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Anomalous quantum Hall effect induced by disorder in topological insulators
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We investigate a transition between a two-dimensional topological insulator conduction state, characterized
by a conductance G = 2 (in fundamental units e2/h) and a Chern insulator with G = 1, induced by polarized
magnetic impurities. Two kinds of coupling, ferromagnetic and antiferromagnetic, are considered with the
electron and hole subbands. We demonstrate that for strong disorder, a phase G = 1 exists even for ferromagnetic
order, in contrast with the prediction of the mean field approximation. This result is supported by direct numerical
computations using Landauer transport formula, and by analytical calculations of the chemical potential and mass
renormalization as a function of the disorder strength, in the self-consistent Born approximation. The transition
is related to the suppression of one of the spin conduction channels, for strong enough disorder, by selective spin
scattering and localization.
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I. INTRODUCTION

Two-dimensional topological insulators are a particular
state of matter characterized by the coexistence of insulating
bulk states and dissipationless conducting helical edge states
[1,2]. This results from the inversion of the valence and
conduction bands together with a strong spin-orbit coupling:
in helical states the spin and momentum of the carriers are
intimately correlated. A typical material is HgTe, which, when
confined in a quantum well, exhibits the quantum spin Hall
effect [3,4]. Under a potential bias, two edge states from the
two Kramers pairs belonging to a Dirac cone, contribute to
the electric current; the existence of a bulk gap ensures the
quantization of the conductance to the value of G = 2 in units
of e2/h, as can be demonstrated using the Landauer-Büttiker
formula [5]. The quantization of the conductance is a physical
phenomenon analogous to the anomalous quantum Hall effect,
but in a system invariant under time reversal [6,7]. This
quantization is related to the topology of the energy bands;
actually, the integer factor n in G = n [e2/h] is a Chern
number characterizing the total flux of the Bloch wave function
(a vector field) over the Brillouin zone (n = 2 for the helical
edge states of a quantum spin Hall insulator) [8].

Topological insulators, in addition to exhibiting a wealth of
fundamental physical phenomena at the frontier of condensed
matter and relativistic field theory [9], are a promising material
for a variety of applications. In particular, their property of cou-
pling spin and momentum is ideally suitable for applications
in the domain of spintronics, whose goal is to control the spin
degree of freedom by pure electrical means. The conduction
states of a topological insulator can be used in new concepts of
electronic devices, ranging from spin transistors to fast, high
density memories [10–13]. One may also imagine to exploit
their ability to support different quantized conduction regimes
according to the number of protected edge states, for instance,
when doped with magnetic impurities.

Indeed, as a function of the magnetic ordering, a topological
insulator doped with a transition metal can support a quantum
anomalous Hall state, a phase similar to the quantum Hall state
but without an external magnetic field [14–17]. Therefore,
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the system can, in principle, change from a G = 2 state in
its topological time reversal symmetric phase (“Dirac” spin
quantum Hall state), to a G = 1 state in an anomalous quantum
Hall phase (Chern insulator), to eventually a normal insulating
or metallic state. The observation of an anomalous quantum
Hall state in a thin film of a topological insulator was recently
realized experimentally [18].

In this paper, our objective is to demonstrate that a
two-dimensional topological insulator doped with magnetic
impurities undergoes a disorder driven quantum phase tran-
sition between these topologically different states, when the
disorder strength is varied. We start by studying a model of
a HgTe quantum well, with uniformly distributed magnetic
moments polarized perpendicularly to the plane. For the sake
of concreteness, we restrict the analysis to this specific model.
However, thin films of three-dimensional magnetic topological
insulators [chromium doped (Bi,Se)2Te3] are described by a
similar Hamiltonian, and our results are hence relevant for
those materials [16,18,19]. Numerical transport calculations
were performed using the Landauer formula. We investigate
the conductance in a two-terminal setup, as a function of the
disorder strength and the chemical potential. We focused in
particular on the behavior of the edge channels according
to their spin. Finally, we calculate, in the second-order self-
consistent Born approximation, the real part of the self-energy
to obtain explicit expressions of the renormalized mass and
the chemical potential.

II. MODEL

A simple model of a two-dimensional topological insulator
is given by a four band Hamiltonian of the form (in momentum
space) [3]

H0(k) =
(

h↑(k) 0
0 h↓(k)

)
, (1)

where

h↑(k) = A

a
[sin(akx)τx + sin(aky)τy] + mτz

− 2

a2
(Dτ0 + Bτz)[2 − cos(akx) − cos(aky)], (2)
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and h↓(k) = h↑(−k)∗ in the (spin ⊗ band) = σ ⊗ τ base, τ =
(τx,τy,τz) and σ = (σx,σy,σz) are Pauli matrices in band and
spin spaces (with τ0,σ0 identity matrices, and the Kronecker
product is denoted by a pair as in σxτy), k = (kx,ky), k =
|k| is the wave number, a the lattice step, and A,m,B,D are
material parameters. In the following we adopt units such that
a = A = � = 1. In such a system, typical values are m =
−0.137, B = −0.376, and D = −0.281, as computed with
a = 5 nm and A = 364 nm meV, which are standard tight-
binding parameters of HgTe thin films (the unit of energy
is ε0 = 73 meV) [20]. The form of the Hamiltonian insures
invariance with respect to time reversal and an inversed band
structure when m < 0 (mB > 0).

In order to take into account the disorder, we add an
exchange term JI coupling to the impurity’s normalized
magnetic moment Si , Si = 1, at lattice site i (in position
representation):

Vα = JI

∑
i∈I

c
†
i (Si · σ τα)ci, (3)

where ci = (ci+↑,ci−↑,ci+↓,ci−↓) is the annihilation operator
at position xi of “electrons” (+) and “holes” (−) with spin
components up (↑) and down (↓). The sum is over the set of
NI impurity sites I uniformly distributed in the lattice; we
denote nI = NI/N their concentration (N is the number of
lattice sites). The parameter α = 0,z, determines the type of
magnetic coupling with the band states: for α = z the spin
splitting is of opposite sign for electrons and holes, we shall
refer to this case as “antiferromagnetic,” and for α = 0, both
quasiparticles have the same Zeeman splitting, this case shall
be referred as “ferromagnetic.” [15] The impurity magnetic
moment is randomly oriented inside a cone of angle θ0 around
the z axis:

〈S〉 = (0,0,Mz),
〈
S2

z

〉 = 1
3 [2Mz(2Mz − 1) + 1],

where Mz = cos2(θ0/2) is the mean magnetization, and we
have taken into account that Si is modulus 1. Imposing a
magnetic order breaks the time reversal symmetry, modifying
the electronic properties of the edge states. In a mean field
approximation, in the ferromagnetic case, the τ0 term splits

the edge states but does not open a gap, while in the
antiferromagnetic case the term in τz opens in addition a
gap (for one of the two spin polarizations). One may infer
that the former case is trivial and the later one transforms the
topological insulator into a Chern insulator [15]. This picture
can be deeply modified by spin dependent backscattering and
by localization effects due to disorder.

III. RESULTS

Indeed, our numerical computations of the tight-binding
model (1)–(3) demonstrate that in both cases there is a
transition from Dirac to Chern states.

We computed the conductance as a function of the Fermi
energy EF and the disorder strength JI from the Landauer-
Büttiker formula using nonequilibrium Keldysh Green func-
tions and a recursive method [21,22], The conductance G,
is computed in the linear response approximation, from the
retarded GR and advanced GA Green functions [23,24],

G = e2

h

∫ ∞

−∞
dE

∂f

∂E
〈Tr[�RGR(E)�LGA(E)]〉,

where f = f (E) is the Fermi-Dirac distribution, �L,R are
the broadenings due to the left (L) and right (R) leads, the
trace is taken over the band and spin indices, and the angle
brackets are for the disorder averaging. Our code allows
also the computation of local quantities, such as the density
of quasiparticles, the density of states, and the currents.
Specifically, we calculated the transport through a disordered
central region, connected to clean topological insulator leads.
The lattice size is 72 + 256 + 72 × 64, and the physical
quantities were averaged over a set of different impurities
distributions. To minimize the effects of discontinuities, an
intermediate clean region was inserted between the semi
infinite leads and the doped region. We explored a range
of Fermi energies around the gap of the clean system, and
exchange coupling strengths up to the strong disorder regime
(Fig. 1).

If one replaces the random potential (3) by its mean
value (proportional to the polarization Mz), the resulting

FIG. 1. (Color online) Conductance phase diagram in the Fermi energy EF , disorder strength JI parameter space, for the antiferromagnetic
(left) and ferromagnetic (right) subband couplings. The topological insulator phase, for EF ≈ 0 in the bulk gap (|EF | < |m| = 0.137), is
characterized by G = 2 (in dark blue) at weak disorder; a Chern insulator state G = 1 (in light blue) appears at stronger noise intensity in
both cases. The polarization of impurities is Mz = 1, and their concentration is nI = 0.4 for the antiferromagnetic case, and nI = 0.2 for the
ferromagneitic case.
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Hamiltonian can be readily diagonalized, and the modification
of the energy bands predicted. When the coupling with elec-
trons and holes are of different signs (subband antiferromag-
netic coupling), the spin-up band develops a gap at a critical
value of the disorder (in our case, JInIMz = 0.137 = −m).
In the other case (subband ferromagnetic coupling), bands of
opposite spin cross without opening a gap. Therefore, the mean
field approximation predicts the disappearance of one spin
channel in the antiferromagnetic case, and a simple transition
to a normal state in the ferromagnetic case. In both cases, the
topological insulator bulk gap vanishes linearly with the noise
strength (the chemical potential is a linear function of JI ).

The numerical computations represented in Fig. 1 qualita-
tively confirm this scenario. We show the conductance in the
parameter range corresponding to the bulk gap (|EF | < |m| =
0.137) of the clean system, from weak to strong disorder,
and for the two kinds of magnetic coupling. In particular,
the antiferromagnetic case (left panel), shows regions in the
(JI ,EF ) plane, with G = 2 (dark blue), and G = 1 (light
blue), corresponding to transport with two active channels
(topological insulator state) and one active channel (Chern
insulator state), respectively. However, in the ferromagnetic
case (right panel), a region with G = 1 is observed, in
contradiction with the mean field prediction. (Note that the
relevant states for the quantized conductance are in the bulk
gap, which may disappear for strong polarized disorder).

The phase diagram of the antiferromagnetic case shows
an anomalous quantum Hall state for disorder strengths in the
range JI ≈ 0.3–0.4; the mean field prediction is JI ≈ 0.35 (we
used nI = 0.4 and Mz = 1). It is interesting to observe that for
a fixed value of JI , it is possible to change the conduction
state from G = 2 to G = 1 by increasing the Fermi energy.
In the ferromagnetic case the extension of the G = 2 phase

is similarly well described by the mean field approximation
(with nI = 0.2 and Mz = 1 the mean field closing gap value is
JI ≈ 0.7). A large G = 1 region appears at strong disorder and
mostly negative Fermi energies. The extension and even the
existence of these quantized conductance states are obviously
dependent on the underlying symmetries of the system.
Decreasing the polarization of the impurities (Mz < 1), that
is, allowing in-plane fluctuations of their magnetic moments,
breaks the spin orientation conservation (the Hamiltonian no
longer commutes with the vertical component of the spin), and
backscattering and spin flipping of the edge states shrinks the
topological insulator phase. Simulations for various polariza-
tion states (not shown), suggest that the Chern insulator phase
is more robust in the case of ferromagnetic subband coupling
than in the antiferromagnetic case. As a matter of fact, the
response of the system to the random perturbations produced
by the spatial inhomogeneities in the distribution of impurities
is qualitatively different in the two cases. The Chern insulator
phase for ferromagnetic coupling, being an effect of strong
disorder, is naturally insensitive to these fluctuations. In the
antiferromagnetic case, we note important fluctuations of the
conductivity in the region around the G = 1 phase. As a result,
the G = 1 region itself slightly moves in the (JI ,EF ) space
for each noise distribution. Therefore, the effect of averaging
is to blur the contours of the Chern phase region, reducing
its extension. We verified that fluctuations are completely
suppressed in both G = 2 and G = 1 phases.

For fully polarized impurities, the microscopic mechanism
of the transitions between different conductance regimes, can
be investigated by computing the bond current field [23],

Iij = −2e

�

∫ ∞

−∞

dE

2π
Tr[tijG

<(E,j,i) − tj iG
<(E,i,j )],

FIG. 2. (Color online) Local currents in various conduction states for the antiferromagnetic (left) and ferromagnetic (right) cases: G = 2
(top), G = 1 (middle) and G � 1 (bottom). The Chern insulating state G = 1 exhibits the persistence of the spin-down edge state. The
background color represents the spin-up nonequilibrium density excess d↑, from full spin-up polarization in white, to full spin-down polarization
in black.
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where Iij is the current between neighboring sites (i,j ), G<

is the lesser Green function (it is a matrix in band and spin
indices), and tij are the jump matrices; and the nonequilibrium
spin density,


n↑↓(i) =
∫ μ+eV

μ−eV

dE

2πi
G<

↑↓(E,i,i),

where V is the external bias voltage. The local currents
(arrows) and the spin-up density excess (background gray
levels),

d↑ = 
n↑

n↑ + 
n↓

,

are represented in Fig. 2.
The dependence on the relative orientation of the carriers’

spin and impurities’ magnetic moment leads to a rich variety
of interactions affecting differently the edge states according
to their polarization. In particular, the effect of magnetic
disorder is to selectively localize bulk states depending on
their spin. Comparing the paths of the carriers through the
scattering-off-impurities region between the antiferromagnetic
(left) and ferromagnetic (right) subband coupling cases, we

observe that they are qualitatively similar (we used the same
numerical parameters in Figs. 1 and 2). The main difference is
in the width of the edge channels, especially in the bulk region.
In the topological insulator phase (top row) both the spin-up
top channel and spin-down bottom channel pass through
the disordered region; in the antiferromagnetic case the top
channel deeply penetrates in the bulk. In the Chern insulator
phase (middle row) the suppression of the spin-up component
is much stronger in the ferromagnetic case. The nonquantized
conductance state is shown in the bottom row. The strong
scattering allows the connection between the two edges,
leading to a situation where one of the two spins polarizations
is completely filtered out; an accumulation of the other spin
polarization can therefore appear on the opposite lead side. The
system acts as a spin selection filter in the two cases shown in
Fig. 2: G = 1 for ferromagnetic symmetry (middle row, left)
and G < 1 for the antiferromagnetic symmetry (bottom, right).

These results suggest that the setting up of the anomalous
quantum Hall state for antiferromagnetic and ferromagnetic
couplings is not due to the same microscopic mechanism. In
the antiferromagnetic case it is a consequence of the opening
of a band gap for one spin species. The ferromagnetic case is

FIG. 3. (Color online) Local density of states associated with the local currents of Fig. 2. Antiferromagnetic (left column) and ferromagnetic
(right column) cases. For each transport regime G = 2, G = 1, and G < 1 (top, middle, and bottom rows, respectively), the spin-up (top) and
spin-down (bottom) components are presented.
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at variance, an effect of the disorder and the establishment of a
spin dependent mobility gap. The emergence of localized states
can be uncovered by the measure of the local density of states,

ρ↑,↓(E,i) =
∑

n

〈n|c↑,↓(i)†c↑,↓(i)|n〉δ(E − εn)

= − 1

π
Im GR

↑,↓(E,i,i)

where |n〉 and εn are eigenstates and eigenvalues of H , and
GR(E,i,i) the retarded Green function computed at site
i. In Fig. 3 we show ρ↑,↓(E,i) in a logarithmic scale, for
the same parameters (energy and disorder strength) used
in Fig. 2: antiferromagnetic (left) and ferromagnetic (right)
cases, for three values of the conductance, G = 2 (top),
G = 1 (middle), and G < 1 (bottom). Each panel includes the
spin-up (ρ↑, top) and spin-down (ρ↓, bottom) components.
The presence of open channels is visible in each case: two
spins in the G = 2 conduction regime, and one spin in G = 1
and normal conduction regimes. The main physical difference
between the two coupling modes, antiferromagnetic and
ferromagnetic, appears in the G = 1 anomalous quantum Hall
state. In the antiferromagnetic case, there are energy states
available for the two spins polarizations. This is in contrast
with the complete absence of available spin-up states in the
ferromagnetic case. Therefore, we have evidence showing
that the mechanism allowing the anomalous quantum Hall
effect for ferromagnetic coupling does not need a bulk gap but
rather a mobility gap and the selective localization of one spin
polarization state (in analogy with the topological Anderson
insulators [25]). For the antiferromagnetic case, localization
appears at stronger disorder (see bottom row, left of Fig. 2).

IV. DISCUSSION AND CONCLUSIONS

An analytical computation of the renormalized Fermi
energy and mass as a function of the disorder strength, in
the self-consistent Born approximation, allows us to get some
insight into the effects of the magnetic impurities on the
transport properties and to confirm the qualitative behavior
depicted by the numerical simulations. We are specifically
interested in the dependence of these renormalized quantities
on the spin of the current carriers and their coupling with the
spatially distributed magnetic moments. We follow a method
used to study the transition of an insulator to a topological
insulator, triggered by Anderson localization [26–28].

A. Born approximation

The thin film Hamiltonian becomes, in the small wave
number approximation,

H =
∑

k

c
†
k[H0(k) − μ]ck +

∑
k,q

c†qVα(k)ck+q, (4)

where we added a chemical potential term μ to the unperturbed
Hamiltonian H0. The diagonal blocks of H0, h↑,↓ of Eq. (1),
are now given by

h↑(k) = −Dk2τ0 + (m − Bk2)τz + k · τ ,

h↓(k) = −Dk2τ0 + (m − Bk2)τz − k · τ ∗,
(5)

and the random potential is, in Fourier space,

Vα(k) = JI

∑
i∈I

Si · σ ταeik·xi . (6)

We are interested in the renormalization of the mass m and
the chemical potential μ, which depend on the real part of
the self-energy (E) [27], and eventually in their splitting
depending on spin. It is convenient to take into account the
mean value of the random potential 〈V 〉 in the free Green
function (the angle brackets stand for the Si and xi probability
distribution integration),

gα(E,k) = [E + μ − H0(k) − 〈Vα〉]−1, (7)

where 〈Vα〉 = 〈Vα(0)〉,
〈Vα〉 = nIJIMz σzτα ,

and a suitable continuation to complex energy E is assumed.
The explicit form of the mean field Green function can be
written as

g(E,k) =
(

g↑(E,k) 0
0 g↓(E,k)

)
(8)

where

g↑ = 1


↑
[(E + μ↑ + Dk2)τ0 + (m↑ − Bk2)τz + k · τ ], (9)

g↓ = 1


↓
[(E + μ↓ + Dk2)τ0 + (m↓ − Bk2)τz − k · τ ∗], (10)

where we defined spin dependent chemical potential (μ↑↓) and
mass (m↑↓) as

μ↑ = μ − v, μ↓ = μ + v, m↑ = m↓ = m (11)

with v = nIJIMz, for the ferromagnetic case (note that the
noise term v enters through the chemical potential), and

μ↑ = μ↓ = μ, m↑ = m + v, m↓ = m − v (12)

for the antiferromagnetic case (here the random potential adds
to the mass term); the determinants 
↑,↓ = 
↑,↓(E,k), are
given by


↑,↓ = (E + μ↑,↓ − k2)2 − (m↑,↓ − Bk2)2 − k2

(note that they only depend on the wave number modulus).
The random averaged Green function is defined in terms of

the self-energy,

G(E,k) = 〈(E − H )−1〉 = [g−1(E,k) − (E)]−1. (13)

where the self-energy (E) is computed from a perturbation
series in powers of the random potential [the dependence
on the kind of magnetic order is taken in the form of the
parameters (11) and (12)]. It depends only on the energy:
after averaging over the impurities postions and magnetic
moments orientations (isotropic in the plane), one should
recover translation invariance. To second order [29],

(E) =
∑

q

〈
V (q − k)g(q)
V (k − q)〉, (14)

where 
V = V − 〈V 〉. Only diagonal terms survive to the
disorder averaging and integration over the polar angle of the
internal wave vector. Transforming the sum into an integral,
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and performing the matrix multiplication and noise averaging,
one gets,

(E) = nIJ
2
I

∫ k∗

0

q dq

2π
[vzgz(E,q) + v⊥g⊥(E,q)] (15)

where we introduced a lattice cutoff k∗ = π (at the border of
the Brillouin zone), and we defined the diagonal matrices

gz = diag

[
E + μ↑ + Dk2


↑
τ0 + m↑ − Bk2


↑
τz,

E + μ↓ + Dk2


↓
τ0 + m↓ − Bk2


↓
τz

]
(16)

and

g⊥ = σ0τxgzσ0τx , (17)

the same matrix as gz with the spin sectors exchanged, and

vz = 〈
S2

z

〉 − n2
IM

2
z = (

1 − n2
I

)
M2

z + 1
3 (1 − Mz)

2,

v⊥ = 1 − 〈
S2

z

〉 = 2
3 (1 − Mz)(1 + 2Mz); (18)

in the fully polarized case Mz = 1, only the first term in vz

remains; the fluctuation effects are maximized for a impurity
concentration nI = 1/

√
3. In fact, the q integral in (15) is, in

the continuous limit, logarithmically divergent; hence, keeping
only the dominant terms contributing to the real part near the
Fermi energy EF , one obtains

Re ↑↓ = nIJ
2
I

8π

Bτz − Dτ0

B2 − D2

[
vz ln

∣∣∣∣ (B2 − D2)k4
∗


↑↓(EF ,0)

∣∣∣∣
+ v⊥ ln

∣∣∣∣ (B2 − D2)k4
∗


↓↑(EF ,0)

∣∣∣∣
]
, (19)

where the dependence on the impurities’ polarization is
through the parameters μ↑↓ and m↑↓ present in the determi-
nants 
. The term proportional to τ0 renormalizes the Fermi
level (μ) and the one in τz renormalizes the gap (m). We
observe that longitudinal (vz) and transverse (v⊥) fluctuations
introduce corrections of the gap and energy levels that depend
on spin; in particular, transverse fluctuations couple the two
spin polarizations, through which flipping of the spin by
scattering becomes possible.

This renormalization also has an impact on the behavior
of the spin dependent edge states. A simple computation [30]
leads to the following conditions for the existence of edge
states:

m↑↓
B

= m

B
+ nIJ

2
I

8π (B2 − D2)

[
vz ln

∣∣∣∣ (B2 − D2)k4
∗

(EF ∓ v)2 − m2

∣∣∣∣
+ v⊥ ln

∣∣∣∣ (B2 − D2)k4
∗

(EF ± v)2 − m2

∣∣∣∣
]

> 0 (20)

(v = nIJIMz, the upper and lower signs correspond to spin up
and spin down, respectively) for the ferromagnetic case, and

m↑↓
B

= m ± v

B
+ nIJ

2
I

8π (B2 − D2)

[
vz ln

∣∣∣∣ (B2 − D2)k4
∗

E2
F − (m ± v)2

∣∣∣∣
+ v⊥ ln

∣∣∣∣ (B2 − D2)k4
∗

E2
F − (m ∓ v)2

∣∣∣∣
]

> 0 (21)

for the antiferromagnetic case. In the ferromagnetic case the
main effect is a decrease of the characteristic penetration length
and opposite shifts of the Fermi energy depending on spin.
In the antiferromagnetic case, the characteristic length of the
spin-up state tends to increase, making this channel penetrate
into the bulk material [15,31]. This effect may be considered
as the onset of the G = 2 to G = 1 transition.

In principle, the logarithmic term in (19) can change sign
for strong enough disorder, typically when v � B, inducing a
qualitative change in the topological properties of the insulator.
Although this regime is somewhat outside the validity of
the perturbation expansion, it indicates that the effect of
fluctuations can be nontrivial, as in the topological insulator
transition driven by Anderson localization [26].

B. Phase diagram

The perturbation expansion, even within the mean field
approximation that accounts for the spin splitting, cannot
be extended to finite disorder. Moreover, nondominant terms
neglected in the calculation of the integral in (15) possess
symmetry properties different from the kept ones, and their
contribution can become significant at finite disorder. It is
therefore convenient to compute the self-energy using instead
the self-consistent approximation by replacing g in (14) by the
full averaged Green function (13); this allows a resummation
of all noncrossing diagrams and extend the range of validity
of the renormalization of the bare parameters as a function of
the disorder.

The numerical resolution of the implicit equation for 

gives the renormalized values of the up and down masses and
chemical potentials (barred quantities),

Re  ≡ −diag [ (m̄↑ − m↑)τz + (μ̄↑ − μ↑)τ0,

(m̄↓ − m↓)τz − (μ̄↓ − μ↓)τ0], (22)

as a function of the Fermi energy EF and disorder strenght JI .
Explicitly, the self-consistent equations for the renormalized
parameters are

μ̄↑ = μ↑ − nIJ
2
I

N2

∑
kx ,ky

[
vz


↑
(EF + μ̄↑ + Dk)

+ v⊥

↓

(EF + μ̄↓ + Dk)

]
, (23)

μ̄↓ = μ↓ − nIJ
2
I

N2

∑
kx ,ky

[
vz


↓
(EF + μ̄↓ + Dk)

+ v⊥

↑

(EF + μ̄↑ + Dk)

]
, (24)

and

m̄↑ = m↑ − nIJ
2
I

N2

∑
kx ,ky

[
vz


↑
(m̄↑ − Bk) + v⊥


↓
(m̄↓ − Bk)

]
,

(25)

m̄↓ = m↓ − nIJ
2
I

N2

∑
kx ,ky

[
vz


↓
(m̄↓ − Bk) + v⊥


↑
(m̄↑ − Bk)

]
,

(26)
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FIG. 4. (Color online) Phase diagram computed from the self-consistent Born approximation. Antiferromagnetic (left) and ferromagnetic
(right) full polarized cases. The blue shaded region corresponds schematically to the G = 1 phase. Solid lines stand for spin-up bands, dashed
lines for spin-down bands; dotted lines separate the topological phase (on the left side) from the trivial ones (towards strong disorder); dot-dashed
lines are for the chemical potential levels.

where Bk = B(4 − 2 cos kx − 2 cos ky), Dk = D(4 −
2 cos kx − 2 cos ky), and


↑ = (EF + μ̄↑ + Dk)2 − (m̄↑ − Bk)2 − sin2 kx − sin2 ky ;

and there is a similar expression for the spin-down determinant

↓. We note that fluctuations introduce a coupling between
spin-up and spin-down parameters that vanishes in the full
polarized case (v⊥ = 0). Indeed, as already present in Eqs. (19)
of the perturbation series, in-plane fluctuations (proportional
to v⊥) break σz-spin conservation, and couple spin orientations
through scattering off the impurities.

We represent in Fig. 4 the gap edges μ↑↓ = ±m↑↓ for the
antiferromagnetic (left) and ferromagnetic (right) cases, of the
electron (E↑, E↓) and hole (H↑, H↓) bands, together with
the band inversion thresholds for the spin-up (m↑ = 0) and
-down (m↓ = 0) subbands, and the spin dependent chemical
potentials (μ↑,μ↓).

In the antiferromagnetic case, the crossing of H↑ and E↑,
coinciding with the m↑ = 0 threshold, points out the opening
of a gap, and the restoring of a topologically trivial state of the
spin-up subband. The G = 2 and G = 1 regions should locate
on the left and right of the m↑ = 0 vertical line, respectively (as
schematically represented by the blue shaded region, around
the μ↓ line).

In the ferromagnetic case, a remarkable effect arises:
the bending towards positive energies of both E↑ and E↓
subbands. Due to this bending the electron bands can cross
the corresponding hole bands with the same spin. The m↑ line
intersects the H↑ and E↑ crossing, as in the antiferromagnetic
case, and a G = 1 region can develop on its higher disorder
strength side. This region is delimited by the crossing of the
spin-down subbands and the m↓ = 0 line.

These results suggest that, although the mechanisms are
different, the effective band structure leading to the anomalous
quantum Hall state is essentially the same for the two coupling
modes (equal or opposite spin splitting sign of the electron
and hole subbands). In the ferromagnetic case, it is a strong
disorder effect.

C. Conclusion

The main result of the present study is that a magnetically
doped two-dimensional topological insulator supports differ-
ent quantized transport regimes as a function of the disorder
strength. The transition between a topological insulator phase,
characterized by the presence of two spin polarized channels,
and a Chern insulator phase, with one spin conduction channel,
is related to the selective suppression of one of the spin
states. In particular, we observed the emergence of this
anomalous quantum Hall state, in the case of equal sign
coupling of the electron and hole subbands with the magnetic
impurities (ferromagnetic case). This is a disorder driven
effect that situates beyond the range of validity of the mean
field approximation. The complete neglect of fluctuations,
leads to a simple renormalization of the chemical potential,
without incidence on the mass gap. At variance, in the
antiferromagnetic case (opposite signs couplings for electrons
and holes), this approximation is enough to explain the opening
of a gap for one spin band.

More generally, the effect of disorder manifests by a
renormalization of the mass and chemical potentials, which
become spin dependent due to the fluctuations’ contributions.
In the ferromagnetic case, strong disorder causes a bending of
the bands that allows a nontrivial crossing. As revealed by the
local density of states and the behavior of the local currents, the
appearance in this case of the Chern insulator state is related
to the localization of one of the spin bands. As a consequence,
the device behaves as a spin filter, with accumulation of the
allowed spin conduction band on the opposite lead.

The discovery of quantum Hall systems “without
Landau levels,” [6] their possible realization using topological
insulators conveniently magnetized [14–16], and their final
experimental demonstration [18], were based on ideas about
the topology of the electronic bands and its associated Chern
number, and on the control of edge states using an intrinsic
spin dependent Zeeman splitting. These basic mechanisms
are rather independent of the detailed structure of specific
materials and can, in principle, be exhibited in different setups
and experimental conditions. The present study further extends
the applicability of these fundamental processes, adding the

075101-7



LAURENT RAYMOND, ALBERTO D. VERGA, AND ARNAUD DEMION PHYSICAL REVIEW B 92, 075101 (2015)

effect of disorder. Disorder can change the topology of the
electronic bands leading to a Chern insulator, under conditions
that without disorder it should not exist.

In this work we considered a fixed polarization of the
impurities. An interesting open question is that of the magnetic
texture resulting from the self-consistent interaction with the
electronic degrees of freedom, and its consequences on the
transport.
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