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Skyrmion to ferromagnetic state transition: A description of the topological change as a finite-time
singularity in the skyrmion dynamics
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We investigate the topological change in a Belavin-Polyakov skyrmion under the action of a spin-polarized
current. The dynamics is described by the Schrödinger equation for the electrons carrying the current coupled
to the Landau-Lifshitz equation for the evolution of the magnetic texture in a square lattice. We show that
the addition of an exchange dissipation term tends to smooth the transition from the skyrmion state to the
ferromagnetic state. We demonstrate that this topological change in the continuum dissipationless limit can be
described as a self-similar finite-time singularity by which the skyrmion core collapses.
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I. INTRODUCTION

The equilibrium magnetization field in ferromagnetic nan-
odots and in chiral magnets often possesses a nontrivial
topology. Magnetic vortices in permalloy [1] and skyrmion
lattices in transition-metal compounds [2] were experimentally
observed. These configurations are interesting because a
change between states having different topologies (switching
of the vortex core, motions, and annihilation of skyrmions)
can be used as basic states in nonvolatile memories and
spintronic devices [3]. A generic physical mechanism that
can trigger these topological changes without magnetic fields
is the spin-transfer torque [4]. It consists of the interaction
between itinerant spins, produced by a spin-polarized current
and magnetic moments (fixed spins) of the magnetic material
when the underlying magnetization is nonuniform.

From a more general point of view, physical systems in-
volving defects or topological singularities are among the more
rich and interesting to investigate; the difficulty to consistently
deal with these singularities resides in the coupling of a
large range of scales relevant to describe their structure and
dynamics. For instance, in the domain of magnetic textures in
nanoscale systems, the switching of a magnetic vortex entails
the nucleation of a Bloch point, which is a magnetization-field
singularity [5,6]. The characteristic length, time, and energy
scales involved in the formation of the Bloch point range from
the crystal lattice where the dominant effect is the neighboring
spins exchange interaction to the intermediate micromagnetic
structures and up to the geometry of the ferromagnet through
the dipolar magnetic field [7]. A similar difficulty appears in
the transition from a skyrmion state towards a ferromagnetic
state in chiral magnets, driven by a localized electric current
pulse where spin orbit together with exchange couplings are
present [3,8].

The dynamics of magnetic vortices is usually studied in the
micromagnetic approximation, based on the Landau-Lifshitz
equation [9]. Within this framework, to account for the
spin-transfer torque one has to extend the Landau-Lifshitz
equation with terms proportional to the current and the
magnetization gradients [10]. However, this approach neglects
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strong nonadiabatic effects, such as the generation of current
inhomogeneities due to the scattering of electrons on the
magnetization gradients. In order to investigate topologi-
cal changes in ferromagnets, we recently proposed a self-
consistent model where electrons obey quantum dynamics (see
Ref. [11] and references therein).

In this paper we develop this model further, focusing on the
skyrmion-ferromagnetic transition induced by a spin-polarized
current. We are in particular interested in the relationship
between topological change and dynamics. In analogy with
the collapse of Langmuir solitons [12] we ask whether a
finite-time singularity would arise in the evolution of a driven
localized magnetic structure. The basic magnetic texture we
consider is a stabilized version of the Belavin-Polyakov [13]
skyrmion, appropriated to a system defined on a periodic
lattice. After a presentation of the basic equations coupling
the Schrödinger equation for the itinerant spins (electrons)
to the Landau-Lifshitz equation for the ferromagnetic spins
(fixed classical magnetic moments), defined on a square lattice,
we present a qualitative model to show the basic mechanism
of the transition. The transition from the skyrmion state to
the ferromagnetic state implies a change in topology and
thus a violation of the topological charge conservation. We
include an exchange dissipation term [14] that in principle
can smooth the transition. We performed a series of numerical
computations to study the phenomenology of the transition and
to identify the mechanism of the topological change and their
dependence on the dissipation. The main result of this paper
is the description of the topological change as a finite-time
singularity in the dynamics of the skyrmion (in the continuum
limit). A self-similar solution of the Landau-Lifshitz equation
driven by the spin-torque term is found and compared to the
texture observed in simulations.

II. MODEL

The motion of an electron in a lattice of step a and size L2

is given by the Heisenberg equation for the two components
(for the spin-up and spin-down) annihilation operator ci at
site i,

i�ċi(t) = [ci(t),He(t,Si)], (1)

1098-0121/2014/90(17)/174428(8) 174428-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.174428


ALBERTO D. VERGA PHYSICAL REVIEW B 90, 174428 (2014)

where He is the time-dependent Hamiltonian,

He = −ε
∑
〈i,j〉

eiφi,j (t)c
†
i cj − Js

∑
i

Si · (c†i σci)

− Bp ·
∑

i

c
†
i σci, (2)

where the fixed Si and itinerant spins c
†
i σci (σ is the vector

of Pauli matrices) are coupled by the exchange constant Js ; ε

is the energy to jump from site i = (xi,yi)/a = xi/a to its
neighbor j . The system is subject to a constant electric field E

in the x direction, responsible for the phase factor appearing
in the kinetic-energy term,

φi,j (t) = (xi − xj ) · x̂
eEt

�

(with −e as the electron charge and x̂ as the unit vector in
the x direction). The last term in Eq. (2) contains the current
polarization effective magnetic field Bp in energy units.

The magnetic texture follows the dynamics given by the
Landau-Lifshitz equation,

�
∂

∂t
Si = Si × ( f i − αSi × f i + Js si) − d, (3)

where the effective field,

f i = −δHS

δSi

(4)

is derived from the coarse-grained free energy,

HS = J

2

∑
i

(∇Si)
2. (5)

J is the Heisenberg exchange constant, and α is a damping
constant. The last term d includes a dissipation mechanism to
be specified below. This equation is coupled to the equation
for the electrons through the torque in Js where the electron
spin is computed by the formula si(t) = 〈c†i (t)σci(t)〉 where
the bracket is for the quantum mean value. We use periodic
boundary conditions in order to have a well-defined topology.
Note that ∇ is a difference operator acting on the lattice
sites. In practice, the difference operators are computed
in Fourier space and transformed to the lattice space. In
units such that ε = a = � = e = 1, typical parameters are
as follows: Js = 1, J = 0.4, α = Bp = ne = 0.1, E = 10−3,
and L = 128. With these parameters, the orders of magnitude
of physical units are as follows: length a = 1 nm, time t0 =
1 fs (the magnetization characteristic time is ∼10t0), energy
ε = 1 eV, and electric field E0 = 1 × 103 V m−1.

Without the dissipation term, the systems (1)–(5) conserve
the magnetization modulus |S| = 1 and the topological charge
Q = Q(t),

Q =
∫

dx
4π

q(x,t), q = S · ∂x S × ∂y S, (6)

where the integration is over the lattice and q is the topological
charge density (note that the change Sz → −Sz, change the
sign of Q).

Topological changes, such as the transition between a
skyrmion state and a ferromagnetic state or the switch of vortex
polarity need in the continuum limit a transition state where the

core magnetization vanishes at some point; this is impossible in
the framework of the Landau-Lifshitz equation, which strictly
conserves the norm of S. For instance, in the intermediate
state of a three-dimensional vortex switching, a Bloch point
is nucleated [5]. The inclusion of a dissipation mechanism
relevant in the low-temperature and strong magnetization
gradients limit is essential to allow a regularization of the
dynamics. A simple phenomenological theory allows for
deriving a general form of an exchange-driven dissipation
term [14]. The rate of dissipation of the total magnetic energy,
taken as a functional of the magnetic moments distribution
HS[S], is

�ḢS = −�

∫
dV f · Ṡ =

∫
dV f · d,

where we used (4); the integration is on the system’s volume
(in units of the lattice cell size). The dissipation vector can be
expanded as in the linear-response theory in the gradients of
the effective field f . In the simplest isotropic case and taking
into account that the corresponding term must appear as a
divergence in the energy balance equation, the most general
form is as follows:

d = β∇2 f i , (7)

with β as a positive nondimensional constant. This choice
gives �ḢS = −β

∫
dV (∇ f )2 < 0. Dissipation effects not

depending on gradients are already included in the terms
proportional to α in Eq. (3). The vector (7) describes the energy
dissipation related to exchange interactions and thus involving
neighboring magnetic moments: d ∼ βJ∇4 S is analogous to
a curvature dissipation term. It breaks the conservation of the
magnetization norm.

III. PHENOMENOLOGY OF THE TRANSITION

We performed numerical computations based on the inte-
gration of the coupled equations (1) and (3) to investigate the
transition between an initial nontrivial topological state and a
final uniform magnetization state, driven by an electron current
initially uniformly polarized. We use a full spectral model on
the lattice to compute the spatial spin texture of electrons and
classical spins. Time stepping of the Schrödinger equation
for the electron quantum state |ψ(i,t)〉 = c

†
i |0〉, where |0〉 is

the electron initial state, use a splitting method that exactly
conserves the norm of the quantum state.

The initial distribution of the magnetization is computed
using a relaxation method to find a local equilibrium solution
of the Landau-Lifshitz equation. We start with a Belavin-
Polyakov skyrmion of topological charge Q = −1,

Sx = 2λr cos φ

λ2 + r2
, Sy = 2λr sin φ

λ2 + r2
, Sz = −λ2 − r2

λ2 + r2
,

(8)

of size λ � L with the central core pointing in the z-down
direction and with magnetization in the up direction at infinity
(Fig. 1 left panel). This continuous and extending to infinity
magnetization field relaxes towards a periodic distribution
defined on the square lattice. However, at scales � intermediate
between the lattice and the spatial period lengths a � � � L,
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FIG. 1. (Color online) Initial magnetization used in numerical computations in the form of a Q = −1 skyrmion (left). Arrows give the
magnetization in the plane, and color gives its z component: At the center S = (0,0,−1). The three right panels show skyrmions with topological
charge Q = 1 and size λ defined by the stereographic projection on the complex plane w = w(z) for (left) w = z/λ, (center) w = (1 + i)z/λ,
and (right) w = (1 − i)z/λ. The opposite charge is obtained by the transformation w → 1/w̄, which changes Sz → −Sz. A polarized current
induces a precession motion that changes the arrow’s orientation around the center in time. The lattice side is L = 128a and λ = 20a.

it is similar to the continuous distribution as seen in Fig. 1.
The parameter λ is chosen to satisfy this requirement. The
skyrmion is driven by an electron current, which is taken to be
initially uniform, polarized in the up direction, parallel to the
fixed spins orientation far from the core region.

The numerical computations show an initial transient
characterized by the deformation of the skyrmion core and
the generation of spin waves if the electric field is strong
enough. After this transient, a quasistationary state sets in. One
observes a smooth precession motion of the fixed spins and
depending on the intensity of the current, a displacement of the
skyrmion core. The topological charge is not affected by the
transient or the subsequent regular dynamics of the magnetic
texture. During the evolution of the skyrmion, its core size
decreases. The reduction of the core dramatically accelerates
at some given time at which a transition to another state with a
different topology occurs. In Fig. 2 we show snapshots of the
skyrmion core region during the topological change.

The scenario of the transition between the skyrmion and
the ferromagnetic states can be influenced by the dissipation.
The first effect of the dissipation is to break the invariance
of the topological charge, which is no longer restricted
to take integer values. We observe in particular that the
exchange dissipation term favors the transition from the
skyrmion state to the ferromagnetic state. Indeed, we plot in
Fig. 3 the evolution of the topological charge as a function of

the dissipation strength. In addition to the increasing instability
of the skyrmion state with increasing dissipation, it is worth
noting that the characteristic transition time becomes longer
with dissipation. This is, as expected, a regularization effect.
In the limit of vanishing dissipation the transition produces,
ultimately, by the change in a single spin [11].

A quantitative explanation from the topological point of
view of the mechanism behind the transition is based on the
behavior of the electron spins. We discuss in the following
section the dynamical point of view of the transition. As we
can observe in Fig. 4, although the electrons’ dynamics is
almost stochastic (due to multiple scattering and interference
effects), their spins organize near the skyrmion core. This can
be verified by measuring the topological b field, defined in
a similar way as the density q of topological charge, but
substituting s to S,

b = n · ∂xn × ∂yn, n = s/|s| (9)

represented in Fig. 4 by the color density. We verify that the
transition is associated with the nucleation of a well-localized
electron vortex having a topological charge density opposite
to the one of the background skyrmion (the white spots that
appear near the skyrmion core at times t = 5936,1748,1100
for the three values of the dissipation, respectively). We
remark, that despite the dissipation, the characteristic length
scale of these structures is comparable with a few lattice steps,

FIG. 2. (Color online) Magnetization field near the skyrmion core at the topological change (at time t ≈ 5936). The core collapse (two
left panels t = 5912,5936t0) is followed by the emission spin waves (two right panels t = 5940,5960t0). The magnetization is shown in full
resolution, an arrow per lattice site, in a square of side 64a. Parameters: β = 0.001, E = 10−3E0.
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FIG. 3. Topological charge Q as a function of time (in adimensional units) for different values of the exchange dissipation parameter: (left)
β = 0.001, (center) β = 0.01, and (right) β = 0.1. The initial skyrmion charge is Q = −1, and the current is polarized in the −z direction.
The change from Q = −1 to Q = 0 corresponds to a transition from the skyrmion to the ferromagnetic sate. Increasing the dissipation strength
results in a decrease in the time necessary to reach the transition: t = 5936, 1748, and 1236 for β = 0.001, 0.01, and 0.1, respectively. The
electric field is E = 10−3.

confirming their topological nature (as defects in the elastic
field of a crystal). These structures, highly fluctuating in the
low dissipation limit, tend to stabilize at high dissipation. In
particular, the white spot of localized b field, appearing at
t ≈ 1100 in the case of β = 0.1 of Fig. 4 (right panel), is
always present at t = 1260 before fading out. The behavior of
the electron spin field is similar in the intermediate dissipation
case of β = 0.01 but on a much shorter time scale. In the three
cases we observe a strong spin field parallel to the plane in
the neighborhood of the skyrmion center forming a vortexlike
structure.

These observations naturally lead to a scenario in which the
topological change is related to the interaction of the skyrmion
core spins with this topological field. In such a case, the
topological change can be accounted for as a balance equation:
Qfinal = Qsky + Qelec = −1 + 1 = 0 the final charge results
from the addition of the skyrmion charge and the electron
spin structure charge. This supposes that the fixed spins are at
the transition time, looked to the electron spins dynamics (the
opposite of the adiabatic assumption). The interaction should
result then in the annihilation of the skyrmion topological

charge by the nucleation of an electron structure of opposite
charge, accomplishing in this way, the transition towards a
topologically different state. In what follows, we attempt
to relate this topological change to the dynamics of the
magnetization under the action of the electron itinerant spins.

IV. SKYRMION

To study the dynamics of the skyrmion-ferromagnetic
transition it is convenient to work in the dissipationless
continuous limit and to transform the magnetization field
(which has only two independent components) using the
stereographic projection,

Sx = w + w̄

1 + |w|2 , Sy = 1

i

w − w̄

1 + |w|2 , Sz = 1 − |w|2
1 + |w|2 , (10)

with

w = Sx + iSy

1 + Sz

. (11)

FIG. 4. (Color online) Phenomenology of the topological transition. Contours of Sz (fixed spins), arrows of (sx,sy) (itinerant spins), and
color density of the topological b field. The dissipation is (left) β = 0.001, (center) β = 0.01, and (right) β = 0.1. The transition towards the
ferromagnetic state is correlated with the appearance of intense b-field structures possessing a topological charge opposite to the one of the
original skyrmion.
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When Sz = 1, w goes to zero, and in the opposite pole, Sz =
−1, w goes to infinity. This projection maps the vector field
over the unit sphere S = S(x,t) to the field over the complex
plane w = w(z,z̄,t) (where z = x + iy). The Landau-Lifshitz
equation (3) with d = 0 and α = 0 becomes

i ∂tw = −J∂ ∂̄w + 2J w̄

1 + |w|2 ∂w ∂̄w

−1

2
s+ + szw + 1

2
s−w2 (12)

(only the exchange field in J is considered here) where we
defined the complex derivative ∂ = ∂/∂z = 1

2 (∂/∂x − i∂/∂y)
and its complex conjugate ∂̄ . The second line in Eq. (12)
corresponds to the spin-transfer torque term, where s± = sx ±
isy . The exchange energy and the topological charge in the
stereographic representation are given by

Exc = 2J

∫
dz dz̄

|∂w|2 + |∂̄w|2
(1 + |w|2)2

,

(13)

Q = 1

2π

∫
dz dz̄

|∂w|2 − |∂̄w|2
(1 + |w|2)2

.

Equilibrium solutions of (12) are arbitrary analytic functions
w = w(z) and s = 0. The simplest one is the simple zero
w = w0 = z/λ, the Belavin-Polyakov skyrmion of energy
Exc = 4πJ and charge Q = 1, centered at the origin and of
characteristic size λ ∈ R (spin up at the origin and spin down at
infinity). It is worth noting that if w is a solution of (12), due to
the special properties of the stereographic transformation, 1/w

is also a solution with (Sx → Sx, Sy → −Sy, Sz → −Sz),
and 1/w̄ is a solution with (Sx → Sx, Sy → Sy, Sz → −Sz),
provided that an identical change is made for the itinerant spins
components.

In order to investigate how the spin torque perturbs the
skyrmion state w0 = z/λ, we focus on two simple limiting
cases: first, small deviations from the skyrmion state by a
uniform polarized current s = (0,0,sz) and second, a small
circular region around the skyrmion core relevant to track the
transition towards the ferromagnetic state |w| → ∞.

In the first case, we linearize (12) around the skyrmion state
w = z/λ + f (z,z̄,t),

i ∂tf = −J∂ ∂̄f + 2J z̄

λ2 + |z|2 ∂̄f + sz

λ
z, (14)

and the spin torque appears as a source term in this approxi-
mation. An interesting particular solution is readily found

f = f0(z,t) = −i
szt

λ
z.

The pure imaginary factor has the effect of changing the
orientation of the magnetization field around the center of
the skyrmion, passing successively in time from left to right
chirality (as shown in Fig. 1). A sequence observed in the
numerical simulations in addition to the fact that the effective
size of the core reduces: λ → λ/

√
1 + (szt)2 (even if, for long

times, the perturbation analysis ceases its validity).
We turn now to the second case for which we assume that

the collapse of the skyrmion core can be described in the limit

of large |w| by Eq. (12) in the form

i ∂tw + J∇2w = 2J

w
(∇w)2 + 1

2
s−w2, (15)

where, in polar coordinates,

∇2 = 1

r
∂rr∂r + 1

r2
∂φφ, ∇ =

(
∂r ,

1

r
∂φ

)

and the stereographic function is given by w = w(r,φ,t) with
r = |z| and φ = arg z. We assume that this equation is valid
in the neighborhood of the skyrmion core. The change in
topology, as revealed by the numerical computations, is a local
processes, studying the behavior of the magnetization in the
core region, should be enough to exhibit its essential features.
In addition, the sudden change in the topology suggests that the
main physical mechanism should be the disappearance of the
characteristic length scale associated with the skyrmion core
size and, therefore, a self-similar evolution in a finite time.

In the asymptotic limit of very large |w|, we search for
a solution to (15), appropriated to account for the skyrmion
collapse, in a self-similar form [12]

w(r,φ,t) = 1

(t∗ − t)α
f

(
r

(t∗ − t)β
,φ

)
, (16)

which describes the approach of w to infinity when t → t∗,
where t∗ is the collapse time. At t = t∗ the characteristic size
of the skyrmion vanishes. Inserting the ansatz (16) into (15)
one obtains two conditions which determine the unknown
exponents,

α = 1, β = 1/2. (17)

It is worth noting that the exchange interaction, which is scale
invariant, does not permit selecting the α exponent; its value is
fixed by the coupling term with the spin-polarized current. A
crude estimation of the finite-time singularity, which depends
in particular on the initial condition, is t∗ ∼ λ/s0a, where s0 ∼
neBp is the typical itinerant spin strength per site (which is in
the range of t∗ ∼ 103 for our numerical parameters).

The equation of motion satisfied by the self-similar function
f (X,φ) defined by (16), where X = r/|t∗ − t |1/2 is

i

(
1 + 1

2
X∂X

)
f = −J

(
∂XX + 1

X
∂X + 1

X2
∂φφ

)
f

+2J

f

[
(∂Xf )2 + 1

X2
(∂φf )2

]
+ s−

2
f 2,

(18)

with the boundary condition f (0) = 0 (so Sz = 1 at the origin
of the skyrmion). Near the origin, the form w ∼ z corresponds
to f ∼ Xeiφ . Near the singularity, the self-similar variable
X → ∞, the last nonlinear term can be neglected [its main
contribution is to the prefactor in Eq. (16), allowing a balance
between the time derivative and the nonlinear driving force].
The solution of (18) can hence be written as

f (X,φ) = eiφF (X), (19)
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FIG. 5. (Color online) Magnetization components corresponding to the numerical computation β = 0.001, t = 5936 t0 (left) and to the
analytical self-similar solution (center) near the skyrmion core from Eqs. (24) and (11). Analytical magnetization texture (right) to be compared
with Fig. 2. The size of the core shrinks to zero as the time approaches the critical singularity.

where F (X) satisfies the equation,

i

J
F (X) + i

2J
X ∂XF (X) + ∂XXF (X)

− 2

F (X)
[∂XF (X)]2 + ∂XF (X)

X
+ F (X)

X2
= 0. (20)

The fact that this equation is invariant under scale transforma-
tions, suggests the substitution,

F (X) = C1 exp

[∫
dX G(X)

]
, (21)

with C1 as an arbitrary complex constant. This substitution
enables us to integrate (20) once,

∂XG(X) + G(X)

X
+ 1

X2
= G(X)2 − iX

2J
G(x) − i

J
. (22)

The solution of (22) can be found in terms of the Meijer
functions Gm,n

p,q (z; a1, . . . ,ap; b1, . . . ,bq) [15,16],

G(X) = − iX

2J

G
2,1
2,3

(
iX2

4J

∣∣∣∣ −1,1
− 3

2 ,− 1
2 ,0

)

G
2,0
1,2

(
iX2

4J

∣∣∣∣ 2
− 1

2 , 1
2

) , (23)

where an integration constant was chosen to be zero in order
to ensure the correct behavior near X = 0.

Setting (23) into (21) and using (16) and (19), we finally
obtain the self-similar solution of the driven Landau-Lifshitz
equation in the stereographic projection representation (12),

w(r,φ,t) = C1e
iφ

|t∗ − t |G
2,0
1,2

(
ir2

4J |t∗ − t |
∣∣∣∣ 2
− 1

2 , 1
2

)−1

. (24)

A fit of (24), useful to get some feeling on the structure of
this function, can be obtained using the asymptotics of G(X).
These asymptotics can easily be derived from the differential
equation (22) for small and large X. Near the origin X → 0,
we have G(X) ∼ 1/X, and at infinity X → ∞, the solution
approaches G(X) ∼ iX/2J , leading to the expression,

w(r,φ,t) ≈ C1(1 + i)reiφ

|t∗ − t |3/2
eir2/4J |t∗−t | (25)

[with a redefinition of the global constant, including a dimen-
sional dependence on J, (3/8)(π/2J )1/2C1 → C1]. This form

allows seeing that, at a fixed time, near the origin the solution
match a skyrmion |w| ∼ r/λ(t) with

λ(t) ∼ |C1|−1|t∗ − t |3/2.

Therefore, the size of the skyrmion core vanishes as a power
law in time with exponent 3/2.

The exact self-similar solution (24) is represented in Fig. 5
for |t∗ − t | = 0.3 and C1 = eiπ/3. Changing the phase of
the constant C1 changes the tilt of the magnetization. The
similarity with the numerical computed shape is remarkable.
Indeed, for a simple skyrmion form w = cz with c ∈ C (as
the ones shown in Fig. 1), the graph of S significantly differs
with the shape resulting from a position-dependent phase. In
fact, the form arg w ∼ r2 allows for distinct amplitudes of the
Sx and Sy components, breaking the symmetry they possess
in the simple skyrmion. In addition, the self-similar form (16)
preserves the stationarity of the exchange energy (13) and
topological charge (a scale transformation shows that the
integrals are independent of time); in particular, the topological
charge of the solution (25) is Q = 1 (as in the initial state).
This is not mandatory for the validity of the calculation as the
explicit solution was deduced assuming a locality condition.
The asymptotic evolution depends essentially on the behavior
near the singular point (where the exchange interaction is
stronger), whereas the topological charge is a global property
of the magnetization field. However, it is in accordance with
the approximation consisting of keeping only the leading term
in a multipole expansion eimφ with m = 1.

V. DISCUSSION

After the experimental evidence of skyrmion phases in
chiral magnets [2], phases that can reach the atomic scale [17],
it was soon realized that spin torques are efficient in driven
skyrmion dynamics at relatively low current densities [18].
In addition to the spin-transfer torque mechanism, other
skyrmion generation mechanisms are possible, for instance,
in ferrimagnetic thin films, photoirradiation leads to a variety
of topological configurations that can be controlled by tuning
the laser fluence [19]. Discontinuities in the magnetization can
also be important [20]. A domain wall driven by a current
can be converted into a skyrmion when entering a wider
region [21], an interesting effect in view of its possible applica-
tion to magnetic memories. A property common to these gener-
ation mechanisms of nontrivial magnetic configurations is the

174428-6



SKYRMION TO FERROMAGNETIC STATE TRANSITION: A . . . PHYSICAL REVIEW B 90, 174428 (2014)

(a)

(b)

FIG. 6. (Color online) Stochastic torque. The magnitude τ (t) and
polar angle ϕ(t) of the electron torque τ (x,t) = s(x,t) × S(x,t) at
the skyrmion core x = x0(t) as a function of time exhibit (a) a
random dynamics with (b) a Poissonian distribution as shown by the
exponential fit (red line). Parameters correspond to the intermediate
dissipation case of β = 0.01.

presence of strong inhomogeneities [22]. In our simulations
these strong inhomogeneities are spontaneously created by
the interaction of the electrons and the magnetization texture.
This effect is a consequence of the electron interference and
scattering in the potential of fixed spins. In fact, the electron
current acts as a random torque on the (classical) magnetic
texture.

It might be important to emphasize that the Landau-Lifshitz
equation coupled with the Schrödinger equation result in an
effective stochastic dynamics of the magnetization. We show
in Fig. 6 the signal of the spin-transfer torque computed at
the skyrmion core position. The highly intermittent dynamics
of the torque intensity (defined by the absolute value τ =
|s × S|) corresponds to a Poisson process as verified by its
histogram. Although other sources of stochasticity can be
introduced, for example, to take into account thermal effects,
it is important to isolate the contribution of the conduction
electrons. The relative importance of these mechanisms will
depend obviously on the particular experimental situation.
In the present case, we observe that the maximum of the
torque occurs around the transition time (t/t0 ≈ 1750) with an
intensity of τ ≈ 6 × 10−2; in units of energy this corresponds
to 0.06 eV.

During their passage through the skyrmion field, conducting
electrons accumulate a Berry phase that leads to interesting
electrodynamical effects [23–25]. The b field is a manifestation
of such effects. The strong precession of the magnetization in
a neighborhood of the skyrmion core can be interpreted as a
reaction to this topological field. The important question here
is whether the b field is robust against structural perturbations,
notably dissipation. If it is a genuine topological effect, it
must be robust under modifications of the dynamics. We
accumulated some numerical evidence that, under exchange
dissipation, the electron vortices are always present during the
topological change.

The dynamics of the skyrmion-ferromagnetic phase transi-
tion driven by a polarized current as we demonstrated in the
previous section is dominated by the self-similar collapse of
the skyrmion core. This evolution is universal in the sense
that it does not depend on the large-scale properties of the
system or on the precise values of the physical parameters. At
variance to this scenario, the opposite processes, the nucleation
of a skyrmion from a current pulse [22] depends on the
geometry, characteristic space, and time scales of the driving
force. Resulting from a transient, it is not amenable to a
similarity solution. Nevertheless, the interaction of the injected
electrons with the background magnetization should nucleate
electron vortices that might play a role in the generation of the
skyrmion. This problem needs further investigation.

VI. CONCLUSION

We investigated the transition between a skyrmion state
and a ferromagnetic state driven by a spin-polarized electron
current. The main goal was to identify the physical mechanism
of the topological change and its relation with the dynamics
of the skyrmion core. We numerically showed that the torque
exerted by the itinerant spins modifies the distribution of the
magnetization around the skyrmion core and tends initially
to reduce its size and ultimately drives a topological change.
This topological change strongly depends on the dissipation
strength. In the absence of dissipation the collapse time
explicitly depends on the lattice cutoff. At variance, in the
case where dissipation is effective, the transition tends to
regularize, and the lifetime of the skyrmion state reduces with
increasing dissipation. However, the microscopic mechanism
of topological change is in the dissipative case, similar to the
nondissipative one (even if the time and length scales may
differ). It is related to the appearance of a peculiar electronic
structure possessing a net charge opposite to the one in the
skyrmion. The synchronization of the fixed spins with this
electron vortical structure leads to the annihilation of the
topological charge, which passes from its initial value Q =
−1 (skyrmion state) to zero (homogeneous ferromagnetic
state).

Using the stereographic projection to represent the Landau-
Lifshitz equation in the complex plane, we could analyze
the dynamics of the transition. The polarized current induces
a precession of the skyrmion core and tends to reduce its
size as shown by a linear perturbation calculation. When
the system is dominated by the exchange interaction and
the polarized current in the strongly nonlinear regime, we
found that the magnetization follows a self-similar evolution.
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The self-similar characteristic exponents, which govern the
dependence in time of the core size, are determined by the
electron spin driving terms. The structure of the self-similar
core is essentially determined by the exchange gradients.
Applying these approximations, we solved the asymptotic
dynamics and obtained a collapse of the core in a finite time.
The explicit shape of the self-similar solution compares well

with the numerically computed one. In conclusion, this result
establishes a link between the topological change and the
existence of a finite-time singularity in the skyrmion dynamics.
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