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We investigate the general problem of comparing pairs of distribution which includes approaches to inequality measurement, the evaluation of unfair income inequality, evaluation of inequality relative to norm incomes, and goodness of t. We show how information theory can be used to provide insights on the problem and characterise a class of divergence measures using a parsimonious set of axioms. The problems of appropriate statistical implementation are discussed and empirical illustrations of the technique are provided using a variety of reference distributions.

Introduction

There is a broad class of problems in distributional analysis that involve comparing two distributions. This may involve judging whether a functional form is a good t to an empirical distribution; it may involve computation of the divergence of an empirical distribution from a theoretical economic model; it may involve the ethical evaluation of an empirical distribution with reference to some norm or ideal distribution. This paper shows how the class of problems can be characterised in a way that has a natural interpretation in terms of familiar analytical tools.
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Our approach to the problem is based on standard results in information theory that allow one to construct a distance concept that is appropriate for characterising the divergence between the empirical distribution function and a proposed reference distribution. The connection between information theory and the economic interpretation of distributions is established by exploiting the close relationship between entropy measures (based on probability distributions) and measures of inequality and distributional change (based on distributions of income shares). The approach is adaptable to other elds in economics that make use of models of distributions. The paper is structured as follows. In Section 2 we explain the connection be-tween information theory and the analysis of income distributions. Section 3 introduces dierent concepts of reference distribution that are relevant for dierent versions of the generic problem under consideration. Section 4 sets out a set of principles for distributional comparisons in terms of aggregate divergence and show how these characterise a class of measures. Section 5 performs a set of experiments and applications using the proposed measures and UK income data. Section 6 concludes.

Information and income distribution

Comparisons of distributions using information-theoretic approaches has involved comparing entropy-based measures which quantify the discrepancies between the probability distributions. This concept was rst introduced by [START_REF] Shannon | A mathematical theory of communication[END_REF] and then further developed into a relative measure of entropy by [START_REF] Kullback | On information and suciency[END_REF]. In this section, we show that generalised entropy inequality measures are obtained by little more than a change of variables from these entropy measures. We will then use this approach to discrepancies between distributions in order to formulate appropriate inequality measures.

2.1

Entropy: basic concept Take a variable y distributed on support Y . Although it is not necessary for much of the discussion, it is often convenient to suppose that the distribution has a well-dened density function f (•) so that, by denition, ´Y f (y)dy = 1. Now consider the information conveyed by the observation that an event y ∈ Y has occurred when it is known that the density function was f . [START_REF] Shannon | A mathematical theory of communication[END_REF] suggested a simple formulation for the information function g: the information content from an observation y when the density is f is g (f (y)) =

-log f (y). The entropy is the expected information H(f ) := -E log f (y) = -ˆY log f (y) f (y)dy.

(1)

In the case of a discrete distribution, where Y is nite with index set K and the probability of event k ∈ K occurring is p k , the entropy will be -k∈K p k log p k .

Clearly g(p k ) decreases with p k capturing the idea that larger is the probability of event k the smaller is the information value of an observation that k has actually occurred; if event k is known to be certain (p k = 1)

the observation that it has occurred conveys no information and we have

g(p k ) = -log(p k ) = 0.
It is also clear that this denition implies that if k and k are two independent events then g (p

k p k ) = g (p k ) + g (p k )
It is not self-evident that the additivity property of independent events is essential and so it may be appropriate to take a generalisation of the Shannon (1948) approach 5 where g is any convex function with g (1) = 0 [START_REF] Khinchin | Mathematical Foundations of Information Theory[END_REF]). An important special case is given by g

(f ) = 1 α-1 [1 -f α-1 ]
where α > 0 is a parameter. From this we get a generalisation of (1), the α-class

entropy H α (f ) := Eg (f (y)) = 1 α -1 1 -E(f (y) α-1 ) , α > 0.
(2)

Entropy and inequality

To transfer these ideas to the analysis of income distributions it is useful to perform a transformation similar to that outlined in [START_REF] Theil | Economics and Information Theory[END_REF]. Suppose we specialise the model of Section 2.1 to the case of univariate probability distributions: instead of y ∈ Y , with Y as general, take x ∈ R + where x can be thought of as income. Let the distribution function be F so that a proportion q = F (x)

of the population has an income less than or equal to x. Given that the population size is normalised to 1, we may dene the income share function

s : [0, 1] → [0, 1] as s (q) := F -1 (q) ´1 0 F -1 (t) dt = x µ (3) 
where F -1 (•) is the inverse of the function F and µ is the mean of the income distribution. One way of reading (3) is that those located in a small neighbourhood around the q-th quantile have a share s (q) dq in total income. It is clear that the function s (•) has the same properties as the regular density function f (•):

s (q) ≥ 0, for all q and ˆ1 0 s (q) dq = 1.

(4)

5 Using l'Hôpital's rule we can see that when α = 0 H α takes the form (1). For discussion of H α see [START_REF] Havrda | Quantication method in classication processes: concept of structural α-entropy[END_REF], [START_REF] Ullah | Entropy, divergence and distance measures with econometric applications[END_REF].

We may thus use s (•) rather than f (•) to characterise the income distribution. Replacing f by s in (1), we obtain

H(s) = - ˆ1 0 s (q) log[s (q)]dq = - ˆ∞ 0 x µ log x µ dF (x) (5) 
The Theil inequality index is dened by

I 1 := ˆ∞ 0 x µ log x µ dF (x) (6) 
and thus we have I 1 = -H(s). 

I α = ˆ∞ 0 1 α(α -1) x µ α -1 dF (x) (7)
and thus, replacing f by s in (2), it is clear that

I α = -α -1 H α (s), α > 0.
One of the attractions of the form ( 7) is that the parameter α has a natural interpretation in terms of economic welfare: for α > 0 the measure I α is top-sensitive in that it gives higher importance to changes in the top of the income distribution; α < 0 it is particularly sensitive to changes at the bottom of the distribution; [START_REF] Atkinson | On the measurement of inequality[END_REF]'s index of relative inequality aversion is identical to 1 -α for α < 1.

Divergence entropy

It is clear that there is a close analogy between the α-class of entropy measures (2) and the generalised entropy inequality measure (7). Eectively it requires little more than a change of variables. We will now develop an approach to the problem of characterising changes in distributions using a similar type of argument.

Let the divergence between two densities f 2 and f 1 be λ := f 1 /f 2 ; clearly the dierence in the distributions is large when λ is far from 1. Using an entropy formulation of a divergence measure, one can measure the amount of information in λ using some convex function, g (λ), such that g(1) = 0.

The expected information content in f 2 with respect to f 1 , or the divergence of f 2 with respect to f 1 , is given by

H(f 1 , f 2 ) = ˆY g f 1 f 2 f 1 dy (8)
which is nonnegative (by Jensen's inequality) and is zero if and only if f 2 = f 1 .

Corresponding to (2), we have the class of divergence measures

H α (f 1 , f 2 ) = 1 α -1 ˆY 1 -f 1 f 1 f 2 α-1 dy, α > 0 (9)
In the case α = 1 we obtain the [START_REF] Kullback | On information and suciency[END_REF] generalisation of the Shannon entropy (1)

H 1 (f 1 , f 2 ) = ˆY f 1 log f 2 f 1 dy = -E f 1 log f 1 f 2 , ( 10 
)
known as the relative entropy or divergence measure of f 2 from f 1 . When f 2 is the uniform density, (10) becomes (1).

Discrepancy and distributional change

The transformation used to derive the Theil inequality measure from the entropy measure may also be applied to the case of divergence entropy measures. Consider a pair (x, y) jointly distributed on R 2 + : for example x and y could represent two dierent denitions of income. Given that the population size is normalised to 1, we may dene the income share functions s 1 and s

2 : [0, 1] → [0, 1] as s 1 (q) = F -1 1 (q) ´1 0 F -1 1 (t) dt = x µ 1 and s 2 (q) = F -1 2 (q) ´1 0 F -1 2 (t) dt = y µ 2 (11) 
where F -1 1 is the inverse of the marginal distribution of x, F -1 2 is the inverse of the marginal distribution of y and µ 1 , µ 2 are the means of the marginal distributions of x and y.

We may now use the concept of relative entropy to characterise the transformed distribution. Instead of considering a pair of density functions f 1 , f 2 , we consider a pair of income-share functions s 1 , s 2 . Replacing f 1 and f 2 by s 1 and s 2 in (10) we obtain

H 1 (s 1 , s 2 ) = - ˆ1 0 s 1 (q) log s 2 (q) s 1 (q) dq (12) 
A normalised version of the measure of distributional change, proposed by [START_REF] Cowell | Generalized entropy and the measurement of distributional change[END_REF], for two n-vectors of income x and y can be written:

J 1 (x, y) := 1 n n i=1 x i µ 1 log x i µ 1 / y i µ 2 . ( 13 
)
In the case of a discrete distribution with n point masses it is clear that we have J 1 (x, y) = -H 1 (s 1 , s 2 ).

Replacing f 1 and f 2 by s 1 and s 2 in equation ( 9), and rearranging, we obtain

H α (s 1 , s 2 ) = 1 α -1 ˆ1 0 1 -s 1 (q) α s 2 (q) 1-α dq (14)
The J class of distributional-change measure, proposed by [START_REF] Cowell | Generalized entropy and the measurement of distributional change[END_REF] for two n-vectors of income x and y is

J α (x, y) := 1 nα(α -1) n i=1 x i µ 1 α y i µ 2 1-α -1 , ( 15 
)
where α takes any real value; the limiting form for α = 0 is given by

J 0 (x, y) = - 1 n n i=1 y i µ 2 log x i µ 1 / y i µ 2 (16) 
and for α = 1 is given by ( 13); note that J α (x, y) ≥ 0 for arbitrary x and y. 6 The family (15) represents an aggregate measure of discrepancy between two distributions. Again, for a discrete distribution with n point masses, it is clear that J α (x, y) = -α -1 H α (s 1 , s 2 ). The analogy between the α-class of divergence measures and the measure of discrepancy ( 15) is evident and requires no more than a change of variables. Once again the parameter α has the natural welfare interpretation pointed out in section 2.2.

Reference distributions

The analysis in section 2 provides a natural lead into a discussion of the divergence between an Empirical Distribution Function (EDF) and a theoretical reference distribution F * . In order to do it, for xed q values, we need to compare the corresponding q-quantiles given by the EDF and F * .

For instance, Figure 1 presents an EDF (red dots) and a theoretical reference distribution (blue line) on a reverse graph, with the q values in the x-axis and the income quantiles in the y-axis.

6 To see this write (15) as

n i=1 y i nµ 2 [ψ (q i ) -ψ (1)] , where q i := x i µ 2 y i µ 1 , ψ (q) := q α α [α -1]
Because ψ us a convex function we have, for any (q 1 , ..., q n ) and any set of non negative weights (w 1 , ..., w n ) that sum to 1,

n i=1 w i ψ (q i ) ≥ ψ ( n i=1 w i q i ). Letting w i = y i / [nµ 2 ]
and using the denition of q i we can see that w i q i = x i / [nµ 1 ] so we have n i=1 w i ψ (q i ) ≥ ψ (1) and the result follows. In other words, we would replace x i and y i in (15), respectively, by EDF -1 (q i ) and F -1 (q i ).

The standard approach in the statistics literature is based upon the empirical distribution function (EDF)

F (x) = 1 n + 1 n i=1 ι (x i ≤ x) ,
where ι is an indicator function such that ι (S) = 1 if statement S is true and ι (S) = 0 otherwise. 7 Let us denote {x (1) , x (2) , ..., x (n) } the members of the sample in increasing order. The corresponding values given by the EDF are the adjusted sample proportion q = { 1 n+1 , 2 n+1 , . . . , n n+1 } and, for each q, the corresponding value for the reference distribution is equal to

y i = F -1 * i n + 1 (17)
7 Note that we use 1 n+1 rather than 1 n to avoid an obvious problem where i = n. Had we used i n in (17) then y n would automatically be set to sup (X) where X is the support of F * .

A divergence measure between the EDF and a theoretical reference distribution F * would be given by replacing x i and y i in (15), respectively, by

EDF -1 * i n+1 = x (i) and F -1 * i n+1
. Thus, we would have

J α = 1 nα(α -1) n i=1   x (i) μ α F -1 * i n+1 µ (F * ) 1-α -1   , α = 0, 1 (18) 
The limiting forms for α = 0, 1, dened in ( 16) and ( 13) become

J 1 = 1 n n i=1
x (i) μ log

x (i) μ / F -1 * i n+1 µ (F * ) , (19) 
J 0 = - 1 n n i=1 F -1 * i n+1 µ (F * ) log x (i) μ / F -1 * i n+1 µ (F * )
.

(

) 20 
This index can be used to measure the divergence between an empirical income distribution, given by a sample of individual incomes, and any theoretical reference distribution.

This index would require the choice of a specic value or values for the parameter α according to the judgment that one wants to make about the relative importance of dierent types of discrepancy: choosing a large positive value for α would put a lot of weight on parts of the distribution where the observed incomes x i greatly exceed the corresponding values y i in the reference distribution ; choosing a substantial negative value would put a lot of weight on cases where the opposite type of discrepancy arises.

The most equal reference distribution

Let us assume that the most equal income distribution is when the same amount is given to each individuals:

F -1 * i n + 1 = μ for i = 1, . . . , n (21) 
If we use this (egalitarian) distribution as the reference distribution in ( 18), then we have

J α = 1 nα(α -1) n i=1 x i μ α -1 , α = 0, 1 (22)
Figure 2: Quantile approach with the most equal reference distribution and the limiting forms, for α = 0, 1, are equal to

J 0 = - 1 n n i=1 log x i μ and J 1 = 1 n n i=1 x i μ log x i μ (23)
These measures are nothing but the standard Generalised Entropy inequality measure. In other words, the standard GE inequality measures are divergence measures between the EDF and the most equal distribution, where everybody gets the same income. They tell us how far a distribution is from the most equal distribution. A sample with a smaller index has a more equal distribution.

Figure 2 presents the quantile approach for this case. We can see that the EDF is always above (below) the reference distribution for large (small) values of incomes. It makes clear that large (small) values of α would be more sensitive to changes in high (small) incomes.

The most unequal reference distribution

Rather than selecting the most equal distribution as a reference distribution, we can reverse the standard approach by using the most unequal distribution as a reference distribution. It requires one to measure how far a sample is from the most unequal distribution, rather than how far it is from the most equal distribution.

The most unequal income distribution is when one person gets all the income and the others zero:

F -1 * i n + 1 = 0 for i = 1, . . . , n -1 nμ for i = n (24)
If we use this distribution as the reference distribution in ( 18), then we have:

J α = 1 α(α -1) max x i nμ α -1 , α < 1, α = 0 (25)
In the limiting case α = 0, we have

J 0 = -log max x i nμ (26)
This follows immediately from l'Hopital's rule. In the limiting case α = 1, the index is undened. This index tells us how far a distribution is from the most unequal distribution. However, two major drawbacks make this index useless in practice:

1. To be comparable for two dierent samples, the index should use the same reference distribution in both samples. Here max x i = x (n) is an estimate of the n/(n + 1)-quantile in F * . It follows that, if n = 100, the reference distribution is when the top 1% gets all the income, whereas if n = 1000 it is when the top 0.1% gets all the income. The reference distribution diers with the sample size.

2. The presence of zero incomes in the reference distribution produce undesirable properties: the index is independent on how the rst n -1 ordered incomes are distributed. The rst n-1 ordered incomes do not appear explicitly in the formula, the index depends on them through the mean only. It follows that, the mean being constant, the distribution of the n -1 rst ordered incomes does not matter. For instance, the two samples {8, 8, 8, 8, 8, 8, 8, 8, 20} and {1, 1, 1, 1, 15, 15, 15, 15, 20}

produce the same value of the index.

These two drawbacks lead us to consider the following reference distribution, where the top 100k% richest gets 100p% of the total income:

F -1 * i n + 1 = (1 -p)μ/(1 -k) for i = 1, . . . , n(1 -k) pμ/k for i = n(1 -k) + 1, . . . , n (27) 
with 0 ≤ k ≤ 1, 0 ≤ p ≤ 1 and z denotes the smallest integer not less than z. Small values of k and large values of p produce very unequal distributions, where a few people get nearly all the income, and the rest get nearly zero.

For instance, in setting k = 0.01 and p = 0.99 we take the case where the top 1% richest gets 99% of the total income. If we use this distribution as the reference distribution in (18), we obtain:

J α,k,p = 1 nα(α -1) n i=1 x (i) μ α c 1-α i -1 , α = 0, 1, (28) 
where

c i = (1 -p)/(1 -k) if i ≤ n(1 -k) p/k if i > n(1 -k) (29) 
The limiting forms for α = 0, 1, dened in ( 19) and (20) become

J 1,k,p = 1 n n i=1
x (i) μ log

x (i) c i μ and J 0,k,p = - 1 n n i=1 c i log x (i) c i μ . (30) 
There is two interesting special cases. If p = k, everybody gets the same income value, μ, and the reference distribution is the most equal distribution.

If k = 1/n and p = 1, only one individual gets all the income, nμ, and the reference distribution is the most unequal distribution.

In practice, k and p have to be xed: (1) to avoid the rst drawback, k and p should be independent of the sample size, with k > 1/n and p > 1/n ; (2) to avoid the second drawback, zero incomes are not allowed in the reference distribution, that is, if p = 1 we have k = 1. Finally, to make our index J α,k,p useful in practice, we need to use constant values, such that 1/n < k < 1 and 1/n < p < 1, or p = k = 1.

(31)

In empirical studies, we could use several values of k and p. For instance, k = 1 -p = 0.05, 0.01, 0.005, correspond to the reference distributions with the top 5%, 1% and 0.5% getting, respectively, 95%, 99% and 99.5% of the total income.

Other reference distributions

Clearly, other reference distributions could be used. For instance, if we assume that productive talents are distributed in the population according to a continuous distribution of talents F * and that wages should be related to talent, a situation in which everyone received the same income to everybody might be considered as unfair. In this case one might use F * as the reference distribution and make use of the index (18): any deviation from F * would come from something else than talent. If total income is nite, it makes sense to use a distribution dened on a nite support. For instance, we could use a Uniform distribution or a Beta distribution with two parameters, which can provide a variety of appropriate shapes.

Axiomatic foundation

We may put the informal discussion of the use of distributional-change measures on to a rigorous footing using the representation of the problem in section 4.1 and the principles described in section 4.2.

Representation of the problem

The distributional change problem can be characterised as the relationship between two n-vectors of incomes x and y. An alternative equivalent approach is to work with z : = (z 1 , z 2 , ..., z n ), where each z i is the ordered pair (x i , y i ), i = 1, ..., n and belongs to a set Z, which we will take to be a connected subset of R + × R + . The divergence issue clearly focuses on the discrepancies between the x-values and the y-values. The problem can then be approached in two steps.

1. We represent the problem as one of characterising a weak ordering 8 on

Z n := Z × Z × ... × Z n .
where, for any z, z ∈ Z n the statement z z should be read as the income pairs in z constitute at least as close according to as the income pairs in z . From we may derive the antisymmetric part and symmetric part ∼ of the ordering.9 

2. We use the function representing to generate the index J.

In the rst stage of step 1 we introduce some properties for , many of which are standard in choice theory and welfare economics. 

Z n . Axiom 2 [Monotonicity] If z, z ∈ Z n dier only in their ith component then d (x i , y i ) < d (x i , y i ) ⇐⇒ z z .
Axiom 3 [Symmetry] For any z, z ∈ Z n such that z is obtained by permuting the components of z: z ∼ z .

In view of Axiom 3 we may without loss of generality impose a simultaneous ordering on the x and y components of z, for example x 1 ≤ x 2 ≤ ... ≤ x n and y 1 ≤ y 2 ≤ ... ≤ y n . 11 For any z ∈ Z n denote by z (ζ, i) the member of Z n formed by replacing the ith component of z by ζ ∈ Z.

Axiom 4 [Independence] For z, z ∈ Z n such that: z ∼ z and z i = z i for some

i then z (ζ, i) ∼ z (ζ, i) for all ζ ∈ [z i-1 , z i+1 ] ∩ z i-1 , z i+1 .
If z and z are equivalent in terms of overall discrepancy and the discrepancy at position i is the same in the two cases then a local variation at i simultaneously in z and z has no overall eect.

Axiom 5 [Zero local discrepancy] Let z, z ∈ Z n be such that, for some i and j, x i = y i , x j = y j , x i = x i + δ, y i = y i + δ, x j = x j -δ, y j = y j -δ and, for all k = i, j, x k = x k , y k = y k . Then z ∼ z .

The principle states that if there is zero local discrepancy at two positions in the distribution then moving x-income and y-income simultaneously from one position to the other has no eect on the overall discrepancy.

Theorem 1 Given Axioms 1 to 5 (a) is representable by the continuous function given by

n i=1 φ i (z i ) , ∀z ∈ Z n (32)
where, for each i, φ i : Z → R is a continuous function that is strictly decreasing in |x i -y i | and (b)

φ i (x, x) = a i + b i x (33)
Proof. Axioms 1 to 5 imply that can be represented by a continuous function Φ : 

Z n → R that is increasing in |x i -y i |, i = 1, ...,
φ i (x i + δ, x i + δ) -φ i (x i , x i ) -φ j (x j + δ, x j + δ) + φ j (x j + δ, x j + δ) = 0
which can only be true if

φ i (x i + δ, x i + δ) -φ i (x i , x i ) = f (δ)
for arbitrary x i and δ. This is a standard Pexider equation and its solution implies (33).

Corollary 1 Since is an ordering it is also representable by

φ n i=1 φ i (z i ) (34) 
where, φ i is dened as in (32), (33). and φ : R → R continuous and strictly monotonic increasing.

This additive structure means that we can proceed to evaluate overall discrepancy one income-position at a time. The following axiom imposes a very weak structural requirement, namely that the ordering remains unchanged by some uniform scale change to both x-values and y-values simultaneously.

As Theorem 2 shows it is enough to induce a rather specic structure on the function representing .

Axiom 6 [Income scale irrelevance] For any z, z ∈ Z n such that z ∼ z , tz ∼ tz for all t > 0.

Theorem 2 Given Axioms 1 to 6 is representable by

φ n i=1 x i h i x i y i (35)
where h i is a real-valued function.

Proof. Using the function Φ introduced in the proof of Theorem 1 Axiom 6 implies

Φ (z) = Φ (z ) Φ (tz) = Φ (tz )
and so, since this has to be true for arbitrary z, z we have

Φ (tz) Φ (z) = Φ (tz ) Φ (z ) = ψ (t)
where ψ is a continuous function R → R. Hence, using the φ i given in (32), we have for all :

φ i (tz i ) = ψ (t) φ i (z i ) i = 1, ..., n.
or, equivalently φ i (tx i , ty i ) = ψ (t) φ i (x i , y i ) , i = 1, ..., n.

(36)

So, in view of [START_REF] Aczél | Functional Equations in Several Variables[END_REF], page 346 there must exist c ∈ R and a function h i : R + → R such that

φ i (x i , y i ) = x c i h i x i y i . ( 37 
)
From ( 33) and ( 37) it is clear that

φ i (x i , x i ) = x c i h i (1) = a i + b i x i , (38) 
which, ifφ i (x, x) is non-constant in x, implies c = 1. Putting (37) with c = 1 into (34) gives the result.

This result is important but limited since the function h i is essentially arbitrary: we need to impose more structure.

Income discrepancy

We now focus on the way in which one compares the (x, y) discrepancies in dierent parts of the income distribution. The form of ( 35) suggests that discrepancy should be characterised terms of proportional dierences:

d (z i ) = max x i y i , y i x i .
This is the form for d that we will assume from this point onwards. We also introduce:

Axiom 7 [Discrepancy scale irrelevance] Suppose there are z 0 , z 0 ∈ Z n such that z 0 ∼ z 0 . Then for all t > 0 and z, z such that d (z) = td (z 0 ) and

d (z ) = td (z 0 ): z ∼ z .
The principle states this. Suppose we have two discrepancy proles z 0 and z 0 that are regarded as equivalent under . Then scale up (or down) all the income discrepancies in z 0 and z 0 by the same factor t. The resulting pair of discrepancy proles z and z will also be equivalent. 12 Theorem 3 Given Axioms 1 to 7 is representable by

φ n i=1 x α i y 1-α i ( 39 
)
where α = 1 is a constant. 13

Proof. Take the special case where, in distribution z 0 the income discrep- ancy takes the same value r at all n income positions.

If (x i , y i ) represents a typical component in z 0 then z 0 ∼ z 0 implies r = ψ n i=1 x i h i x i y i ( 40 
)
where ψ is the solution in r to n i=1

x i h i x i y i = n i=1 x i h i (r) (41)
12 Also note that Axiom 7 can be stated equivalently by requiring that, for a given z 0 , z 0 ∈ Z n such that z 0 ∼ z 0 , either (a) any z and z found by rescaling the x-components will be equivalent or (b) any z and z found by rescaling the y-components will be equivalent.

13 The following proof draws on [START_REF] Ebert | Measurement of inequality: an attempt at unication and generalization[END_REF].

In (41) can take the x i as xed weights. Using Axiom 7 in (40) requires tr = ψ n i=1

x i h i t

x i y i , for all t > 0.

(42)

Using ( 41) we have n i=1

x i h i tψ n i=1 x i h i x i y i = n i=1 x i h i t x i y i (43)
Introduce the following change of variables

u i := x i h i x i y i , i = 1, ..., n (44) 
and write the inverse of this relationship as

x i y i = ψ i (u i ) , i = 1, ..., n (45) 
Substituting ( 44) and ( 45) into (43) we get n i=1

x i h i tψ n i=1 u i = n i=1 x i h i (tψ i (u i )) . (46) 
Also dene the following functions

θ 0 (u, t) := n i=1 x i h i (tψ (u)) (47) 
θ i (u, t) := x i h i (tψ i (u)) , i = 1, ..., n. (48) 
Substituting ( 47),( 48) into (46) we get the Pexider functional equation

θ 0 n i=1 u i , t = n i=1 θ i (u i , t)
which has as a solution

θ i (u, t) = b i (t) + B (t) u, i = 0, 1, ..., n where b 0 (t) = n i=1 b i (t)
see [START_REF] Aczél | Lectures on Functional Equations and their Applications[END_REF], page 142. Therefore we have

h i t x i y i = b i (t) x i + B (t) h i x i y i , i = 1, ..., n (49) 
From [START_REF] Eichhorn | Functional Equations in Economics. Reading Massachusetts[END_REF], Theorem 2.7.3 the solution to ( 49) is of the form

h i (v) = β i v α-1 + γ i , α = 1 β i log v + γ i α = 1 (50) 
where β i > 0 is an arbitrary positive number. Substituting for h i (•) from ( 50) into (2) for the case where β i is the same for all i gives the result.

4.4

The J index

For the required index use the natural cardinalisation of the function (39), n i=1 x α i y 1-α i , and normalise with reference to the case where both the observed and the modelled distribution exhibit complete equality, so x i = µ 1 and y i = µ 2 for all i. This gives the following class of measures of divergence (aggregated discrepancy):

J α (x, y) := 1 nα(α -1) n i=1 x i µ 1 α y i µ 2 1-α -1 . (51)
This normalised index can be implemented straightforwardly for a proposed model of an empirical distribution.

14 Of course this would require the choice of a specic value or values for the parameter α in (51). 15 

Implementation

We now look at the practicalities of the class of measures J α dened in (18) and J α,k,p dened in (28).

Statistical properties

It is necessary to establish the existence of an asymptotic distribution for J α and J α,k,p in order to justify its use in practice. If the most equal distribution is taken as the reference distribution (k = p = 1), the index J α,1,1 is nothing 14 The form (51) implies that it is valid for mean-normalised distributions.

15 Compare this with the discussion of the interpretation of α in terms of upper-and lower-tail sensitivity in the context of inequality (page 4).

but the standard GE inequality measure, which is asymptotically Normal and has well-known statistical properties.

16 If a continuous distribution is taken as the reference distribution, it can be shown that the limiting distribution of nJ α is that of

1 2µ F * ˆ1 0 B 2 (t)dt F -1 * (t)f 2 * (F -1 * (t)) - 1 µ F * ˆ1 0 B(t)dt f * (F -1 * (t)) 2 (52)
where f * is the density of distribution F * and B(t) is a Brownian bridge. This random variable can have an innite expectation. It is only if F * has a bounded support that the limiting distribution has reasonable properties see [START_REF] Cowell | Goodness of t: an axiomatic approach[END_REF] and [START_REF] Davidson | Statistical inference in the presence of heavy tails[END_REF] for more details. If we use a continuous parametric reference distribution, since total income is nite, it makes sense to use a distribution F * dened on a bounded support only.

For instance, one could use a Uniform distribution or a Beta distribution with two parameters, which can provide many dierent shapes. The same approach can be used for nJ α,k,p , noting that the last statistic is equivalent to the statistic dened in (9) in [START_REF] Cowell | Goodness of t: an axiomatic approach[END_REF], where 2i/(n + 1) is replaced by c i dened in (29).

In the two cases, the limiting distribution of J α and J α,k,p exists, but is not tractable. It is enough to justify the use of bootstrap methods for making inference. To compute a bootstrap condence interval, we generate B bootstrap samples by resampling from the original data, and then, for each resample, we compute the index J. 

where c b 0.025 and c b 0.975 are the 2.5 and 97.5 percentiles of the EDF of the bootstrap statistics -for a comprehensive discussion on bootstrap methods, see [START_REF] Davison | Bootstrap Methods[END_REF], [START_REF] Davidson | Bootstrap methods in econometrics[END_REF]. For wellknown reasons see [START_REF] Davison | Bootstrap Methods[END_REF] or [START_REF] Davidson | Bootstrap tests: How many bootstraps?[END_REF] the number B should be chosen so that (B + 1)/100 is an integer: here we set B = 999 unless otherwise stated.

To be used in practice, we need to determine the nite sample properties of J α and J α,k,p . The coverage error rate of a condence interval is the probability that the random interval does not include, or cover, the true value of the parameter. A method of constructing condence intervals with good nite sample properties should generate a coverage error rate close to 16 Among others, see [START_REF] Cowell | Income distribution and inequality measurement: The problem of extreme values[END_REF], [START_REF] Davidson | Asymptotic and bootstrap inference for inequality and poverty measures[END_REF], [START_REF] Schluter | Edgeworth expansions and normalizing transforms for inequality measures[END_REF], [START_REF] Schluter | The econometrics of inequality measurement[END_REF], [START_REF] Davidson | Statistical inference in the presence of heavy tails[END_REF] the nominal rate. For a condence interval at 95%, the nominal coverage error rate is equal to 5%. We use Monte-Carlo simulation to approximate the coverage error rate bootstrap condence intervals in several experimental designs.

In our experiments, samples are drawn from a lognormal distribution. For xed values of α, k, p and n, we draw 10 000 samples. For each sample we compute J α or J α,k,p and its condence interval at 95%. The coverage error rate is computed as the proportion of times the true value of the inequality measure is not included in the condence intervals. 17 Condence intervals perform well in nite samples if the coverage error rate is close to the nominal value, that is, close to 0.05.

Table 1 presents the coverage error rate of bootstrap condence intervals at 95% of J α and J α,k,p for several reference distributions. The standard GE measures use the most equal reference distribution, it corresponds to J α,1,1 .

When the top 1% richest gets 99% of the income is the reference distribution we use the index J α,0.01,0.99 ; when the top 5% richest gets 99% of the income is the reference distribution we use J α,0.05,0.99 . In addition, we examine J α with two continuous (bounded) parametric reference distributions, the Beta(1,1) distribution which is equal to the Uniform(0,1), and the Beta(2,2) which is a symmetric inverted-U-shape distribution. Table 1 shows that the nite sample properties of the indices with alternative reference distributions are not very dierent from those of the standard GE measures, except for J α,0.01,0.99 when n ≤ 500. The coverage error rate is close to 0.05 for very large samples. For small and moderate samples, further investigations are required to improve the nite sample properties, with, for instance, a fast double or triple bootstrap, see [START_REF] Davidson | Improving the reliability of bootstrap tests with the fast double bootstrap[END_REF] and [START_REF] Davidson | The iterated bootstrap[END_REF]. 18

Application

Let us compare the performance of the statistic J α,k,p with that of conventional GE inequality measures using as a case study UK income data from the Family Expenditure Survey, for years 1979 and 1988.

19 In Table 5.2

we present the results of indices J α and J α,k,p estimated with three dierent types of reference distribution, along with bootstrap condence intervals at 95%.

Equality

The top panel of Table 5.2 presents estimates of J α,k,p using an equality reference distribution. Clearly, when we select the most equal distribution as the reference distribution, i.e. k = p = 1, the index J α,k,p is reduced to the standard GE inequality measure. Estimates for standard GE measures, J α,1,1 are tabulated in the rst row, for values of α ranging from -1 to 2. 20 When α = 1, J α,1,1 is the Theil index. For values of α = 0.5, 1, 1.5, 2, J α,1,1 represents the several (transformed) Atkinson indices.

21 All estimates of standard GE measures increase considerably between 1979 and 1988, suggesting a signicant rise in inequality in the 80s.

Extreme inequality

The key point highlighted in earlier sections was that changing the reference distribution from which we measure the distance of the empirical distribution opens up the possibility for researchers to choose the exact distribution from which they wish to measure distance of the empirical distribution. While standard GE indices tell us about the distance of the empirical distribution from an equal reference distribution, one can change the focus to that of its distance from an unequal reference distribution. In the second panel of Table 5.2 we present estimates of J α,k,p using several extreme inequality reference distributions. The interpretation of the size of the J α,k,p index now is the reverse of the interpretation of standard GE measures. For a standard GE inequality measure, a small value of J α,1,1 corresponds to the empirical distribution being close to the equal reference distribution compared to that of a large value of J α,1,1 . However, for an unequal reference distribution a small value of J α,k,p corresponds to the empirical distribution being close to the particular extreme inequality reference distribution that has been specied.

To illustrate we focus on two dierent unequal reference distributions:

one, where the top 1% of the income distribution receive 99% of the income, 21 See [START_REF] Cowell | Measuring Inequality[END_REF] for details.

and second, where the top 5% of the income distribution receive 99% of the income. From Table 5.2 we can see that, with one exception, the values of J α,k,p have dropped between years 1979 and 1988: in other words, it is almost always true that the distance from the extreme inequality reference distribution has decreased. The exception is the case (k = 0.05, p = 0.99, α = 2)

where the movement relative to the reference distribution is not signicant.

The implication is that UK inequality grew during the 1980s whether one interprets this in terms of distance from equality, or as distance from a reference unequal distribution, except for one case. This case concerns top-sensitive inequality where, in terms of distance from maximum inequality, the change in the distribution is inconclusive.

Theoretical distribution

Finally let us consider how inequality changed using a continuous reference distribution F * . The last panel of Table 5.2, tabulates the results for three such F * (introduced in Section 5.1) taken from the Beta distribution family. Did UK income inequality, interpreted as a distance from a Beta-family reference distribution increase? We can see that the values of J α are not statistically dierent between 1979 and 1988 when the Beta(1,1) (uniform) or Beta(2,5) (unimodal, right skewed) is used as the reference distribution distribution, while they are statistically dierent when the Beta(2, 2) (unimodal symmetric) is used as the reference distribution.

The estimates of the standard GE inequality measures J α,1,1 and of those of J α,k,p and J α in Table 5.2 provide us with dierent information about divergence of the empirical distribution from the chosen reference distribution. By varying the values of k and p, one can specify the exact skewness of the reference distribution one would like to measure distance of the empirical distribution from. Likewise, by varying the values of α one can focus on dierent parts of the income distribution. A large value of α implies a greater weight on parts of the distribution where the observed incomes are vastly dierent from the corresponding values in the reference distribution.

Finally, one can choose specic parametric distributions which correspond to the relevant reference distribution that the researcher is interested in.

Conclusion

The problem of comparing pairs of distributions is a widespread one in distributional analysis. It is often treated on an ad-hoc basis by invoking the concept of norm incomes and an arbitrary inequality index.

Our approach to the issue is a natural generalisation of the concept of inequality indices where the implicit reference distribution is the trivial perfectequality distribution. It is also a natural application of information theory to assessment of income distributions. The approach uses the same ingredients as loss functions applied in other economic contexts. Its intuitive appeal is supported by the type of axiomatisation that is common in modern approaches to inequality measurement and other welfare criteria. The axiomatisation yields indices that can be interpreted as measures of discrepancy. They are related to the concept of divergence entropy in the context of information theory. Furthermore, they oer a degree of control to the researcher in that the J α indices form a class of measures that can be calibrated to suit the nature of the economic problem under consideration. Members of the class have a distributional interpretation that is close to members of the well-known generalised-entropy class of inequality indices.

In eect the user of the J α -index is presented with two key questions: 
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 1 Figure 1: Quantile approach

  We obtain B bootstrap statistics, J b α , b = 1, . . . , B. The percentile bootstrap condence interval is equal to CI perc = [c b 0.025 ; c b 0.975 ]

  ported incomes are known to be misrepresented. The years 1979 and 1988 have been chosen to represent the maximum recorded dierence in inequality across the available years, post-1975. 20 A large value of α implies greater weight on parts of the distribution where the observed incomes are vastly dierent from the corresponding values in the reference distribution.

  1. the income discrepancies underlying inequality are with reference to what? 2. to what kind of discrepancies do you want the measure to be particularly sensitive? As our empirical illustration has shown, dierent responses to these two key questions provide dierent interpretations from the same set of facts.

  

  The analogy between the Shannon entropy measure (1) and the Theil inequality measure (6) is evident and requires no

more than a change of variables. The transformed version due to Theil is more useful in the context of income distribution because it enables a link to be established with several classes of inequality measures. The generalised entropy inequality measure is dened by

See, for example,[START_REF] Bartels | Economic Aspects of Regional Welfare, Income Distribution and Unemployment[END_REF] and[START_REF] Nygård | Measuring Income Inequality[END_REF]. See also[START_REF] Ebert | Measures of distance between income distributions[END_REF]'s characterisation of absolute inequality indices in ternms of distance between income distributions.

2Almås et al. (2011) compare actual and equalizing earnings; their work is related to Paglin's Gini[START_REF] Paglin | The measurement and trend of inequality: a basic revision[END_REF]) and Wertz's Gini[START_REF] Wertz | The measurement of inequality: comment[END_REF]. Also see[START_REF] Jenkins | Inequality measurement using norm incomes -were Garvy and Paglin onto something after all? Review of Income and[END_REF] and[START_REF] Garvy | Inequality of income: Causes and measurement[END_REF]

).3 On the fairness reference distribution see, for exampleAlmås et al. (2011) and De- vooght 

(2008).4 The[START_REF] Cowell | Goodness of t: an axiomatic approach[END_REF] approach diers from that developed here in that it deals with the problem of continuous reference distributions on unbounded support.

This implies that it has the minimal properties of completeness, reexivity and tran- sitivity.

9 For any z, z ∈ Z n z z means [z z ] & [z z]; z ∼ z means [z z ] & [z z].

Note that the derivation which follows diers from that provided in[START_REF] Cowell | Measures of distributional change: An axiomatic approach[END_REF] used to establish the class of measures of distributional change using explicit assumptions of dierentiability and additive separability. Here we adopt a minimalist approach that uses neither of these strong assumptions and that focuses directly on the divergence issue.

in the present case, of course, the components of x and y will be in the same order.

The true values are computed replacing x (i) in (18) by F -1 ( i n+1 ), where F is the distribution of x, that is, the lognormal distribution in our experiments.

Such developments are beyond the scope of this paper and are the subject of future research.

The application uses the before housing costs income variable of the Family Expen- diture Survey for years[START_REF] Wertz | The measurement of inequality: comment[END_REF] 1988 (Department of Work and 

Pensions 2006), deated and equivalised using the McClement's adult-equivalence scale, excluding households with self-employed individuals. We exclude households with self-employed individuals as re-