CONCLUSION the road (i.e. mean high and average frequencies) respectively are well reconstructed. However, there

In this paper, sliding-mode observers have been developed to estimate the longitudinal tyre-road are limitations of this method in estimating high waves of the road. forces of the system and the unknown inputs which Automotive Engineers, New York). 9 Barbot, J. P., Boukhobza, T., and Djemai, M. 
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4) Mq ¨+Bq ˙+Kq+G=CU+DU ˙(1)
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