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Magnetic vortices are topologically stable magnetization configurations at the

nanoscale. When subject to a current polarized in spin, exchange interaction

with the itinerant electrons, modify the configuration of the fixed spins. The
spin-transfer torque effect, as experimentally observed, is able to change the

magnetization topology. We investigate the relation between the dynamics

of magnetic vortices driven by a spin-polarized current and the changes in the
magnetization topology. These transitions are characterized by the appearance

of magnetic singularities.

Keywords: Magnetism; Magnetic Vortices; Landau-Lifshitz equation; Spin-
transfer torque; Magnetic singularities.

1. Introduction

The elementary theory of magnetism was introduced in the early twenty

century by Weiss, Curie and Bloch. They described the ferromagnetic-

paramgnetic transition, the existence of magnetic domains, and the hys-

teresis of magnetic materials. When an external magnetic field µ0Hz is

applied to a ferromagnetic material, it acquires a net magnetization M in

the direction of the applied field (Fig. 1). For relatively weak fields, the

magnetization of soft materials (materials having a thin hysteresis cycle)

saturates, and the value of saturation is no far from the zero field value.

Under such conditions, at temperatures much smaller than the Curie tem-

perature, one may consider that the entire body magnetization is at its sat-

uration value. This approximation defines the validity of micromagnetism,

an approximation particularly well suited to the microscopic scales. The

magnetization can then be described by a vector in the unit sphere, the

Bloch sphere.

Already in 1935 Landau and Lifshitz1 settled the bases of the micromag-

netic theory. In particular, they introduced, before the general theory of

phase transitions, the fundamental concepts of order parameter and of the
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Fig. 1. Magnetization M as a function of an external magnetic field Hz (left) and the
unit magnetization vector m = M/|M | in the Bloch sphere (right). Below the Curie

temperature, a ferromagnetic material is characterized by a saturated magnetization of

contant magnitude Ms.

effective free energy functional of the order parameter. In this novel frame-

work, thermodynamics of homogeneous and uniform systems can therefore

be generalized to take into account spatial gradients, anisotropy and finite

size effects. Landau and Lifshitz predicted that the magnetization of a fer-

romagnetic crystal cannot be uniform, instead it forms magnetic domains

with a given magnetization orientation, separated by walls. In fact, a state

characterized by a magnetization spatially uniform, is a statistical prop-

erty of an infinite system valid, in principle, in the thermodynamic limit.

However, for a finite volume the surface demagnetizing field (dipolar field)

naturally determines the size of the constant magnetization domains and

their geometry. The minimization of the free energy functional gives the

stable states of the ferromagnet. The existence of a finite value of the mag-

netization below the Curie point, is explained by the behavior of the free

energy that can be expanded in even powers of the magnetization near the

transition: a sign change of the second order coefficient with the temper-

ature gives the characteristic exponents of the thermodynamics quantities.

In addition, a variational principle, equivalent to the principle of least ac-

tion in mechanics, leads to the equations governing the dynamics of the

order parameter. For instance, one can describe the motion of the walls

separating domains with different magnetization, under the action of an

external field.

In a remarkable paper, Belavin and Polyakov,2 asked whether an in-

finite magnetic film can support inhomogeneous states, at variance with

the thermodynamic expectation of an uniform state. They found that, in

the limit where the free energy is dominated by the exchange interaction,
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localized structures of finite energy are possible. These structures, already

proposed by Skyrme3 in his theory of strong forces and now called after

him “skyrmions,” are endowed with a nontrivial topology: they cannot be

deformed into an uniform field without introducing a singularity in the mag-

netization field (a point of zero magnetization).4 skyrmions were recently

discovered in chiral metals and other materials having strong spin-orbit

coupling energy.5,6

The goal of the present paper is to present and expand recent results

in the study, beyond the limits of the micromagnetic theory, of localized

magnetization structures, skyrmions in particular, under the action of a

spin-polarized current. Our main interest is in the topological changes,

which involve within the micromagnetic model, the appearance of magne-

tization singularities.

We start with the Landau and Lifshitz theory of micromagnetism, we

present relevant experimental results showing magnetic vortices in nanofer-

romagnets7 and the methods to change the magnetic configurations using

fields and currents.8 We then propose a model to generalize the micro-

magnetic framework in order to account for the atomic scales involved in

the topological changes.9 Finally, we present in particular a quantitative

analysis of the skyrmion transition to a ferromagnetic state.10

2. Vortices and skyrmions

When the dimensions of a ferromagnet shrink below micrometer scales,

one observes that the shape and size of the magnetic domains change.11

Magnetic textures with a nontrivial topology spontaneously organize at

nanometric scales. Sixteen years ago, Shinjo et al.7 found magnetic vortices

imaging the magnetization distribution in circular dots of permalloy with

a magnetic force microscope; typical dimensions of the ferromagnets were

about 1µm in diameter and 50 nm thick. Magnetic vortices are essentially

curly distributions of the magnetization with a central core out of the plane

(Fig. 2). The in-plane curly distribution minimizes the dipolar field (field

lines around the magnet) and the out-of-plane central region, the vortex

core, minimizes the exchange energy of neighboring spins. The size of

the core is only a few nanometers, and is determined by the competition

between dipolar and exchange energies.

In addition to magnetic vortices, a physical realization of skyrmions

were theoretically predicted by Bogdanov et al.12,13 in metals possessing a

strong spin-orbit interaction of the type first described by Dzyaloshinskii
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Fig. 2. Schematic magnetization distribution of a vortex of negative charge (left) and
positive charge (right). The topological charge depends on the number of turns of the

vector field around the origin, and the polarity of the core, up or down. The tangential

direction of the field near the boundary, ensures the minimization of the dipolar field.
The out of the plane magnetization near the center (vortex core) avoid large gradients,

minimizing the exchange energy.

and Moriya. Isolated and periodic lattices of skyrmions were indeed dis-

covered in chiral metals5,14 and ferrimagnets15. The Dzyaloshinskii-Moriya

spin-orbit interaction tends to stabilize the skyrmion textures in such a way

that a skyrmion lattice appears as a genuine thermodynamic phase in helical

materials. It is interesting to note that these lattices can be manipulated by

relatively weak magnetic fields, currents,16 and even electric fields,17 open-

ing the way up to applications in the domain of spintronics and magnetic

memories.18,19

One crucial property of magnetic textures in nanoferromagnets is that

they possess a nontrivial topology: the magnetization field cannot be con-

tinuously deformed to obtain an uniform field (ferromagnetic state). This

impossibility is related with the conservation of the magnetization magni-

tude, the vector m cannot vanish. Textures differing in their topology can

be classified according to their topological charge

Q =

∫
Σ

dx

4π
m ·

(
∂m

∂x
× ∂m

∂y

)
(1)

The topological charge of two dimensional configurations, has a simple ge-

ometrical interpretation. It represents the solid angle swept by the unit

vector on the sphere when mapped from the plane to the Bloch sphere. A

pair of vortices of opposite polarity cover the whole sphere, their combined

charge is one; from this one deduces that each vortex is of charge one half.

In their experiments, van Waeyenberge et al.20 use permalloy square

elements of about one micron side and 50 nm thick. A texture contain-

ing a central vortex is perturbed by a pulse of an in-plane magnetic field.
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Fig. 3. Magnetization in the core region of a Bloch point. (Left) The magnitude of

the magnetization vanishes at the center. (Right) Twisted lines of equal magnetization,

showing the structure of a Bloch point. Adapted from Ref. [24].

The field switch the core polarization of the vortex, from a core up (as in

Fig. 2 right) to a core down (Fig. 2 left). The duration of the burst is

4 ns and its amplitude 1.5 mT; orders of magnitude smaller than the one

necessary to switch the magnetization with a static field. The change in

the vortex polarization, is a change in its topology, normally forbidden in

the micromagnetic framework with |M | = const. Physical processes out-

side the scope of this model are necessarily at work: loss of regularity and

dissipation can be at the origin of micromagnetic singularities necessarily

present during the transition between distinct states.

As observed by Hertel and others,21–23 vortex switch involves an in-

termediate stage in the form of a Bloch point. A Bloch point is a three

dimensional texture with a magnetization field covering all space directions:

the interface between two magnetic domains is a domain wall; the inter-

section of two walls, is a singular line; the intersection of two Bloch lines

is a Bloch point. A Bloch point is a peculiar magnetic structure, necessar-

ily singular, because the magnetization must vanish somewhere inside its

volume (Fig. 3). The variation of the topological charge (1) that accompa-

nies the vortex switch is ∆Q = 1/2 − (−1/2) = 1, this variation precisely

corresponds to the charge of a Bloch point QB ; the whole process can be

written as a balance equation of the topological charge:

Q1 +QB = −1/2 + 1 = 1/2 = Q2 ,

where Q1,2 are the vortex charges.

In order to change the topology of the magnetization field, an alter-

native to magnetic field perturbations, is to apply electric currents polar-
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ized in spin. One remarkable property of ferromagnetic materials is that

in addition to support a wealth of stable static configurations, they are

also metallic and able to carry a current. However, at variance to ordi-

nary metals, a conduction electron in a ferromagnet tends to align its spin

in the direction of the ambient magnetization, and then to form a spin-

polarized current. The opposite of this mechanism, the transfer of angular

momentum carried by the current to the magnetic texture, modifying its

configuration, is called spin-transfer torque. This effect was theoretically

predicted by Slonczeswki and Berger, using different approaches and model

systems, in 1996.25,26 Under controlled experimental conditions one can

design ferromagnetic heterostructures containing for instance a free spin

layer in contact, through a tunnel barrier (a thin layer of normal metal),

with a fixed magnetization ferromagnet used to polarize an electric current.

Various experiments based on this setup, confirmed the basic predictions

of the theoretical models advanced by Berger and Slonczewski.27,28 Spin-

transfert torque is also responsible of the motion of a domain wall pushed

by pulses of a polarized current.29

A striking and technologically interesting application of the spin-transfer

torque effect was revealed by Rommer et al.8 some years ago. They demon-

strated that applying a spin-polarized current with a scanning tunneling

microscope on a thin film consisting in a palladium-iron bilayer, it is pos-

sible to “write” and to “delete” skyrmions in a controlled way. This is an

example of nucleation of skyrmions by spin-transfer torque effect, and of

the transition between this topological skyrmion state and a trivial one, the

homogeneous ferromagnetic state:

skyrmion → ∆Q = 1 → ferromagnetic .

Therefore, experiments show that a spin-polarized current induces topolog-

ical phase changes, like the skyrmion-ferromagnetic transition.

3. Micromagnetic equations

In the preceding section various physical mechanisms were identified as

being important to describe magnetic textures in microscopic magnets:

• The exchange interaction, proportional to the magnetization gradi-

ents, characterized by the “exchange stiffness” constant A, having

the dimensions of an energy per length unit; it defines the exchange

length ` =
√
A/µ0M2

s , which gives an order of magnitude of the
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vortex cores size. It of the order of a few nanometers for common

transition metals.

• The magnetic anisotropy, that can be related to the crystal struc-

ture, or an effect of the geometry and in this case a form of the

dipolar energy, may determine an “easy plane” or an “easy axis”.

For permalloy discs (magnetic dots), the magnetization is con-

fined on the disk plane (easy plane); for magnetic films, often the

magnetization is out of the plane (easy axis), which is positive

for the easy plane case and negative for the easy axis case. The

simplest model of magnetic anisotropy includes only one constant

K (energy per unit volume). A anisotropy characteristic length

`K = (µ0M
2
s a

3/K), where a is of the order of the lattice step, can

be as small as a.

• The spin-orbit interaction that leads to the Dzyaloshinkii-Moryia

magnetic energy contribution, favoring the helical alignement of

spins. This interaction is proportional to the rotational of the

magnetization field, through a coupling constant D whose sign de-

termines the chirality of the helical textures.

• The long range dipolar interactions created by the volume and sur-

face magnetization charges: the divergence of the magnetization is

the source of a “stray field” that couples with the body’s magneti-

zation itself. This interaction is essential in establishing the whole

magnetization distribution in accordance with the geometry of the

ferromagnet, but can be neglected when considering the dynamics

of the vortex cores, dominated by the large magnetization gradients

and therefore, by the exchange energy.

• The interaction with a stream of spin polarized electrons, giving

rise to a transfer of angular momentum between itinerant and fixed

spins; the phenomenological description of the spin-transfer torque

involves a current density js = n0vs, where the effective velocity vs
is proportional to the current polarization P = (n↑+n↓)/(n↑+n↓)

(n0 = n↑+n↓ is the electron density), coupled with a gauge vector

potential A:30,31

δAk = −~
2
δm · (m× ∂

∂xk
m) . (2)

The presence of ~ reveals the quantum origin of the spin-transfer

torque, a point we discuss later.

In summary, a magnetic material can be described by an order param-
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Fig. 4. Schematic representation of the magnetization m vector precessing around the

self-consistent effective field f , and spiraling towards f due to the α dissipation (direction

f − (m · f)m). We also show the motion, driven by the current vs, of the origin in
the direction of the magnetization gradient vs · ∇m, projected on the direction of the

polarized current.

eter, the magnetization, and a Landau free energy functional

F [M ] =

∫
vol

dx
[
A(∇M)2 +KM2

z −DM · ∇ ×M − µM ·Hd

]
(3)

that takes into account the different microscopic interactions: exchange,

anisotropy, spin-orbit, dipolar, and the additional term of coupling with

itinerant electrons:

Fs =

∫
Vol

dxjs ·A[m] . (4)

where A is the effective vector potential (2) associated with the accumu-

lated Berry phase of a moving electron in a canted magnetization field.32

Variation of the free energy functional F +Fs leads to the Landau-Lifshitz

equation:(
∂

∂t
+ vs · ∇

)
m+m× f = αm×

(
∂

∂t
+
β

α
vs · ∇

)
m (5)

generalized to account for the spin-transfer torque induced by a spin polar-

ized current. The effective field f is defined by,

f = − γ

Ms

δF

δm
(6)

has frequency units (γ is the gyromagnetic ratio).
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In addition to these conservative terms, we introduced on the right

hand side of (5), two dissipation terms, which nevertheless preserve the

magnetization magnitude |M | = Ms = const.:

• The first term, proportional to the nondimensional parameter α,

already present in the original Landau-Lifshitz treatment, tends

to align the precessing magnetization in the direction of the self-

consistent field f , it is sometimes referred as the Gilbert term.

• The second one, in β, is essentially a phenomenological term that

breaks the Galilean invariance of the magnetization dynamics, and

is related to the so-called non-adiabatic torque; it is a consequence

of the dissipative loss, due to inelastic scattering of the electron’s

angular momentum.33 It appears as an effective magnetic field pro-

portional to the gradient of the magnetization, and as a conse-

quence, can control the asymptotic motion of a domain wall or

other strongly inhomogeneous magnetization textures.

See Fig. 4 for a schematic representation of the different contributions to

the magnetization evolution.

In order to explain the topological changes, involving the formation of

singular structures as Bloch points, we must go beyond the framework of

micromagnetism, and take into account processes possibly leading to loss

of regularity.

4. Semi-classical spin-transfer torque

Magnetism is a quantum phenomenon. Although the micromagnetic model,

based on the Landau free energy functional, efficiently describes the magne-

tization dynamics of ferromagnets up to the nanoscale, it is unable to follow

the transition between distinct topological phases.4,9,34,35 The validity of

the micromagnetic approach is limited by the formation of singularities, as

the mentioned Bloch point, which reveals the existence of relevant scales at

the atomic level, where quantum phenomena becomes unavoidable.

Our objective is to generalize the Landau-Lifshitz micromagnetic frame-

work in order to introduce physical mechanisms with the aim to explain the

change of topology induced by an electron current. As these changes in-

volve sub-nanometric scales, we propose a model where the itinerant spins

are treated quantum mechanically; in addition, the fixed spins, although

treated classically, are supposed to be distributed in a lattice. The free

energy of the fixed spins tends to the free energy functional of the magne-
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tization in the continuous limit. The coupling between itinerant and fixed

spin is simply given by an exchange interaction.

With respect to the standard micromagnetic model (5), the semi-

classical model differs in

• the treatment of the spin-transfer torque, terms in vs are replaced

by a coupling term with itinerant spins obeying Schrödinger equa-

tion;9 and

• the treatment of dissipation, the β term is suppressed, and even-

tually a new exchange energy dissipation effect is considered.36

For instance, macroscopic magnetization arises from the microscopic

exchange interaction between neighboring localized spins, as first described

by the Heisenberg Hamiltonian on a crystal lattice,

Hxc = −J
∑
〈i,j〉

Si · Sj , (7)

where Si is a fixed spin at node i, coupled to a neighbor at site j with

exchange energy J . In addition to the localized spins, ferromagnetic ma-

terials also have delocalized conduction electrons that naturally polarize in

the direction of the ambient magnetization. In the celebrated Stoner model

one distinguish between minority and majority electronic bands, and the

difference in their population gives the polarization parameter P . One con-

sequence is that scattering processes become sensitive to the spin direction,

leading to a spin dependent electric transport. For instance, the magnetic

resistance R ∼ 1/(1 − P ), may diverge for layers with P = 100 % polar-

ization. The opposite effect, the modification of the magnetization by the

spin of the conduction carriers scattered by magnetization gradients, is the

spin-transfer torque.

In addition to the lattice spins, there are also the conduction spins

whose coupling with the fixed ones give rise to the spin-transfer torque.

This interaction with the itinerant electrons can be taken into account

through an exchange constant Js between d and s orbitals, corresponding

respectively to the fixed (magnetization) spins and the conduction (current

carriers) spins,

Hsd = Js
∑
i

Si · ŝi , (8)

where ŝi is the electron spin operator:

ŝi =
~
2
c†iσci , ci =

(
c↑i
c↓i

)
(9)
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σ is the vector of Pauli matrices, and ci the annihilation operator of an

electron at site i. The interaction Hamiltonian contains the s-d coupling of

itinerant and fixed spins Js, which is in general larger than the Heisenberg

exchange constant J , and determines the atomic time scale, which is of the

order of the femtosecond.

It is worth noting that the Heisenberg Hamiltonian (7) leads to the

exchange term of the Landau free energy, in the continuum limit: a → 0,

the lattice size tending to zero, and N → ∞, the number of sites tending

to infinity, with

A = J/2a , M = −~γ
a3
〈S(x)〉

where γ is the gyromagneitc factor. Therefore, we can generalize the mi-

cromagnetic model to atomistic scales, by a systematic discretization of

the free energy terms. The advantage of this approach is that the con-

duction electrons can be treated quantum mechanically. We restrict our

model to two dimensions, and neglect the long range interactions. These

approximations are justified, if the goal is to describe the basic mechanisms

at work in the formation of the singularities, where exchange interactions

are naturally dominant. Two dimensions are enough to investigate the

skyrmion-ferromagnetic transition, because the process do not involve the

formation of a Bloch point (a three dimensional object), as in the switching

or annihilation of magnetic vortices.

An appropriated semiclassical model to describe the physics of the topo-

logical transitions including atomic scales effects, is defined by a lattice of

fixed classical spins interacting via the s-d Hamiltonian with quantum hop-

ping electrons. Taking fixed spins as classical is in accordance with its slow

and smooth dynamics compared with the moving electrons. In order to

match the quantum dynamics of the electrons with the magnetization dy-

namics, some averaging process must be invoked. As a consequence, the

itinerant spins appear at the scales of the fixed ones, as a stochastic per-

turbation, as we discuss later. It is this stochasticity of the whole system’s

dynamics that allows ultimately to investigate the changes in the topology

of the magnetic textures.

In its most general form, we assume that fixed spins are coupled by a

Heisenberg exchange Hamiltonian Hxc (7), and that the crystal structure

gives rise to an easy-plane or easy-axis anisotropy Hani according to the

sign of K, and to spin-orbit coupling HDM that supports helical order in

ferromagnetic films. Collecting these contributions we get the fixed spin
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Hamiltonian

HS = Hxc +Hani +HDM , (10)

with

Hxc = −J
2

∑
i

(∇Si)2 (11)

Hani =
K

2

∑
i

(Si · ẑ)2 (12)

HDM = −D
2

∑
i

Si · ∇ × Si (13)

where ∇ is the discrete gradient and ẑ is the direction perpendicular to

the lattice plane; the new parameters K and D, are characteristic energies

related to the phenomenological parameters of the Landau-Lifshitz equation

(they differ in dimensional factors, in powers of the lattice constant a).

Fixed spins are coupled with conduction electrons by the s-d Hamilto-

nian (8). We consider that these electrons are subject to a difference of

electric potential that creates a current, and to a crystal effective magnetic

field that tends to polarize their spins. Therefore, the whole system is open,

under the influence of an external electric field and a polarization magnetic

field acting on free electrons. In order to preserve translational invariance

we gauge out the electric field, introducing an appropriated time dependent

quantum phase. The electron Hamiltonian that takes into account these

effects is then,

He = −ε
∑
〈i,j〉

eiφi,j(t)c†i cj −Bp ·
∑
i

c†iσci , (14)

where the first term is the hopping energy between neighboring lattice sites

i, j, the second term is the polarization field Bp, and the electric phase

(gauge vector potential) is

φi,j(t) = (i− j) · x̂ eaEt
~

here a is the lattice constant, and ε the hopping energy. The spin of the

electron is given by the quantum mean,

si(t) = 〈0|c†i (t)σci(t)|0〉 (15)

in the state with wave function,

ψ(xi, t) = 〈x|c†i (t)|0〉
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Fig. 5. Magnitude τ(t) and polar angle ϕ(t) of the electron torque τ (x0, t) = s(x0, t)×
S(x0, t), computed at the skyrmion center. The magnitude probability distribution (left)
compares with a Poissonian distribution, demonstrating the stochastic character of the

electron torque term.10

at time t.

Equations (10)–(15) with (8) define the total Hamiltonien

H = HS +He +Hsd

of the coupled system of fixed and itinerant spins. To complete the model

we must specify the dissipation effects. As in the micromagnetic model we

consider the Gilbert relaxation coefficient α. Other source of relaxation is

related to the appearance of strong magnetization gradients in vortex and

skyrmion cores regions, accompanying their switching. One simple deriva-

tion of the appropriated dissipation term d due to the exchange relaxation

is through the Rayleigh dissipative function,

~ḢS = −~
∑
i

fi · Ṡi = −1

2

∑
i

fi · d = −β0

2

∑
i

fi · ∇2fi , (16)

where in the last equation we expanded d in powers of the gradients:

di ≈ αSi × Si × fi + β0∇2fi ,

and neglected the first term, proportional to the α term, because it is

already present through the Gilbert relaxation. The second term, we keep,

is the simplest vector one can form with the derivatives of f , with one

scalar proportionality constant β0. Taking the exchange contribution to

the dissipation vector d, we obtain,

di = −β∇4Si (17)

after a redefinition of the phenomenological coefficient, β.
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In summary, the dynamics of the fixed and itinerant spins is governed

by the coupled equations,

i~
∂

∂t
ψ = (He + JsSi · σ)ψ (18)

~
∂

∂t
Si = Si × (fi − αSi × fi + Js〈ψ|ŝi|ψ〉)− β∇4Si , (19)

where

fi = −δHS

δSi
, (20)

we call Schrödinger-Landau-Lifshitz or SLL in short (here fi has energy

units). These equations no longer conserve the charge. In particular, the β

diffusion term tends to decrease the magnitude of the magnetization. How-

ever, even in the absence of the β term, when the size of magnetization

gradients becomes of the lattice step size the continuous description breaks

down. Nevertheless, discretization effects are not enough to describe sin-

gularities in the magnetization field, coarse graining the microscopic lattice

scales results in a continuous dynamics that conserves the topology of the

initial texture. More importantly, the dynamics defined by is not strictly

continuos in time, because to couple the two equations one must compute

the electron spin mean value

s(xi, t) = 〈ψ|ŝi|ψ〉) .
This quantum averaging (measure of the electron spin) involves information

loss on the whole system, making the description nonlocal in space, and

markovian in time (only the state at t is used to compute the electron spin

at t+ ∆t). In Fig. 5 we plot the time evolution of the electron torque and

show that it follows effectively a Poissonian distribution. It was obtained by

direct numerical integration of the SLL equations, for an initial skyrmion

state that disappears at time around t = 5930, as we study later in the

section on the skyrmion collapse.

5. Phenomenology of the topological transitions

Using a numerical integration of the SLL equations, one can follow the evo-

lution of the magnetization field and monitor the changes in the topological

charge for various initial textures. We use the following conventions: The

unit of length is as usual the lattice constant, which is here an effective tight-

binding constant whose value can be tunned to fit the experimental proper-

ties of each material. It is typically below the nanometer. The hopping en-

ergy is of the order of the s-d coupling constant, and can be taken as the unit
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Fig. 6. Sequence showing the evolution of a skyrmion under a spin-polarized current,

polarized in the opposite direction of its core. The initial skyrmion state of charge

Q = −1, change into a state of trivial topologyQ = 0. The last frame show the expanding
spin wave, generated at the transition time, in the ferromagnetic state. Times, 0, 4000,

5900, and 6000.

of energy. Typical values are a ∼ 0.3 nm and ε ∼ 1 eV for a ferromagnet,

or a ∼ 0.5 nm and ε ∼ 0.1 eV for MnSi, leading to a time scale of the order

of t0 ∼ 1− 10 fs, depending on the energy scale; based on these magnitudes

the electric field is measured in units of E0 ∼ ε/(ea) ≈ 0.1 − 1 109 V m−1

and the current in units of I0 ∼ eε/~ ≈ 10 − 100µA. In the numerical

simulation we use ne ≈ 0.1 electrons per site, E/E0 ≈ 10−5−5 10−4, and a

spin polarization Bp = 0.1 ε; the coupling energies are Js = 1, J = 0.1, 0.4,

K = 0, ±0.01, D = 0, 0.01, in units of ε, and the relaxation constant

α = 0.1 (in all simulations).

In Fig. 6, we present a single skyrmion evolving under the action of a

spin-up polarized current with weak exchange dissipation (β = 0.001), and

a skyrmion lattice in Fig. 7, with a plane polarized current in a dissipation-

less case (β = 0). Both configurations evolve towards a final ferromagnetic

state. In the case of the skyrmion lattice local cores having the topology

of a vortex-antivortex pair, annihilate. The concomitant evolution of the

topological charge is shown in Fig. 8. The collapse of the skyrmion core

destroy its topological charge Q = −1, leaving a state of uniform magneti-

zation whose charge is zero. The ferromagnetic transition of the skyrmion

lattice proceeds by successive annihilation of vortex-antivortex pairs, which

decrease the total charge by 1: each vortex having a charge of one half.

The skyrmion-ferromagnetic transition proceeds in several steps:

• After an initial transient, the current induces a skyrmion preces-

sion (periodic tilting of the core), and a displacement of the core

(second frame in Fig. 6). The electron current density is highly

inhomogeneous in the skyrmion core region, where itinerant spins

are scattered off by the magnetization gradients. Indeed, electron
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Fig. 7. Sequence of the skyrmion lattice evolution towards a ferromagnetic state, show-

ing successive annihilations vortex-antivortex cores. The dynamics is driven by an in-

plane polarized electron current. The initial topological charge is Q = 4, after annihila-
tion of the first pair (last two frames of the first row), Q = 2; the last frame is taken just

after the annihilation of the second pair, Q = 0, is already in the ferromagnetic phase.
Times: 0, 3060, 4400, 4756, 5032, 7032, 9008, and 9032. The initial frame was translated

along the diagonal to center the skyrmion, initially situated at the upper left corner.

spins initially follow the fixed spins without penetrating into the

central core; at the transition they build up a vortex-like structure,

mostly in the plane, driving the switching of the core spins.

• Under the action of the polarized current the skyrmion moves

following a trajectory that is mostly in the direction of the cur-

rent, but also having a component perpendicular to its motion,

associated with a gyrotropic force proportional to its topological

charge.37 An illustration of this motion is shown in Fig. 9, where

the trajectories of two skyrmions, one in the weak (exchange) dis-

sipation regime (the same of Fig. 6), and the other in the exchange

dissipationless regime (β = 0).

• The transition is characterized by the shrinking of the skyrmion

core up to its complete collapse, which is followed by a burst of

spin waves.

We see that, in both cases, the isolated skyrmion or the lattice, electron

current inhomogeneities play an important role in the interaction of vor-

tices. The usual approach of the spin-transfer torque completely neglects

these effects. In particular the motion of the skyrmion can be excited by

the in-plane current as in the lattice case, where the interaction between
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Fig. 8. Evolution of the charge and magnetization for an isolated skyrmion (left) and

a skyrmion lattice (right).

the vortex cores favorises their motion, or, as can be seen in Fig. 9, by

a z-polarized current. These electron current inhomogeneities are also re-

lated to spin field fluctuations that tend to organize into large scale struc-

tures around the cores. These relatively coherent electron spin structures

play a role in the motion and internal degrees of freedom (spin waves) of

the skyrmions. Recent experiments using a magnetic pulse to excite the

skyrmion internal degrees of freedom in the GHz frequency range, show a

subsequent gyrotropic motion of the cycloid type we observed in our simu-

lations.38

More interestingly, the observation of the dynamics of the itinerant

spins, suggests that the topological change might be related to the forma-

tion of a coherent structure of such spins, located around the skyrmion core,

capable to reverse the central fixed spins by angular momentum transfer.

To investigate this mechanism we introduce a quantity we call the elec-

tron topological b-field, the itinerant spin equivalent of the topological

charge density of the magnetization field:

b = n · ∂xn× ∂yn, n = s/|s| . (21)

which represents an effective magnetic field created by the electrons, pro-

jected in the direction of their spin. Precession of the fixed spins around

this effective field, can induce their reversal. The idea is that the ferro-

magnetic transition involves the nucleation of an electron spin vortex with

topological charge one Q = 1:

Q (ferro) = −1 (sky) + 1 (elec) = 0

such that combined with the skyrmion minus one charge Q = −1, leads to
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Fig. 9. Skyrmion trajectory in the presence of a polarized current; (left) β = 0.001,

(right) β = 0. Points in gray correspond to the initial transient and after the topological

transition, t ≈ 5930 for the exchange dissipative case (left), and t ≈ 9820 for the exchange
dissipationless case (right).

the trivial state Q = 0.

The picture represents in color the b-field together with the arrows of

the itinerant spins; contours of the z-component of the fixed spin are also

shown to locate the skyrmion core. The skyrmion core is reversed around

time 5928, precisely at the moment where the electron spin vortex reach a

maximum. Immediately later it disappears, leaving behind a strong spin

wave visible also in the magnetization field. This observation tends to

confirm the scenario of a topological transition triggered by the action of

the electron current.

Even if at the topological transition the electron-spin field appears as

organized in a large scale vortex, one should not forget that its dynam-

ics is essentially stochastic. In particular, the electron-spin torque which

drives the magnetization dynamics, obeys a Poissonian distribution, as con-

firmed numerically (c.f. Fig. 5). This fast dynamics translates into the slow

and continuous dynamics of the fixed spins, by the formation of a finite

time singularity, resolved by the discretization inherent to the lattice at

the microscopic scales, and regularized by the exchange dissipation in the

continuum limit. In the next section we investigate the dynamics of the

topological transition.



July 25, 2016 18:22 WSPC Proceedings - 9in x 6in verga-CCT15 page 19

19

Fig. 10. Phenomenology of the topological transition. The topological b-field is repre-

sented in colors using the bottom colormap; arrows are the electron spins and contour
lines the z component of the magnetization (it shows the skyrmion core). Frame 5900 is

just before the transition, 5928–5936 are around the transition, and 5980 is just after the
transition. We observe that the electron spins are mostly oriented in the plane, and that

at the transition, a strong electron topological charge is concentrated at the skyrmion

core.

6. Self-similar skyrmion collapse

We focus now on the particular case of the transition between the skyrmion

state and the ferromagnetic state, which involves the reversal of the

skyrmion core magnetization, a process in which the variation of the topo-

logical charge is of 1 unit.

As we discussed in the previous section, the microscopic topological

change can be related to a finite time singularity of the macroscopic mag-

netization field. We want to relate the topological change to the dynamics

of the magnetization. We propose a continuous field magnetization effective

model based on the self-similar vanishing of the skyrmion core characteris-

tic length in a finite time. This singularity is stopped at the lattice scale,

but appears as a genuine singularity in the continuum limit. Within this
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scenario we can neglect almost all terms in the Landau-Lifshitz equation,

because at a collapsing skyrmion core only the external driving, here the

electron current (spin-transfer torque), and the exchange interaction are

dominant.

In order to obtain the relevant form of the Landau-Lifshitz equation we

• Assume that near the singularity the faster time is related to S.

• Assume a self-similar evolution of the magnetization.

• Retain exchange and electron spin torque.

• Neglect dissipation, anisotropy and chirality.

The first assumption means that, in the continuum limit there is no char-

acteristic time (or length) related to the topological transition: it appears

as a discontinuity of the magnetization dynamics (as can be appreciated in

the behavior of the topological charge, c.f. Fig. 8, right panel). Dissipation

effects appear to be important at intermediate scales, but they seems to

be not effective during the fast switching of the skyrmion core, at least for

the parameters used in our simulations. Indeed, even for a large value of

β, which affects the quantization of the topological charge, the size of the

core abruptly goes to zero.

Taking the exchange interaction and the spin-transfer torque as the

main mechanisms responsible for the singularity formation, the effective

Landau-Lifshitz equation is in the continuous limit Si → S(x, t), S = 1,

∂

∂t
S(x, t) = S(x, t)×

[
f(x, t) +

Js
~
s(x, t)

]
(22)

where the effective field,

f(x, t) =
Ja2

~
∇2S(x, t) , (23)

reduces to the exchange term. In the remaining of this section we mesure

the spin in units of ~, and the energy in units of Js (to put physical units

back one replaces J → J/Js, and add the necessary ~ constants). Under the

assumptions specified above the last term, coupling with the current, ap-

pears essentially as an external magnetic field whose value will be adjusted

to fit with the phenomenology of the topological transition, as described in

Fig. 10.

To get some insight into the analytical properties of the magnetization

dynamics it is convenient to transform the Landau-Lifshitz equation (22),

using the stereographic projection.
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w= z/λ w= eiπ/4z/λ w= e−iπ/4z/λ

Fig. 11. Examples of skyrmions of charge Q = 1, constructed from their stereographic

projection w(z) → S(x). As in the previous figures, arrows are for the vector plane
components and colors are for the Sz out of plane component (from yellow Sz = −1, to

red Sz = 1).

The stereographic projection relates the vector field S to the values of

a complex function w = w(z) through the transformation between the unit

sphere and the complex plane z, S(x, t)→ w(z, t), defined by,

Sx =
w + w̄

1 + |w|2 , Sy =
1

i

w − w̄
1 + |w|2 , Sz =

1− |w|2
1 + |w|2 , (24)

and

w =
Sx + iSy
1 + Sz

. (25)

(the over bar denotes conjugation). In the stereographic plane the expres-

sion of a skyrmion reduces to a simple zero (or pole). In Fig. 11 we represent

a skyrmion of charge Q = 1 using simple formulas in the stereographic pro-

jection plane z = x+ iy:

w(z) = eiϕ z

λ
(26)

where the parameter ϕ controls the skyrmion winding and the parameter λ

controls the skyrmion core size. For a fixed z, the function w →∞ increases

with a decreasing λ→ 0. We will use this fact to simplify the computation

of the skyrmion geometry near the topological transition λ→ 0.

The stereographic projected Landau-Lifshitz equation becomes,

i∂tw = −J∂∂̄w +
2Jw̄

1 + |w|2 ∂w∂̄w −
1
2s+ + szw + 1

2s−w
2 , (27)

where s± = sx ± isy and derivatives are taken over z = x + iy. It is

interesting to observe that this equation has the symmetry

w → 1/w , s+ ↔ s− , sz → −sz
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that change the skyrmion charge Q = 1 ↔ −1. Therefore, it is enough to

consider the case Q = 1 with w → z/λ for λ → 0. In this case, near the

singularity, the field w is large and the relevant electron spin component

is the one on the plane. The effective equation contains thus the in-plane

component s− of the electron spin (a term in w2) and the exchange terms

(proportional to J)

i∂tw + J∇2w =
2J

w
(∇w)2 + 1

2s−w
2 (28)

As mentioned above, the fast time for the change in the topology is related

to the dynamics of the magnetization field S(x, t); during this fast process

one may consider that the electron field s(x, t) is fixed. This assumption

is in accordance with the behavior of the b-field; indeed, we observed (c.f.

Fig. 10) that the electrons spin organizes in a coherent structure having

the opposite charge of the skyrmion. It is precisely the precession of the

magnetization around this effective field that trigger the charge change.

Taking therefore, the s− term as constant, equation (28) admits a self-

similar solution,

w(r, ϕ, t) =
1

(t∗ − t)
f(X,ϕ) , X =

r

(t∗ − t)1/2
, (29)

where (r, ϕ) are polar coordinates (z = reiϕ), and X is the self-similar

variable. The singularity forms at a finite time t → t∗, where w diverges.

The amplitude exponent equal to 1, is fixed by the balance of the time

derivative and the source term (in s−), and the stretching length exponent

1/2, results from the balance of the Laplacian with the time derivative.

From these observation, one can estimate an order of magnitude of the

singularity time, which in general will depend on the initial condition and

is not therefore universal, as

t∗ ≈
w(0)

|s(0)| ∼
λ(0)

Bpne
√
E
,

where λ is the skyrmion size, Bpne is the density of the polarized electrons

per site (unit length a) and E the applied electric field (the velocity of

electrons is v ∼
√
E). The stretching factor vanishes at the transition,

which can be related to the vanishing of the core size λ = λ(t) ∼ (t∗ −
t)a, with a an exponent to be determined, although a simple dimensional

argument using w ∼ X/(t∗ − t), gives a = 3/2. Substitution of (29) into
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(28) gives,

i

(
1 + 1

2X∂X

)
f = −J

(
∂XX +

1

X
∂X +

1

X2
∂ϕϕ

)
f

+
2J

f

[
(∂Xf)2 +

1

X2
(∂ϕf)2

]
+
s−
2
f2 , (30)

where the condition Sz(0, 0) = 1 translates into the initial value f(0) = 0.

Contrary to w, f is a smooth function near the origin, which means small

X. Moreover, for large values of the argument we want f diverges, which

correspond to the uniform magnetization at infinity:

lim
X→0

f(X,φ) = 0 , lim
X→∞

f(X,φ) =∞ .

Using the form

f(X,φ) = eiϕF (X) , F (0) = 0 , lim
X→∞

F (X) =∞ . (31)

we observe that the ϕ dependence disappears from everywhere but the

last term, which gives F 2eiϕ. Neglecting this small term (or equivalently,

averaging over the angle), means that the transition process is universal,

it do not depends explicitly on the driven force; the driving term enters

through the specific value of the stretching exponent, and in the definition

of t∗, but do not influences the form of the shape function f .

After these simplifications, we obtain an equation,(
1 +

1

2
X∂X

)
F (X) +

J

X
∂XX∂XF (X) + J

F (X)

X2

− 2J

F (X)
[∂XF (X)]2 = 0 . (32)

amenable at an analytic solution.10 Indeed, the simple substitution g = 1/f

leads to the linear equation:

i
(

1 +
x

2
∂X

)
g(X) =

J

X
∂XX∂Xg(X) (33)

which gives the general form,39

g(X) = AG2,0
1,2

(
ir2

4J |t∗ − t|

∣∣∣∣ 2

− 1
2 ,

1
2

)
+Be−iX2/8JX3

[(
1− 6iJ

X2

)
J0

(
X2

8J

)
+ i

(
1− 2iJ

X2

)
J1

(
X2

8J

)]
(34)

where A,B are integration constants, J0 and J1 Bessel functions, and G the

Meijer function.40,41 From the boundary conditions of F , (31), one deduces
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Fig. 12. Comparison of the analytical formula of the skyrmion self-similar shape (35)

(left) and the numerical result of Fig. 6 (right). The top panel shows the components

of the spin field near the skyrmion core, and the bottom panel the corresponding spin
field.

that B = 0, and only the Meijer function term subsists. Finally, collecting

results the self-similar solution writes,

w(r, ϕ, t) =
C1eiϕ

|t∗ − t|
G2,0

1,2

(
ir2

4J |t∗ − t|

∣∣∣∣ 2

− 1
2 ,

1
2

)−1

(35)

where we came back to the original variables, and defined a new constant

C1 whose value must be determined from the fit to the external solution

(far from the core, for example to match the inner solution to the correct

external chirality). An asymptotic fit to (35) is given by a non-analytic

complex function, representing a zero (like in the unperturbed skyrmion)

whose length scale depends on time and its phase swirls rapidly with the

distance to the center,

w(r, ϕ, t) ≈ C1(1 + i)reiϕ

|t∗ − t|3/2
eir2/4J|t∗−t| , (36)
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which allows an easy computation, using (24), of the skyrmion shape.

In Fig. 12 we compare the numerically computed skyrmion near the

topological transition with formula (35). We use the function 1/w̄ instead

of w, to compare with a Q = −1 skyrmion, and choose a constant C = Jeiϕ0

(with J = 0.4 and ϕ0 = 1.16). The qualitative agreement is satisfying.

It is worth noting that at variance with the regular spiraling around the

skyrmion core of Fig. 11, the tilting of spins near the collapse time is more

complex, involving in particular, lanes of almost parallel arrows converging

to the periphery of the core; this is related to the radial dependency of

the phase in the stereographic projection, absent in the simple pole (or

zero) form of the skyrmion. Other important point is the law of the core

shrinking scale:

λ(t) ∼ |t∗ − t|3/2 . (37)

The exponent is different to the one obtained from the particular solution

of (28),

w(t) =
2i

s−(z)
|t∗ − t|−1 , (38)

for which the exponent is 1 instead of 3/2. However, this exact solution

of (28), is interesting in itself and may also be relevant when the exchange

interaction is overcame by the itinerant spin field (strong current limit).

In such a case, the spatial distribution of the magnetization follows the

spin current adiabatically and evolves rapidly in time with respect to the

electrons (the opposite situation of the usual micromagnetic assumption of

adiabatic electrons in the spin-transfer torque effect).

7. Discussion and conclusions

Magnetism is a beautiful phenomenon and a rich source of physical fun-

damental concepts, such as the concept of a field of forces first introduced

by Faraday, with far reaching consequences in the elaboration of modern

theories; it is also at the origin of important technological advances from

motors to spintronics, and the cause of fascinating effects such the forma-

tion of vortices and skyrmion lattices in nanometric structures, the giant

magnetoresistance or the spin-transfer torque.

In the present paper we covered a very restricted subject around mi-

cromagnetism and its generalization to account for topological transitions

between different magnetization textures. We did not touch upon material
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properties or specific applications, and confined ourself to simple geome-

tries and basic effective models. This approach allowed us to identify in the

special case of the interaction of a spin polarized current with a skyrmion,

the basic mechanisms governing the core switching and the change of the

topological charge. We described a few experimental results, notably about

the manipulation of skyrmions, showing that the spin-transfer torque effect

is responsible of the skyrmion motion and eventually to its nucleation or

annihilation.

More specifically, we proposed a model for the topological change based

on a stochastic Landau-Lifshitz equation for the magnetization field, cou-

pled with the Schrödinger equation for the electron current driven by an

external electric field, and took into account, in addition to the usual Gilbert

damping, an exchange dissipation effect. This model reveals the appear-

ance of an electron vortex structure having the opposite topological charge

of the skyrmion, at the moment of the core reversal.

From the analytical solution of the effective Landau-Lifshitz equation,

valid near the transition, one may suggest a scenario for the topological

change:

• An initial linear stage where the skyrmion shape remains close to

its initial form with a time dependent phase describing its internal

precession between different chirality states:

w(z, t) = w0(z)eiϕ(z,t) =
z

λ0
e−i

∫ t
0

dt′ sz(z,t′) (39)

where the electron z spin component is considered independent of

the magnetization dynamics. Under this condition, and assuming

that the other spin components are zero (s−, s+ = 0), this equa-

tion is an exact particular solution of the Landau-Lifshitz equation:

any complex analytic function make the exchange terms vanish.

During this stage the skyrmion wanders along a cycloid like tra-

jectory, whose particular properties depend not only on the driven

force, here the electron polarized current, but also on the dissipa-

tion mechanisms, here the exchange relaxation. The main influence

of the exchange dissipation is on the life time of the skyrmion, and

not on the path it follows.

• An intermediate stage, dominated by the electron spin in-plane

components (sx, sy), where a particular solution of the form (38)

w(z, t) =
2i

s−(z)
|t∗ − t|−1
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prevails: the magnetization spins precess around the effective field

created by the itinerant spins, supposed to form a coherent struc-

ture in the vicinity of the skyrmion core. This intermediate stage

is regularized by the exchange dissipation, which breaks the con-

servation of the topological charge through the variation of the

magnetization magnitude.

• A final stage, dominated by the exchange interaction, where the

skyrmion core collapses, characterized by the vanishing of the

skyrmion core size at a rate faster than the quasi-adiabatic in-

termediate regime:

w(z, t) ∼ z

λ(t)
, λ(t) ∼ |t∗ − t|3/2

with an exponents of 3/2 > 1. This stage is extremely fast, and

seems to be immune to dissipation (Gilbert and exchange): it in-

volves only microscopic scales and appears, in the continuum limit,

as a finite time singularity.

It is important to note that in the absence of feedback between the

electron current and the magnetization field, according to the exact solution

(39) the skyrmion is stable and tends to follow adiabatically the out-of-

plane component of the spin-polarized current. Only when an important

in-plane component of the electron current develops, the skyrmion core can

be perturbed and eventually reversed.

The microscopic model defined by equations (18)-(20) (SLL), prove to

be able to describe the dynamics of vortices and skyrmions including the

eventual changes in the magnetization field topology. The main physical

ingredient of the model is the interaction between fixed and itinerant spins,

allowing for inhomogeneities in the polarized current density that play a

fundamental role in the topological transitions. The origin of these tran-

sition can be traced back to the lack of regularity of the dynamics, which

is itself a consequence of the scale separation between the quantum effects

relevant at the electron spin level, and the classical evolution of the fixed

spins, whose continuum limit gives the usual Landau-Lifshitz micromag-

netic equation.

Further work on three dimensional (Block point) singularities is in

progress.
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9. R. G. Eĺıas and A. D. Verga, Topological changes of two-dimensional

magnetic textures, Phys. Rev. B 89, p. 134405 (2014).

10. A. D. Verga, Skyrmion to ferromagnetic state transition: A description

of the topological change as a finite-time singularity in the skyrmion

dynamics, Phys. Rev. B 90, 174428 (2014).

11. R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland and

D. M. Tricker, Single-domain circular nanomagnets, Phys. Rev. Lett.

83, 1042 (1999).

12. A. N. Bogdanov and D. A. Yablonskii, Thermodynamically stable “vor-

tices” in magnetically ordered crystals. The mixed state of magnets,

Sov. Phys. JETP 68, 101 (1989), Russian original - ZhETF, Vol. 95,

No. 1, p. 178, January 1989.

13. A. N. Bogdanov, U. K. Rˆssler and C. Pfleiderer, Modulated and lo-



July 25, 2016 18:22 WSPC Proceedings - 9in x 6in verga-CCT15 page 29

29

calized structures in cubic helimagnets, Physica B: Condensed Matter

359-361, 1162 (2005).

14. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz
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