
HAL Id: hal-01505775
https://amu.hal.science/hal-01505775

Submitted on 9 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Positive semidefinite integrated covariance estimation,
factorizations and asynchronicity

Kris Boudt, Sébastien Laurent, Asger Lunde, Rogier Quaedvlieg, Orimar Sauri

To cite this version:
Kris Boudt, Sébastien Laurent, Asger Lunde, Rogier Quaedvlieg, Orimar Sauri. Positive semidefinite
integrated covariance estimation, factorizations and asynchronicity. Journal of Econometrics, 2017,
196 (2), pp.347-367. �10.1016/j.jeconom.2016.09.016�. �hal-01505775�

https://amu.hal.science/hal-01505775
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


 Electronic copy available at: http://ssrn.com/abstract=2383871 

Positive Semidefinite Integrated Covariance Estimation, Factorizations
and Asynchronicity.

This Version: May 10, 2016
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An estimator of the ex-post covariation of log-prices under asynchronicity and microstructure noise

is proposed. It uses the Cholesky factorization of the covariance matrix in order to exploit the

heterogeneity in trading intensities to estimate the different parameters sequentially with as many

observations as possible. The estimator is positive semidefinite by construction. We derive asymptotic

results and confirm their good finite sample properties by means of a Monte Carlo simulation. In the

application we forecast portfolio Value-at-Risk and sector risk exposures for a portfolio of 52 stocks.
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and economically superior forecasts.
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1. Introduction

The availability of high-frequency data and a large variety of estimators harnessing their informa-

tion, has enhanced the understanding of the covariation between financial time series. The estimation

of covariance matrices is vital in many interesting and important financial, economic and statistical

applications. However, most of these do not only require the estimated matrix to be accurate, but

also positive semidefinite (PSD). Unfortunately, in search of the former, many proposed estimators

have sacrificed the latter (e.g. Hayashi and Yoshida, 2005; Zhang, 2011; Lunde et al., 2015).

Estimation of realized covariance at ultra high frequencies is made difficult by two empirical phe-

nomena which induce biases in the estimates. First, the presence of market micro-structure noise

(e.g. bid-ask bounce), and second, non-synchronous trading. Until recently, lower frequency returns,

for instance sampled every 20 minutes, were used to avoid these biases. Now, estimators that are

robust to both problems have been proposed, and the only limit to the frequency of data one faces is

due to the fact that the observations have to be synchronized.

The multivariate realized kernel of Barndorff-Nielsen et al. (2011) uses refresh-time sampling to

synchronize data. Although this synchronization technique is quite efficient in terms of observations

retained, its problem is that the number of observations is always determined by the least frequently

traded asset. To diminish that effect, several papers try to make a more efficient use of data by

splitting up estimation into subsets of the data. Hautsch et al. (2012) propose a method that applies

the multivariate kernel to separate groups of liquid and illiquid assets, and combines these estimates

into a full matrix. Aı̈t-Sahalia et al. (2010) synchronize pairs and use the so-called polarization result

to estimate the covariance bivariately, using univariate estimators. Lunde et al. (2015) use a class of

Composite estimators, which estimate the variances univariately, and use bivariate sampling to obtain

correlations. Fan et al. (2012) use both the polarization and pairwise refresh-time techniques. These

estimators increase efficiency by using more observations, but sacrifice positive semidefiniteness in the

process.

The contribution of this paper is a method that estimates each element sequentially, whilst ensur-

ing the final estimate to be positive semidefinite. Because our estimator of the Integrated Covariance

is based on the Cholesky decomposition, we denote it CholCov. By applying an orthogonal decom-

position to the covariance matrix we reduce the estimation from a d−dimensional matrix to a large

number of bivariate estimations on transformed series, and obtain a well-conditioned PSD matrix.

However, due to the necessary transformations, we cannot sample over just two series for each el-
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ement, but have to iteratively sample over an increasing set of series. Each bivariate estimate on

the transformed series can be done with any estimator that is robust to the biases induced by ultra

high-frequency data.

We derive the joint asymptotic properties of the realized covariance based CholCov estimator under

the assumption of no microstructure noise and constant volatility. As the different elements of the

CholCov are estimated using different time-grids, this is a non-trivial and new result. We find that

the asymptotic covariance of the scaled CholCov parameter estimates is proportional to that of the

classic realized covariance on synchronous returns and that the proportionality factor is a function of

the overlap between the different grids used to estimate the CholCov parameters.

In an extensive simulation study, we find our estimator performs at least as well as its main

competitors, and it offers significant improvements when estimating vast-dimensional matrices and/or

in scenarios with high heterogeneity in trading frequencies. Its performance is similar to the Composite

versions without resorting to an arbitrary regularization technique to make the estimate positive

semidefinite. Not only is it positive semidefinite, but simulations also show that the CholCov is on

average better conditioned than its competitors, especially for larger dimensions. Finally, we conduct

a simulation study which confirms that the asymptotic results also provide a good description of

the finite sample distribution of the realized covariance based CholCov estimates in the absence of

microstructure noise.

For the empirical application, we use our estimator to forecast portfolio Value-at-Risk and to es-

timate industry exposures for 52 assets. We forecast the covariance matrix using the CholCov, and

compare the forecasting accuracy to those obtained using dynamic specifications on daily returns only.

We find that models utilizing the CholCov in their estimation greatly improve both unconditional cov-

erage and independence between Value-at-Risk violations, and that they lead to the most informative

sector exposure forecasts amongst our models considered.

The paper is structured as follows. In Section 2 we present the theoretical setup and outline the

decomposition. Section 3 first discusses practical issues in preparing the data for estimation, and

then presents the algorithm that delivers the estimate. In the next section we derive its asymptotic

properties. Section 5 presents a summary of extensive Monte Carlo simulations designed to highlight

the improvements due to more efficient data-sampling. Sections 6 and 7 provide the empirical appli-

cation on the forecasting of portfolio Value-at-Risk and the estimation of industry exposures using

the CholCov. Finally, Section 8 concludes.
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2. Theoretical setup

Our aim is to accurately estimate the Integrated Covariance (ICov) matrix of a d−dimensional

Brownian semimartingale process Y = (Y (1), . . . , Y (d))′. The measurement is complicated by the fact

that the component processes are observed at irregular and non-synchronous time points, and that

the price process of interest is observed with measurement error. The actual observed log-prices are

denoted X = (X(1), . . . , X(d))′. Let the set of all series be denoted D, with subsets d ⊆ D. Each

component process can be observed at different time points over the interval [0, T ]. For simplicity we

take T = 1 in this paper. For every i = 1, . . . , d, we denote by Ti :=
{

0 = t
(i)
1 < · · · < t

(i)
Ni
≤ 1
}

the

observation times of the i-th element in X. X is driven by the efficient log-price Y , a Brownian semi-

martingale defined on a filtered probability space (Ω,F , (Ft)0≤t≤1 ,P) satisfying the usual conditions

of right-continuity and completeness:

Y (t) =

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s), (1)

where µ is a d×1 predictable locally bounded drift process, W is a d-dimensional vector of independent

Brownian motions and σ a d × d càdlàg process such that Σ(s) = σ(s)σ′(s) is the spot covariance

matrix of Y at time s.

At very high frequencies, microstructure noise leads to a departure from the Brownian semimartin-

gale. As a result, we do not observe Y , but instead a process X defined as:

X
(i)
t = Y

(i)
t + ε

(i)
t , (2)

where ε
(i)
t is microstructure noise and Y

(i)
t is the i-th component of Y . In this paper, εt = (ε

(1)
t , ..., ε

(d)
t )′

is assumed to be covariance stationary and have zero mean. We achieve noise robustness by means

of pre-averaging and refer the reader to Christensen et al. (2010) for the precise assumptions on the

serial correlation of the noise and its cross-correlation with the latent price.

Our parameter of interest is the integrated covariance over the unit interval:

ICov =

∫ 1

0

Σ(s)ds, (3)

which under (1) coincides with the quadratic covariation of Y , i.e. [Y ](1) = plimn→∞
∑n
j=1(Yj/n −

Y(j−1)/n)(Yj/n − Y(j−1)/n)′ = ICov.

4
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Estimation of the off-diagonal elements of the ICov typically requires synchronization of the data.1

Two approaches are popular. One is to synchronize all observations jointly, but this has the disad-

vantage of letting the resulting observation frequency be determined by the least liquid asset (e.g.

Barndorff-Nielsen et al., 2011). The second approach is to estimate the off-diagonal elements of the

ICov separately using synchronized pairs of price processes, but the result is not ensured to be positive

semidefinite (e.g. Lunde et al., 2015). We propose a third approach that uses a factorization of the

spot covariance matrix, combining the advantages of both methods.

2.1. Decomposition

For the estimation of the Integrated Covariance, it will reveal useful to decompose each spot

covariance matrix into a symmetric factorization of square matrices. Such a factorization is ensured

to be positive semidefinite. Additionally, we require that the parameters defining the spot covariance

between k and l do not depend on the parameters defining m and n (with m > k and n > l). The

latter condition ensures that we can estimate the parameters sequentially, which allows more efficient

data usage. This is the case for amongst others the Cholesky decomposition, which we will focus on.

The Cholesky decomposition is also used in the volatility context in Chiriac and Voev (2011) and

Tsay (2010). Chiriac and Voev (2011) decompose the covariance matrix and use time series models

to forecast the elements. This way they ensure positive semidefiniteness of covariance forecasts. Tsay

(2010) uses the re-parametrization in a multivariate GARCH framework. Palandri (2009) uses an

iterative Cholesky to reduce the dimension of multivariate GARCH models. The use of the Cholesky

decomposition is the only similarity with our work. Their methods and goals are different from ours.

We construct an ex-post covariance estimator, not a time-series parametric volatility model.

By means of the Cholesky decomposition, the spot covariance matrix can be uniquely split into

Σ(s) = H(s)G(s)H(s)
′
, (4)

where H(s) is a lower diagonal matrix with ones on the diagonal, and G(s) a diagonal matrix. Specif-

1There are methods available that circumvent this necessity, such as the estimator of Hayashi and Yoshida (2005)
and its noise-robust version proposed by Koike (2013), or the missing value approach of Shephard and Xiu (2013) and
Corsi et al. (2015).
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ically,

H(s) =



1 0 · · · 0

h21(s) 1 · · · 0

...
...

. . .
...

hd1(s) hd2(s) · · · 1


G(s) =



g11(s) 0 · · · 0

0 g22(s) · · · 0

...
...

. . .
...

0 0 · · · gdd(s)


.

For instance, omitting the time-dependence, for d = 3:

Σ = HGH ′ =


g11 h21g11 h31g11

h21g11 h2
21g11 + g22 h21h31g11 + h32g22

h31g11 h21h31g11 + h32g22 h2
31g11 + h2

32g22 + g33

 . (5)

It follows from this that the H and G matrices are linked to the elements of Σ as follows:

gkk = Σkk −
k−1∑
m=1

h2
kmgmm (6)

hkl =
1

gll

(
Σkl −

k−1∑
m=1

hkmhlmgmm

)
, (7)

for k > 1 with g11 = Σ11. The (k, l)-th element of the covariance matrix only depends on gmm and

hnp with m,n, p ≤ max(k, l). The elements can therefore be estimated sequentially.

3. The estimator

In order to apply the Cholesky decomposition in the estimation of ICov, we first need to define

how the returns are computed and, since the procedure will be sequential, how the covariance matrix

is ordered. Therefore this section is divided into four parts. The concept of refresh-time sampling

is reviewed in Subsection 3.1. The liquidity criterion used to structure the covariance matrix is

introduced in Subsection 3.2. Finally, the CholCov estimator and some practically relevant extensions

are presented respectively in Subsections 3.3 and 3.4.

3.1. Dealing with asynchronicity

In high-frequency data, assets are traded at irregular intervals and seldom simultaneously. More-

over, not all stocks are equally liquid, such that the number of fresh prices within a fixed time interval

may substantially differ across firms. One way to synchronize the data is by means of refresh-time

sampling, as proposed by Harris et al. (1995). It picks refresh-times at which all assets have traded
6
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at least once since the last refresh-time point. Refresh-times for t ∈ [0, 1] and the set of assets d ⊆ D

are defined as follows. The first refresh-time occurs at τ d
1 = max(t

(i)
1 ,∀i ∈ d ), and subsequent refresh-

times at τ d
j+1 = max(t

(i)
m |t(i)m > τ d

j ,m = 1, . . . , Ni,∀i ∈ d ). The resulting refresh-time grid is of course

a function of the series over which they are sampled. In our setting, stocks are ranked on liquidity and

of particular interest will be the refresh-time grid obtained for the first k assets, i.e. d = {1, . . . , k}.

Denote the set of corresponding refresh-times as Tk := {0 = τk0 < τk1 < . . . < τkNk = 1}. We denote

the returns of grid Tk by rj(Tk) = Xτk
j
−Xτk

j−1
, with j = 1, ...,N k. Finally, denote the durations as

∆j(Tk) = τkj − τkj−1. Throughout the paper, for clarity of notation, the superscript may be omitted if

it is clear which grid is being discussed, or in general statements concerning every grid.

As a result of the sampling scheme, N k ≤ mini∈d Ni, and may be a lot smaller depending on the

trading pattern and number of series under consideration. Hautsch et al. (2012) illustrate that the

percentage data loss can exceed 90% when the number of assets becomes large and arrival rates are

unequal. The sample size is largely determined by the least liquid - in the sense of frequent trades -

stocks. Including a single illiquid stock may therefore drastically reduce the estimation efficiency of

all elements, including those for which a lot of data is available.

This problem is circumvented by the composite estimation technique used in Lunde et al. (2015)

and Fan et al. (2012). The data loss is reduced, but at the expense of positive semidefiniteness, one

of the defining properties of a covariance matrix. Moreover, many applications, such as principal

components analysis and portfolio optimization, critically rely on it. Therefore the question arises

how to project the symmetric matrix onto the space of PSD matrices.

There exist many ways to transform the matrix to a PSD alternative. A general method called

shrinkage is proposed in Ledoit and Wolf (2003). In the Realized Covariance setting, Barndorff-Nielsen

and Shephard (2004b) and Fan et al. (2012) set all negative eigenvalues in the spectral decomposition to

zero. Hautsch et al. (2012) impose more structure by employing eigenvalue cleaning, a random matrix

theory technique similar in intuition to shrinkage. While such eigenvalue cleaning may increase the

efficiency of the covariance matrix estimate, it still remains that for portfolio optimization purposes

the dependence of the optimized portfolio on the eigenvalue cleaning is highly undesirable. Schmelzer

and Hauser (2013) discuss the severe implications of a negative eigenvalue in the context of portfolio

optimization and point to the above mentioned strategies to get rid of them. They conclude, however

that, from their experience, a careful analysis of the estimation process itself adds far more value to

the trading strategy.

7
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Here, we use the Cholesky decomposition to exploit the heterogeneity in trading intensities and

estimate the different parameters sequentially, using as much data as possible. The decomposition

holds for any PSD matrix, which is by definition true for the covariance matrix, and the recombined

results will also be PSD. However, ensuring positive semidefiniteness does come at a cost. We cannot

synchronize just pairs of data, but have to sample over a growing set of series. The first elements are

estimated by sampling over two series, but the last elements to be estimated require a common grid

on all series. To make optimal use of the data, it is therefore crucial to order the series in terms of

decreasing liquidity.

To illustrate, Figure 1 plots a simulated example of the number of observations obtained for each

element using three different sampling methods. We consider 20 assets, where each asset is slightly

less liquid than the last, with trading activity of asset i governed by a Poisson process with intensity

λi = 10 + i/4. The leftmost picture depicts a situation in which refresh-time sampling is applied to

all assets at once. The rightmost picture depicts pairwise sampling, which is done for the Composite

estimators of Lunde et al. (2015). The diagonal elements are estimated sampling over just the single

series, and therefore also depict the number of observations available for that asset. The off-diagonal

elements are estimated using bivariate sampling and therefore the data-loss is minimal. The middle

graph depicts sequential sampling, the technique used for our estimator. The diagonal elements are

estimated in the same fashion as for the Composite estimator, but we require sampling over more

series for the off-diagonal estimates. Specifically, for element (k, l) we synchronize series {1, ..., l, k}.

As such, the number of observations for all elements involving the first asset coincide with those for

pairwise sampling, while the observation count for the other elements lies somewhere between the two

other sampling approaches.

3.2. Ranking stocks based on liquidity

In order to best utilize the sequential estimation, we propose to sort the series in terms of liquidity.

For the Regularization and Blocking (‘RnB’) estimator, Hautsch et al. (2012) sort series in terms of

liquidity solely based on the number of observations Ni. However, there are many scenarios where

this would not lead to a large number of observations when sampling over many series. Instead we

8
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Figure 1: Number of observations available for each element in estimation of Σ, sampling over all series (left), sequential
sampling (middle) and pairwise sampling (right).
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Note: These graphs depict simulation based number of observations available for the estimation of
elements in a 20×20 covariance matrix for different sampling schemes. The observation frequencies
follow independent Poisson processes with parameter λ ranging uniformly from 10 and 15. Stocks
are ranked based on λ. For more details, see Section 5. From left to right: Sampling over all series,
sequential sampling and pairwise sampling.

use the squared duration as a liquidity criterion2

Ni∑
j=0

(
∆

(i)
j

)2

, (8)

where ∆
(i)
j is each individual series’ duration. This criterium is not just based on the number of

intraday returns available, but also on the degree to which the returns are spread out over the day.

We call our method duration sorting, as opposed to observation count sorting proposed in Hautsch

et al. (2012).

Different sorting rules will lead to different sets being synchronized at any iteration in the sequential

estimation. To illustrate the effect of duration sorting compared to observation count sorting, we

preview results of our empirical application where we synchronize 52 series on 1499 days in Figure

2. Each day, the series are sorted according to the two methods. Next, for each of the methods, an

increasing set of series is synchronized, from a single series, up to the full 52. As such, the x-axes

in Figure 2 denote the number of series that is synchronized. For each set size, we therefore have

a distribution over the different days. We plot the average amount of observations per set size for

duration sorting in the top plot. In the bottom plot, we display the mean and the 2.5 and 97.5%

2In a previous version we have proposed relative duration
∑Ni

j=0

(
∆

(i)
j −

1
maxi Ni

)2
, which leads to sorts identical

those based on Equation (8) in almost all cases. We have also considered Absolute Duration, which leads to inferior
sorting.

9

Electronic copy available at: https://ssrn.com/abstract=2383871



Figure 2: Duration sorting and observation count sorting, as a function of the number of series synchronized.

Number of observations, Duration Sorting 
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Note: The top graph shows the number of observations available after synchro-
nization over an increasing number of series from 1 to 52. The bottom graph
shows the percentage gains in number of observations from using duration sorting
compared to observation count sorting.

empirical quantiles of the log-difference of the number of observations between the two sampling

techniques. As such, in the bottom graph the y-axis can be interpreted as percentage increases in

number of observations by using duration sorting compared to observation count sorting.

The figure shows that duration sorting leads to a smoothing of available observations across the set

of series. When synchronizing just the first one to six series, there are on average fewer observations

with duration sorting. However, starting from the synchronization of the first seven series, up until

the full set, the average number of observations using duration sorting is higher. This has large

advantages. As the top graph shows, for small sets, there are plenty of observations available, while

when more series are synchronized, observations are a lot less frequent. The number of observations

using duration sorting is on average higher by 2 to 3%. Additionally, the distribution is skewed towards

higher gains than losses, with the duration sorting offering observation increases of 10 to 15% in the

2.5% best cases, compared to losses of around 5% in the worst 2.5% cases. Finally, once all 52 series

are synchronized there is no difference between the sorting rules, as the sets are the same for both.
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3.3. The CholCov

This section presents our estimator of the Integrated Covariance, which achieves positive semidef-

initeness by means of the Cholesky decomposition. Instead of directly estimating the elements in Σ, a

sequential regression algorithm is proposed to estimate the elements of the G and H matrices, which

are then combined into a final estimate of Σ, denoted as the CholCov:

CholCov = ĤĜĤ ′, (9)

with Ĝ and Ĥ the corresponding estimates for G and H. The computational cost of the algorithm is

compensated by the expected gains in efficiency in the presence of asynchronisity.

The inspiration for the algorithm comes from rewriting the returns in a block of locally constant

volatility, Σ0 = H0G0H0′, as a factor regression model. For simplicity, we assume the block corre-

sponds to the [0,1] interval.3 Denote the vector of latent noise-free returns by r̃j(T ) = Ytj − Ytj−1 ,

with T = {0 = t1 < ... < tN = 1}, which, under the previously stated assumptions and provided

returns are sampled sufficiently frequently such that the drift can be ignored, is normally distributed

around zero with covariance matrix ∆j(T )Σ0. We can further define, omitting the grid-dependence,

f̃j = (H0)−1r̃j ∼ N(0,∆jG
0). Since H0 is triangular, we obtain that each component in the vector

of returns r̃j = H0f̃j , is an explicit function of the components with a lower index. More precisely,

f̃
(1)
j (T ) = r̃

(1)
j ∼ N(0,∆jg

0
11), and for k = 2, ..., d,

r̃
(k)
j = h0

k1f̃
(1)
j + . . .+ h0

k(k−1)f̃
(k−1)
j + f̃

(k)
j

f̃
(k)
j ∼ N(0,∆jg

0
kk).

(10)

The g0
kk and h0

kl elements are therefore simply the residual variances of the factors and the beta

coefficients of a regression of r̃
(k)
j on f̃

(l)
j :

g0
kk = [f̃ (k)] (11)

h0
kl = [r̃(k), f̃ (l)]/[f̃ (l)], (12)

for l < k, where the [·, ·] notation denotes the quadratic (co)variation of its element(s).

3The one day block simplifies the exposition and is also the one used in the implementation. Of course, the [0, 1]
interval can be subdivided in infinitely many blocks and the resulting CholCov estimate would be the sum over all these
local CholCov estimates.
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This suggests then to estimate the CholCov parameters iteratively on an expanding set of syn-

chronized price series. Let Tk be the set of refresh-times for the first k-assets and assume that Tk ⊆ Tj

for j = 1, . . . , k.

CholCov estimation algorithm.

1. First sort the series in terms of decreasing liquidity according to (8), such that series 1 is the

most liquid, and series d the least.

2. For k = 1, . . . , d:

Apply refresh-time on k = {1, . . . , k} to obtain the grid Tk.

Set f̂
(1)
j (Tk) = r

(1)
j (Tk).

For u = 1, . . . , k and v = 1, . . . , u− 1, compute:

guu (Tk) =

Nk∑
j=1

[
f̂

(u)
j (Tk)

]2
, (13)

huv (Tk) =

∑Nk

j=1 r
(u)
j (Tk) f̂

(v)
j (Tk)∑Nk

j=1

[
f̂

(v)
j (Tk)

]2 , (14)

where

f̂
(v)
j (Tk) := r

(v)
j (Tk)−

v−1∑
w=1

hwv (Tk) f̂
(w)
j (Tk) . (15)

3. Set the diagonal elements of Ĝ and lower diagonal elements of Ĥ as

ĝkk = gkk (Tk) (16)

ĥkl = hkl (Tk) , (17)

for k = 1, . . . , d and l = 1, . . . , k − 1, and compute the (realized covariance based) CholCov as

ĤĜĤ ′.

3.4. Using CholCov in practise

The CholCov estimator given by (16)-(17) uses realized (co)variance estimates for the gkk and hkl

parameters. This choice of estimator is no longer adequate in the presence of microstructure noise,

where we only observe a noisy counterpart of r̃
(k)
j and f̃

(k)
j , namely the refresh return

r
(k)
j = r̃

(k)
j + ε

(k)
j − ε

(k)
j−1, (18)
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and the corresponding noise-contaminated factor

f
(l)
j = f̃

(l)
j + (ε

(l)
j − ε

(l)
j−1)−

l−1∑
a=1

hla(ε
(a)
j − ε

(a)
j−1), (19)

for l > 1. The CholCov estimates of gkk and hkl that we recommend to use in practice therefore

result from estimating the quadratic (co)variation in (11)-(12) with noise-robust integrated variance

(IV) and beta estimators implemented on synchronized price series.4 In the simulation study and

empirical application we will use the Modulated Realized Covariance (MRC) pre-averaging estimator

of Christensen et al. (2010) because of its robustness to microstructure noise, its ease of implementation

and its flexibility. We denote the corresponding estimate as the mrcCholCov or CholCov when there

is no confusion possible.

Other approaches that are robust to microstructure noise include the two time scale estimator of

Zhang (2011), the kernel estimator in Barndorff-Nielsen et al. (2011), the likelihood based methods in

Aı̈t-Sahalia et al. (2010), the local spectral estimator in Bibinger and Reiß (2014), the local method of

moments estimator in Bibinger et al. (2014) as well as advances by Peluso et al. (2014) and Shephard

and Xiu (2013), among others.

For the estimation of hkl, the CholCov estimator proposed above requires synchronizing the prices

of assets 1, . . . , k. When the factors are orthogonal, a consistent estimator for hkl could also readily

be obtained by synchronizing only the series 1, . . . , l needed to compute the factor f l, together with

the observed prices for asset k. In finite samples, the factors are no longer orthogonal when using

these grids on a smaller number of series. Our simulation analysis shows that substantial efficiency

gains are obtained by estimating hkl on the refresh-time grid for {1, . . . , l, k} versus the estimation

using the grid obtained for {1, . . . , k}. The corresponding CholCov∗ estimation algorithm is then as

follows:

CholCov∗ Estimation algorithm.

1. First sort the series in terms of decreasing liquidity according to (8), such that series 1 is the

most liquid, and series d the least.

2. Step 1:

Set f
(1)
j (T 1) = r

(1)
j (T 1).

4The realized beta is computed by estimating a 2× 2 realized covariance matrix Σ̂. The realized beta is then defined
as ĥkl = Σ̂kl/Σ̂ll (Andersen et al., 2006).
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Estimate ĝ11 using an IV estimator on f
(1)
j (T 1).

3. Step 2:

Apply refresh-time on b = {1, 2} and denote the corresponding grid by Tb .

Estimate ĥ21 as the realized beta of r
(2)
j (Tb) on f

(1)
j (Tb).

Estimate ĝ22 using an IV estimator on f
(2)
j (Tb) = r

(2)
j (Tb)− ĥ21f

(1)
j (Tb).

4. Step 3:

Apply refresh-time on c = {1, 3} to obtain the grid Tc .

Estimate ĥ31 as the realized beta of r
(3)
j (Tc) on f

(1)
j (Tc).

Apply refresh-time on d = {1, 2, 3} to obtain the grid Td .

Compute f
(2)
j (Td ) = r

(2)
j (Td )− ĥ21f

(1)
j (Td ).

Estimate ĥ32 as the realized beta of r
(3)
j (Td ) on f

(2)
j (Td ).

Estimate ĝ33 using an IV estimator on f
(3)
j (Td ) = r

(3)
j (Td )− ĥ32f

(2)
j (Td )− ĥ31f

(1)
j (Td ).

5. Step k=4 to d:

For l = 1, . . . , (k − 1):

Create the grid τ z by applying refresh-time on z = {1, . . . , l, k} to obtain the grid Tz .

Extract the factors f
(m)
j (Tz) = r

(m)
j (Tz)−

∑m−1
n=1 ĥmnf

(n)
j (Tz), for m = 1, ..., l at the new grid.

Estimate ĥkl as the realized beta of r
(k)
j (Tz) on f

(l)
j (Tz).

Estimate ĝkk using an IV estimator on f
(k)
j (Tz) = r

(k)
j (Tz)−

∑k−1
n=1 ĥknf

(n)
j (Tz).

Finally, we also recommend to use a strip and replace method such that the diagonal elements of

the CholCov are estimated using all available observations. More precisely, denote by D̂ the diago-

nal matrix with the ratio between the integrated variance estimates and the corresponding diagonal

elements of ĤĜĤ ′. Then the strip and replace version of the CholCov is

CholCov• = D̂1/2ĤĜĤ ′D̂1/2. (20)

In the simulations and application we use the MRC pre-averaging estimator of Christensen et al.

(2010) for the estimation of gkk and hkl and denote this by mrcCholCov• or CholCov when there is

no confusion possible.
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4. Asymptotic results

In this section, we derive the asymptotic distribution of the CholCov estimator in (16)-(17).

Throughout this section, we assume that the refresh-times Tk satisfy Tk ⊆ Ti, for i = 1, . . . , k, and

Tk+1 ⊆ Tk, such that the returns on the refresh-time grid Tk+1 can be written as a linear combination

of the returns on the grid Tk. We further simplify the model by assuming that the underlying diffusion

process has constant volatility, no drift and that the prices are observed without microstructure noise,

i.e.

dYt = σdWt. (21)

We show that even in this case, obtaining the asymptotic distribution of the parameters estimated

sequentially on different time grids is non-trivial.

The main idea of our proof consists in showing that the kth row of the CholCov estimator is

asymptotically equivalent to the kth row of the realized covariance of Y computed for the mesh Tk.

It follows that the CholCov estimated on non-synchronous series is consistent and marginally normal.

Then, using the results in Nualart and Peccati (2005) and Peccati and Tudor (2005), we derive the

joint distribution.

In order to obtain this result, we proceed in four steps:

1. First, we show that in the synchronized case, the pair
(
Ĥ, Ĝ

)
given by (16)-(17) is the Cholesky

decomposition of the MLE of Σ0 := σσ′. This implies that in the synchronized case, CholCov

is just the MLE estimator of Σ0. This result is used in Proposition 1, where consistency and

asymptotic normality of the pair
(
Ĥ, Ĝ

)
is established.

2. Second, for non-synchronous data with Tk+1 ⊆ Tk, we note that the kth row of CholCov

corresponds to the kth row of the MLE of Σ0 based on {Yt : t ∈ Tk}.

3. Third, let (A)k denote the kth row of a matrix A, and RCov the realized covariance of the

process Y in the mesh Tk. We introduce Assumption 1 to guarantee that for k = 1, . . . , d

(CholCov)k = (RCov)k + oP

(
N 1/2
k

)
.

Since the mapping (H,G) 7→ HGH ′ is bijective and continuously differentiable, it follows that

under Assumption 1, (CholCov)k is consistent and asymptotically normal. These results are

presented in Proposition 2.
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4. Finally, the joint asymptotic distribution of CholCov (based on the limit distribution of RCov)

is derived in Theorem 1 using the results of Nualart and Peccati (2005) and Peccati and Tudor

(2005).

All proofs are provided in Appendix B.

4.1. Preliminaries

In this section,
(

Ω,F , (Ft)0≤t≤1 ,P
)

denotes a filtered probability space satisfying the usual con-

ditions of right-continuity and completeness and where the observed prices are generated by the

Brownian martingale without drift and constant volatility in (21). Furthermore, we assume that

F = σ
(

(Wt)0≤t≤1

)
, the σ-algebra generated by our underlying Brownian motion.

Given two sequences {an}n∈N, {bn}n∈N, we write an = O (bn) if and only if there exist M > 0 and

n0 ∈ N, such that for any n ≥ n0, |an| < M |bn| for any n ∈ N. When bn 6= 0 for any n ∈ N, this

is equivalent to lim supn→∞ an/bn < ∞. Furthermore, we write an = o (bn) if and only if for every

ε > 0, there exists n0 ∈ N, such that for any n ≥ n0, |an| < ε |bn|. Equivalently, an = o (bn) if and

only if an/bn → 0 as n→∞, whenever bn 6= 0. The notation an = OP (bn) and an = oP (bn) is defined

in a similar way by replacing usual convergence with convergence in probability.

Let M+
d be the space of symmetric positive definite matrices with real entries. We embed M+

d with

the Frobenius norm such that if A ∈ M+
d , then ‖A‖ = tr

(
ATA

)1/2
. The Cholesky decomposition

is unique on M+
d . This means that the mapping Σ (H,G) = HGH ′, creates a bijection between the

convex space

M+
d,chol = {(H,G) : G diagonal with gkk ≥ 0, and H lower diagonal with ones in its diagonal} ,

and M+
d . Let Ik be the k×k identity matrix and Πk the projection matrix, which, for a d-dimensional

vector x, projects x = (x1, . . . , xd)
′

on x(k) := (x1, . . . , xk)
′
. Furthermore, if A is d × d matrix and

1 ≤ k ≤ d, A (k) will denote the projection of A into its first submatrix of dimension k × k, i.e.

A (k) = (Ai,j)i,j=1,...,k. In particular, if A ∈M+
d ,

A (k) = ΠkAΠ′k. (22)

We use a row version of the vech operator that stacks the rows of the lower-triangular part of a
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d-dimensional matrix A into a vector, as follows:

rvech (A) = (a11, a21, a22, . . . , ak1, ak2, . . . , akk−1, akk, . . . , add−1, add)
′
.

Note that

rvech (A (k)) = L (Πk ⊗Πk)MB−1 rvech (A) , (23)

with L and M such that vech (A) = L vec (A) and vec (A) = M vech (A) and B satisfying rvech(A) =

B vech(A). Obviously rvech is an injective continuously differentiable linear mapping from M+
d into a

convex subset of Rd(d+1)/2.

Throughout the following, we use versions of [(H − Id) +G], where all elements on a single row

are estimated on the same grid. The parameters on a lower row are estimated using refresh-times of

a larger number of assets than those belonging to an upper row. The rvech of this matrix therefore

stacks the elements in such a way that elements on the same grid are adjacent.

Finally, for simplicity of exposition, for the rest of this section we assume that the observation

times are deterministic. For the general case, see Remark 4 below.

4.2. The case of synchronous observations

Here we assume that the observation times are synchronous, i.e T := T1 = T2 = . . . = Td. We

consider first the case of n equispaced returns generated by (21). In this case, the log-likelihood

function is:

Qn
(
Σ0
)

:= −1

2

{
ln
(∣∣Σ0

∣∣)+ tr
[
(Σ0)−1Σn

]}
, n ∈ N, (24)

where Σn is the realized covariance estimator using all available prices, i.e,

Σn = Σ :=

n∑
j=1

(Ytnj − Ytnj−1
)(Ytnj − Ytnj−1

)′. (25)

It is well known that Σn maximizes Qn on M+
d and, under P, is strongly consistent for Σ0, that is

Σn
a.s.−→ Σ0, as n→∞. On the other hand, since Σn ∈M+

d almost surely, there exists a unique pair of

matrices, Gn and Hn, diagonal and lower diagonal with ones on its diagonal, respectively, such that

Σn = HnGnHn
′, a.s.
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It follows from this that, g11 = Σ11, hi1 = Σi1

g11
for i = 2, . . . , d, and for k ≥ 2 and k > l

gkk = Σkk −
k−1∑
m=1

h
2

kmgmm, (26)

hkl =
1

gll

(
Σkl −

l−1∑
m=1

hklhmlgmm

)
. (27)

Proposition 1 Suppose that T1 = T2 = . . . = Td and ∆i (T ) = 1/n. Let
(
Ĥ, Ĝ

)
∈ M+

d,chol be the

matrices associated to (16) and (17). Then
(
Ĥ, Ĝ

)
is the Cholesky decomposition of Σ (the MLE

estimator of Σ0). In particular,
(
Ĥ, Ĝ

)
is strongly consistent for

(
H0, G0

)
under P and

n1/2
(
q̂ − q0

) d→ N (0,Φ) , as n→∞,

where q̂ := rvech
[(
Ĥ − Id

)
+ Ĝ

]
, q0 := rvech

[(
H0 − Id

)
+G0

]
and Φ ∈ M+

d(d+1)/2 is the inverse of

the Fisher’s information associated to Qn as a function of q0.

General formulas for the score function, the Hessian matrix, and the Fisher information for the

MLE of q0 are given in Appendix C. In particular, we show that the estimation error of the MLE for

the g0
kk parameters is asymptotically uncorrelated to that of the MLE for the h0

kl parameters, and

that the estimation errors of h0
kl and h0

mn are only correlated if l = n. As such, the Fisher matrix and

its inverse are block diagonal. An unsurprising result is that the asymptotic variance of the MLE for

the g0
kk elements, which are computed as realized variances, is equal to 2(g0

kk)2.

Remark 1 Observe that in the previous proposition
(
Ĥ, Ĝ

)
is the Cholesky decomposition of the

realized covariance associated to the mesh T . This property only holds when ∆i (T ) = 1/n. For the

general case (non-equally spaced mesh), if T = {0 = tn0 < tn1 < · · · < tnn = 1} , then the MLE
(
H̃, G̃

)
is the Cholesky decomposition of

Σ̃ =

n∑
j=1

1

n∆j (T )
(Ytnj − Ytnj−1

)(Ytnj − Ytnj−1
)′, (28)

where ∆j (T ) = tnj − tnj−1, which of course does not coincide with the realized covariance. However,

we can resolve this situation by imposing asymptotic behavior on the observation times. Indeed, let

Σ̂ be the realized covariance associated to the mesh T and Σ̃ the MLE estimator of (28). Trivially,
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we have ∥∥∥Σ̂− Σ̃
∥∥∥ ≤ sup

j

∣∣∣∣ 1

∆j (T )n
− 1

∣∣∣∣ ∥∥∥Σ̂
∥∥∥ . (29)

Therefore, if

sup
j
|∆j (T )n− 1| = o

(
n−1/2

)
, as n→∞, (30)

we have that Σ̂ = Σ̃ + oP
(
n1/2

)
. Therefore, if (30) holds, then the conclusions in Proposition 1 also

hold for non-equispaced data. Finally, let us remark that (30) implies |T | := supj
(
tnj − tnj−1

)
∼ 1/n

as n → ∞. This means that the convergence of Σ̂ to Σ0 is not only in probability but also almost

surely. See De la Vega (1974) for more details.

4.3. The case of non-synchronous observations

Recall that we are assuming the observation times to be deterministic. In order to study the

non-synchronized case, in analogy to Remark 1, we introduce the following additional assumption:

Assumption 1 For every k = 1, . . . , d − 1, we assume Tk+1 ⊆ Tk (or Tk+1 ⊆ Tk). Further, for any

k, i = 1, . . . , d, as n→∞, Nk →∞, Nk/Ni = Kk,i + o (1) for some Kk,i > 0, and

sup
j

∣∣∆k
j (T )Nk − 1

∣∣ = o
(
N
−1/2
k

)
, as n→∞. (31)

Remark 2 Assumption 1 is standard in the non-synchronous framework, see e.g. Mykland (2010),

Hayashi and Yoshida (2008) and Christensen et al. (2013). Furthermore, as pointed out in Remark

1, our assumption on the speed of convergence on (31) is to control the asymptotic error between the

CholCov estimator and the quadratic covariation of Y , which arises from the choice of a maximum

likelihood based estimator.

In the presence of non-synchronous data, the estimation is done iteratively on expanding subsets.

For a given refresh-time grid Tk on which we estimate the Cholesky parameters G0
k and H0

k of the

projected covariance matrix Σ0(k) = ΠkΣ0Π′k using (13) and (14), the observations are synchronous

and the following result follows directly from the previous results.

Proposition 2 Let Assumption 1 hold. Let also (ĝkk)k=1,...,d and
(
ĥkl

)
k=1,...,d,l<k

be defined as in

(16) and (17). Let us denote

q̂k := Ak rvech
[(
Ĥ(k)− Ik

)
+ Ĝ(k)

]
, q0

k := Ak rvech
[(
H0(k)− Ik

)
+G0(k)

]
,
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with Ak =

[
0 Ik

]
, i.e. the k−th row of

(
Ĥ(k)− Ik

)
+ Ĝ(k) and

(
H0(k)− Ik

)
+G0(k), respectively.

Then, for every k = 1, . . . , d, q̂k
P→ q0

k and

√
Nk
[
q̂k − q0

k

] d→ N
(
0,Φk

)
, as n→∞,

where Φk = AkΦkA
′
k, with Φk = Πk(k+1)/2ΦΠ

′

k(k+1)/2 and Φ defined as in Proposition 1.

4.4. A CLT for the CholCov

In this subsection, within the framework of Assumption 1, we derive the asymptotic distribution

of our CholCov estimator. In Appendix A, we provide a summary of the theory used to proof our

result.

Under the notation of Proposition 2, we have that qk = Akq. Furthermore, as the mapping

(H,G) 7→ rvech
(
HGHT

)
is a continuously differentiable bijection between M+

d,chol and Rd(d+1)/2, by

the delta method, q is asymptotically normal if and only if the random vector(
Ak rvech

[
Σ̃ (k)

])
k=1,...,d

is asymptotically normal as well. Moreover, under Assumption 1,

rvech
[
Σ̂ (k)

]
= rvech

[
Σ̃ (k)

]
+ oP

(
N
−1/2
k

)
, with Σ̂ (k) the realized covariance of the process πk (Y )

for the mesh Tk. Hence, the asymptotic properties of q are the ones of
(
Ak rvech

[
Σ̂ (k)

])
k=1,...,d

,

which we derive in the following theorem.

Theorem 1 Let Assumption 1 hold. For every k = 1, . . . , d, let βk = Ak rvech
[√

Nk

(
Σ̂ (k)− Σ0 (k)

)]
be the k-th row of

√
Nk

(
Σ̂ (k)− Σ0 (k)

)
. Then as n → ∞, the vector β = (βk)k=1,...,d converges in

distribution to a normal random vector with covariance structure given by

lim
n→∞

E [βk (i)βk+l (j)] := Ψ ((k, i) , (k + l, j)) ρk,k+l, (32)

where, for every k = 1, . . . , d, l = 1, . . . , d− k, i = 1, . . . , k, and j = 1, . . . , k + l, ρk,k = 1,

ρk,k+l := lim
n→∞

√
NkNk+l

Nk∑
m=1

Nk+l∑
p=1

Leb
(
Λk+l
p ∩ Λkm

)2
, (33)

and

Ψ ((k, i) , (k + l, j)) := Σ0
k,k+lΣ

0
i,j + Σ0

k,jΣ
0
i,k+l, (34)
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with

Λkm =
(
tkm−1, t

k
m

]
, k = 1, . . . , d and m = 1, . . . , Nk, (35)

and Leb((a, b]) = b− a for a < b and zero otherwise.

Remark 3 Note that the results in the previous theorem are in agreement with those derived in

Hayashi and Yoshida (2008) and Christensen et al. (2013). We would like to emphasize that the

innovation in our result relies on the joint convergence of the CholCov estimator under different

asymptotic rates.

Remark 4 Within the framework of Assumption 1, the previous theorem can be generalized to

the context of random sample times. Indeed, if we assume that the times on Tk are random but

independent of our driver Brownian motion, then the estimation vector β (as defined in Theorem 1)

is asymptotically mixed Gaussian, providing that the following limit exists and is finite

ρk,k+l = P- lim
n→∞

√
NkNk+l

Nk∑
m=1

Nk+l∑
p=1

Leb
(
Λk+l
p ∩ Λkm

)2
.

Remark 5 All our asymptotic results presented so far assume that σ is constant. When σ is time

varying, relation (10) does not hold anymore, and the proposed CholCov estimator is no longer the

MLE. If we assume that σ is not constant yet deterministic, and the CholCov is still constructed as

in (16) and (17), then it follows from the proof of Proposition 1, that the k-th row of this misspecified

CholCov estimator corresponds to the k-th row of the QMLE estimator obtained by maximizing (24)

w.r.t. Σ0 (k). Moreover, due to Xiu (2010), c.f. Aı̈t-Sahalia et al. (2010), such a QMLE estimator is

consistent and asymptotically normal, and under Assumption 1, it is asymptotically equivalent to the

realized quadratic covariation computed on the mesh Tk. This implies that when σ is time-varying,

Proposition 2 remains true.

On the other hand, by reasoning as in the proof of Theorem 1, when σ is time-varying, yet determin-

istic, it holds that

E [βk (i)βk+l (j)] =
√
NkNk+l

Nk∑
m=1

Nk+l∑
p=1

∫
Λk+l

p ∩Λk
m

∫
Λk+l

p ∩Λk
m

Ψs.r ((k, i) , (k + l, j)) dsdr, (36)
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where βk as in Theorem 1 and

Ψs.r ((k, i) , (k + l, j)) := Σ0
k,k+l (s) Σ0

i,j (r) + Σ0
k,j (s) Σ0

i,k+l (r) ,

with Σ0 (t) = σtσt
′. Hence, according to Theorem 2, a necessary and sufficient condition for the

asymptotic normality of β is that the sequence in (36) converges to a finite number as n→∞. Under

standard assumptions on σ, e.g. σ being bounded away from zero, we can verify, in the context of

Assumption 1, that such a condition is satisfied.

Remark 6 Under the refresh-time sampling approach used throughout the paper, it is, for each grid

k, the least liquid asset that determines the number of observations in that grid (Nk). A clear example

where a violation of Assumption 1 invalidates the central limit distribution in Theorem 1 is the case

where limn→∞Nk+l/Nk = 0, for some integer 0 < l ≤ (d − k). Indeed, setting Nk = nαk and

Nk = nαk+l , with αk > 3αk+l, then
√
NkNk+l/N

2
k+l →∞. On the other hand, as shown in the proof

of Theorem 1,

E [βk (i)βk+l (j)] = Ψ ((k, i) , (k + l, j))
√
NkNk+l

Nk∑
m=1

Nk+l∑
p=1

Leb
(
Λk+l
p ∩ Λkm

)2
.

Moreover, from equation (56) in the Appendix, if Λk+l
p ∩ Λkm 6= ∅

√
NkNk+lLeb

(
Λk+l
p ∩ Λkm

)2
=

√
NkNk+l

4

[
∆k
m + ∆k+l

p − (| tkm − tk+l
p | + | tkm−1 − tk+l

p−1 |)
]2
.

Thus, as n→∞

√
NkNk+lLeb

(
Λk+l
p ∩ Λkm

)2
> (
√
NkNk+l/N

2
k+l)

(
N2
k+l∆

k+l
p

)2 →∞,
or in other words, the covariance between βk (i) and βk+l (j) does not converge. Hence, in this case

Theorem 1 fails.

Remark 7 A feasible estimator of the asymptotic covariance matrix. Theorem 1 shows that

the distribution of CholCov using (16) and (17) as candidate estimator has the asymptotic distribution

of RCOV when data is synchronous. In case of non-synchronous prices, the asymptotic covariance

of CholCov estimates corresponds to the covariance of RCOV multiplied by the scaling factor ρk,k+l.
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This factor can be estimated using ρk,k+l(n) computed on the observation times actually used in the

CholCov estimation. For the estimation of Ψ, the asymptotic covariance of the realized covariance

estimator, we recommend to use the estimator of Barndorff-Nielsen and Shephard (2004a). We suggest

simply synchronizing all series at once to estimate this quantity, and will show in the simulations that

this feasible estimator works well in finite samples.

Finally, note that Theorem 1 provides the asymptotic distribution of CholCov, which is a function

of q̂, i.e., the estimate of q0. Applying the delta method, we obtain the following asymptotic normality

result for q̂.

Corollary 1 Let q = (qk)k=1,...,d, with qk =
√
Nk
[
q̂k − q0

k

]
as in Proposition 2. Under Assumption

1, q is asymptotically normal with covariance structure given by

lim
n→∞

E [qq′] = ∇q0′ϕ∇q0,

where ∇q0 is the gradient of q0 with respect to rvech(Σ0) and ϕ is the asymptotic covariance matrix

of the corresponding elements in β = (βk)k=1,...,d as in Theorem 1.

5. Monte Carlo simulation

CholCov is positive semidefinite by construction and, in the presence of noise, we recommend

using noise-robust sequential estimators of the underlying q0 parameter such as the pre-averaging MRC

estimator. In this section, we first use a Monte Carlo analysis to compare the accuracy of mrcCholCov

using pre-averaging based estimates of q0 with the standard MRC estimator of Christensen et al.

(2010) and its composite counterpart, denoted cMRC. The standard MRC is estimated on a fully

synchronized sample with N observations. It is implemented with a window length of bN1/2+0.1c

at which it is guaranteed to be PSD, but for which the convergence is only at the rate N1/5. For

the cMRC estimator in which elements are estimated on pairwise grids, we use the N1/4 rate MRC

estimator with window length bN1/2c. We use the same efficient estimator for mrcCholCov•, which

will still result in a PSD estimate. We report the average condition number of the different estimators

for a range of sample sizes and show CholCov systematically has a lower condition number than

its counterparts. We conclude this section by studying the finite-sample accuracy of the normality

approximation for the finite-sample distribution of the realized covariance based CholCov estimates

(assuming prices are observed without microstructure noise), as described in Section 4.
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5.1. Setup

As in Barndorff-Nielsen et al. (2011), we generate hypothetical prices, with Y (i)(s) the associated

log-price of asset i, from the log-price diffusion given by

dY
(i)
t = µ(i)ds+ dV

(i)
t + dF

(i)
t

dV
(i)
t = ρ(i) σ

(i)
t dB

(i)
t

dF
(i)
t =

√
1− (ρ(i))2σ

(i)
t dWt,

with i = 1, . . . , d. All B(i)’s as well as W are independent Brownian motions. F (i) denotes the

common factor, scaled by
√

1− ρ2 to determine its strength.

Each Y (i) is a diffusive SV model with drift µ(i). Their random spot volatility are given by σ(i) =

exp(β
(i)
0 + β

(i)
1 %(i)), with d%(i) = α(i)%(i)dt + dB(i). The correlation between the changes in Y (i) and

Y (j) is constant and equals
√

1− (ρ(i))2
√

1− (ρ(j))2.

We calibrate the parameters (µ, β0, β1, α, ρ) at (0.03, −5/16, 1/8, −1/40, −0.3) as in Barndorff-

Nielsen et al. (2011). The stationary distribution of % is used to restart the process each day at

%(0) ∼ N (0, (−2(β)2/α)−1). The parameter choice ensures that E
(∫ 1

0
σ(i)2(u)du

)
= 1. The fact that

ρ is set equal for all i leads to an equicorrelation structure with common correlation coefficient 0.91.

Microstructure noise is added to the return log-prices as X(i) = Y (i) + ε(i) with

ε(i) | σ,X iid∼ N (0, ω2) with ω2 = ξ2

√√√√N−1

N∑
j=1

σ(i)4(j/N).

Hence, the variance of the noise increases with the variance of the underlying process, in line with

evidence from Bandi and Russell (2006).

Finally, independent Poisson processes are used to extract irregularly spaced, non-synchronous

data from the complete high-frequency dataset. Each Poisson process is governed by a parameter

λ(i), resulting in on average one observation every λ(i) seconds for series i. On average, the series are

observed 23, 400/λ(i) times.

For each estimator, the bias and RMSE for variance and covariance elements are computed sepa-

rately. The bias and RMSE, for a given element (k, l) of the matrix Σ̂k,l, are defined as

Biask,l = Σ̂k,l − Σk,l and RMSEk,l =

√
(Σ̂k,l − Σk,l)2. (37)
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We report the averages of the above two statistics over 1, 000 replications. We consider average bias

and RMSE over multiple elements, making a distinction between liquid and illiquid assets.

5.2. Comparison of CholCov with the standard (composite) MRC estimators

The comparison is done for d = 20 series with λ = {5, 5, . . . , 5, 120}.5 The first nineteen series are

observed on average every five seconds, and the last series once every two minutes. The MRC on the

full dataset will generally use less than 23, 400/120 observations, even though for the vast majority of

the series more data is available. Our estimators will use the high observation frequency of the liquid

series for all elements but those involving the last series.

We consider the MRC as well as its Composite counterpart, denoted cMRC. For the Composite

estimator, as in Lunde et al. (2015), we first estimate the variances, D, using the univariate version of

the estimator, after which realized correlations, R, are estimated on pairs of data. Similar to CholCov,

these estimators not only have the advantage of better data-sampling, but also optimal bandwidth

selection for each element. The resulting estimate of the covariance matrix, DRD, will not necessarily

be PSD, so any possible negative eigenvalues are set to slightly over zero as in Barndorff-Nielsen and

Shephard (2004b). Their performance is compared in terms of the three aforementioned criteria. For

the bias and RMSE the results are split up by reporting the averages of those elements involving the

illiquid stock, and those that do not separately.

Table 1 reports the results of the simulation. Panel A reports the fraction of PSD estimates for

the various estimates. The CholCov and MRC estimators are both PSD by construction. The cMRC

is not ensured to be PSD, and the simulations show that in the vast majority of cases it is not.

Panel B reports estimation results of the various individual elements. We show the average bias

and RMSE of all covariance, correlation and variance elements, as well as their averages for those

elements involving the illiquid asset and those that do not separately. First consider the MRC. As

everything is estimated on a common grid, there is no real difference in the bias and RMSE for each

of the elements between the liquid and illiquid stocks. Compared to the other estimators, even if the

bias is sometimes similar, the RMSE is larger for all elements.

Both versions of CholCov and cMRC are much more accurate. The only problem occurs in the

variance estimate of the illiquid series, which is common to both estimators. The Strip-and-Replace

estimation reduces RMSE, but has slightly larger bias compared to mrcCholCov. The bias in variances

5Unreported simulations show similar, if less pronounced, conclusions with λ = 5 for all assets and λ =
{2, 4, . . . , 38, 40}.
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transfers to a bias in the covariances involving the illiquid assets, but the correlation is estimated

accurately. On average, mrcCholCov• estimates the correlations with the least bias and the lowest

RMSE, amongst the estimators considered.

Finally, we report more results on the quality of the estimates by reporting condition numbers

for various dimensions. The condition number is defined as the ratio of the highest over the smallest

eigenvalue. A problem is said to be ill-conditioned if this ratio is large. In practice, this is mainly

due to extremely low eigenvalues. A well-conditioned matrix ensures that operations like inverting the

matrix do not amplify estimation error, which is critical in many applications. As before, we investigate

this within our simulations, where prices are simulated using poisson processes with parameters λ =

{5, 5, ..., 5, 120}, and we set the noise variance to ξ2 = 0.001.

Table 2 reports the average condition number over 1,000 simulations of the true matrix ICOV, and

the estimated matrices. It becomes clear that CholCov leads to slightly better conditioned matrices

than cMRC and vastly better conditioned matrices than MRC. This is especially true for larger

dimensional problems.

The simulation demonstrates that in a large dimensional setting, the sequential estimation of

the integrated correlation utilizing the Cholesky decomposition offers vast improvements over full-

dimensional estimation, and slight improvements in the Frobenius Distance over pairwise estimation.

However, CholCov is PSD by construction, whereas the Composite estimator needs a regularization

to become PSD.

5.3. Normality of the CholCov estimator in finite samples with stochastic volatility.

The final simulations aim validating the asymptotic theory derived in Section 4 for the realized

covariance based CholCov estimator using the expanding refresh-time grids Tk. We assess the ro-

bustness of the results to deviations from the assumptions on the underlying process. To do so, we

simulate a five-dimensional process according to the DGP described in Subsection 5.1. We consider

different assumptions on the DGP. First, we distinguish between constant and time-varying volatility.

Second, we consider different types of asynchronisity. Type I has no asynchronicity, and all obser-

vations are equispaced. Type II has asynchronicity, where the first series is observed every second,

5% of data is randomly discarded for the second series and an additional 5% of data is randomly

discarded for the each additional series. The series are asynchronous, but Tk+1 ⊂ Tk. We present the

rejection frequencies of the hypothesis of multivariate normality CholCov estimates using the squared
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Mahalanobis Distance (MD)

(rvechCholCov − rvech ICOV )′ϕ̃−1(rvechCholCov − rvech ICOV ) ∼ χ2
d(d+1)/2, (38)

where ϕ̃ is the asymptotic covariance matrix of rvechCholCov, constructed using (32). We use

infeasible and feasible estimates of ϕ, and consider 80% and 95% significance tests. For the infeasible

version of ϕ we simply compute its population quantity using the simulated path, while for the feasible

version we use the estimator given in Remark 7.

The results reported in Table 3 confirm the theory of the previous section, and show that relaxing

the constant volatility assumption does not greatly affect the CholCov’s distribution. The rejection

frequencies confirm that when there is no asynchronisity, i.e. Type I, the RCOV asymptotic distri-

bution is valid. Second, if there is asynchronisity of Type II, the elements converge at different rates

based on the effective number of observations.

6. Empirical illustration I: Value-at-Risk forecasting

We expect our estimator to be especially useful in realistic large-scale portfolio applications that

often require the estimator to be positive semidefinite and invertible. In our application we consider

the forecasting of portfolio Value-at-Risk (VaR). When computing a portfolio VaR, one has the option

to either model the portfolio univariately or multivariately. For the univariate approach one uses the

weights to compute portfolio returns and estimate its VaR based on the single series. Alternatively,

one could estimate and model the full covariance matrix, and determine the portfolio VaR based on

the multivariate setting. This has advantages for several reasons. First one can immediately calculate

risk estimates for many different portfolios. Additionally, it has the advantage that it can be used for

dynamic portfolio allocation, such as for instance a minimum variance portfolio. Finally, and most

importantly, the dynamics of each of the volatility and correlation components are modeled separately.

Santos et al. (2013) argue that for large dimensions, the information due to the multivariate modeling

outweighs the additional uncertainty of estimating many parameters, and leads to better forecasts.

We contribute to the multivariate approach to portfolio VaR analysis by studying the efficiency

gains of using intraday data for VaR forecast accuracy. We compare forecasts from models esti-

mated on daily returns with estimates based on intradaily techniques, i.e. dynamic models applied

to mrcCholCov• estimates. We also consider RCOV estimated on 5 minute previous-tick returns as

a base case for using high-frequency estimators. Giot and Laurent (2004) and Brownlees and Gallo
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(2010) make the comparison between daily and high-frequency measures in a univariate setting. We

are unaware of any paper comparing daily and intradaily models in the multivariate Value-at-Risk

setting. For simplicity, in this application, we consider just two types of portfolios, equally- and

value-weighted.

6.1. Data

We analyze the portfolio risk for a total of 52 of the largest U.S. financial institutions.6 The analysis

uses one-second trade data from January 2007 till December 2012 for a total of 1499 observation

days. We clean the data using the step-by-step cleaning procedure of Barndorff-Nielsen et al. (2009).

Throughout the analysis we use open-to-close returns obtained from the TAQ data. We use open-

to-close as our ICov estimators do not take into account the overnight return. If we were to include

overnight returns, gains in estimation accuracy would be more difficult to distinguish, as the overnight

return is relatively dominant. The weights for the value-weighted portfolio are proportional to firms’

market capitalization, determined by the shares outstanding (from CRSP) times the closing price of

the stock.

The estimation problem is moderately large with 52 firms and synchronization of the data will

greatly reduce the total number of observations. In Figure 3 we plot the frequencies of retained

observations after refresh-time synchronization of all the series. The least amount of observations is

6 while the most is 624. The median is 161. There are 11 days where the number of observations is

smaller than the dimension of the problem. This invalidates the use of the traditional full-dimension

estimators like the MRC, which is no longer invertible. Second, our application, like many applications

involving covariance estimates, requires the estimate to be positive semidefinite, invalidating the use

of the composite estimation technique.

6.2. Methodology

Our aim is to forecast portfolio Value-at-Risk. For a given d−dimensional vector of weights wt,

we compute the portfolio VaR over the open-to-close horizon on day t as follows:

VaRc
t = w′tµt|t−1 + zc

√
w′tSt|t−1wt, (39)

6The tickers are: ACAS, AET, AFL, AIG, AIZ, ALL, AMP, AXP, BAC, BBT, BEN, BK, BLK, BRKB, CB, CBG,
CINF, CMA, COF, CVH, EV, FITB, FNF, GNW, GS, HBAN, HIG, HNT, ICE, JNS, KEY, MET, MTB, NTRS, NYX,
PFG, PGR, PNC, PRU, RF, SEIC, SNV, STI, STT, TMK, TROW, UNH, UNM, USB, WFC, WU, ZION.
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Figure 3: Frequency plot of the daily number of observations after refresh-time synchronization of the 52 data series.
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where µt|t−1 is the vector conditional means and St|t−1 the conditional covariance matrix. Under the

assumption of conditional normality, zc is the c quantile of the standard normal distribution. The

conditional normality assumption is hard to justify for single stocks, but the dynamic quantile test

that we will perform does not reject it in our portfolio setting.

We consider the Value-at-Risk of both long and short positions, setting

c = {0.01, 0.025, 0.05, 0.95, 0.975, 0.99}. For long positions, the risk comes from a drop in the price

and therefore an observation in the left tail of the distribution, whereas for short positions the right

tail is important. The Value-at-Risk is for long positions when c < 0.5 and for short positions when

c > 0.5.

The conditional mean is forecasted using AR(p) models, where the optimal lag order is individually

determined by means of the Schwarz Information Criterion.

CholCov and RCOV are ex-post measures, while for estimating the VaR a covariance forecast and

therefore a dynamic model is needed. We consider two types of models. In the first we impose the

same dynamics on all elements, leading to a Scalar-BEKK type specification, like the HEAVY model of

Noureldin et al. (2012). In the second model that we consider, we allow for separate dynamics for the

individual volatilities and correlations, like in the cRDCC of Bauwens et al. (2012). The performance

of these two modeling strategies is compared to their counterparts using only daily returns, i.e. the

Scalar-BEKK (Engle and Kroner, 1995) and cDCC (Aielli, 2013), respectively.

Before presenting the results, let us first detail the different estimation methods. The Scalar-BEKK
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/ HEAVY models with dependence parameters α and β take the form of

St|t−1 = (1− α− β)Ω + αVt−1 + βSt−1|t−2, (40)

where for the Scalar-BEKK Vt = εtε
′
t, with εt corresponding to the vector of demeaned returns, and

for the HEAVY model Vt = Σ̂t, the covariance estimate based on intraday data. To reduce the number

of parameters to be estimated, we apply covariance targeting, where Ω is the unconditional variance-

covariance matrix of daily returns for the Scalar-BEKK and the average CholCov/RCOV for the

HEAVY model. The HEAVY model additionally has a correction term, to match the unconditional

variance of the model to that of daily returns. We implement the version in Equation (11) of Noureldin

et al. (2012).

The cDCC models take the following form:

St|t−1 = Dt|t−1Rt|t−1Dt|t−1

Rt|t−1 = diag(Qt|t−1)−1/2Qt|t−1 diag(Qt|t−1)−1/2

Qt|t−1 = (1− α− β)Q̄+ αP ∗t|t−1 + βQt−1|t−2,

(41)

where P ∗t = diag(Qt|t−1)1/2D−1
t|t−1VtD

−1
t|t−1 diag(Qt|t−1)1/2, Vt is defined as above, i.e. Vt = εtε

′
t for the

cDCC and Vt = Σ̂t for the cRDCC. Note that to reduce the number of parameters to be estimated, we

do correlation targeting, by replacing Q̄ by the mean of P ∗t . Both cDCC models can be estimated in

two steps, where first univariate models are fitted to estimate the volatilities Dt, which are then used

to estimate the conditional correlation Rt. For the univariate models we use ARFIMA(1, d, 0) models

on the natural logarithm of the estimated variances, as there is ample evidence (e.g. Andersen et al.,

2003) for the presence of long memory in realized variances. By modeling the natural logarithm of the

variances, we ensure positive out-of-sample forecasts.7 For a fair comparison we model the volatilities

in the cDCC on daily returns using a long memory model as well, i.e. a FIGARCH(1, d, 1).

The Scalar-BEKK and cDCC are estimated using a Composite Gaussian Likelihood, while the

HEAVY and cRDCC models are estimated using a Composite Wishart Likelihood, all on contiguous

pairs. Composite likelihood techniques for large-dimensional ARCH-type models were developed in

Engle et al. (2008). They facilitate estimation, and reduce bias in parameter estimates present in

large-dimensional problems. We assume Gaussian innovations for the computation of the VaR for all

7We adjust for the bias caused by the log-transformation as in Giot and Laurent (2004).
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models.

To obtain the forecasts we estimate all the models on an increasing window of observations, making

one-step-ahead forecasts for the 1,000 last days, re-estimating the parameters daily.

We test the out-of-sample performance of the VaR estimates in two ways. The first method is the

dynamic quantile test of Engle and Manganelli (2004). They define a Hit variable associated with the

ex-post observation of a VaR violation at time t:

Hit t(c) =


1− c if w′rt < V aRct|t−1

−c otherwise.

(42)

Similarly, Hit t(1−c) = 1−c if w′rt > V aR1−c
t|t−1. We run the regressions Hit t(c) = δ0+

∑K
k=1 δkHitt−k(c)+

εt and test the joint hypothesis H0 : δ0 = δ1 = ... = δk = 0, ∀k = 1, ...,K. VaR violations are un-

correlated over time if the δi with i > 0 are 0, whereas the unconditional coverage is correct if

δ0 = 0. Denote by θ = (δ0, δ1, ..., δK)′ the vector of parameters of the model and by X the matrix of

explanatory variables of the regression. The test statistic is

θ̂′X ′Xθ̂

c(1− c)
, (43)

and follows a χ2-distribution with K + 1 degrees of freedom under the null of correct specification.

Second, as in Chen and Gerlach (2013), we measure performance by means of a loss function and the

Model Confidence Set of Hansen et al. (2011). They suggest the following loss function applicable to

quantile forecasts, which is the criterion function minimized in quantile regressions:

LF ct = (VaRc
t|t−1 − w′rt)Hit t(c). (44)

The Model Confidence Set (MCS) allows statistical comparison of the competing models by comparing

their respective loss series. It uses a block-bootstrap to obtain the distribution of the mean loss

and eliminates models based on the maximum of pairwise t-statistics, automatically controlling the

familywise error. We set the level to 90%, such that models are removed from the set until the final

model set includes the best models with 90% confidence.8

8The MCS is carried out using the MulCom 3.0 package for Ox (Hansen and Lunde, 2014), using 10,000 resamples
and a bootstrap block-length of 2.
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6.3. Results

Table 4 reports the results of the Dynamic Quantile Test. The first three columns depict the

results for the long-positions, and the last three columns show the results for the short positions. The

top panel reports the p-values for the Equal Weighted (EW) portfolio and the bottom panel shows the

results for the Value Weighted (VW) portfolio. Each panel contains successively the results for the

two models using daily returns, Scalar-BEKK and cDCC, and the two models utilizing the CholCov,

HEAVY and cRDCC. We give the results for K = 1 and K = 2, but they are qualitatively similar for

larger K. The results are available upon request.

First consider the models on daily returns, the Scalar-BEKK and cDCC. The empirical results given

in both panels tell the same story. The models using just daily returns are not flexible enough to

accurately forecast the VaR. The Scalar-BEKK’s unconditional coverage is rejected in many cases, and

the rejection of the dynamic quantile test for all c and K shows that the violations are also dependent.

The cDCC does perform a lot better, taking into account possible long-memory in volatility, but fails

to model the left tail of the distribution adequately, with the p-values for the null hypothesis of the

different versions of the test often smaller than 0.05, when c = 1% or c = 2.5%. We have considered

alternative specifications, not reported for brevity, which included leverage effects, but these were also

rejected. It is unclear whether the rejection is due to model misspecification or non-normal returns.

As such we also estimated the model using the more flexible multivariate Student distribution. Again,

this did not lead to significant improvements.

By increasing the information set to include intraday data, we can estimate the models on RCOV

and CholCov. The HEAVY model applied to RCOV offers some slight improvements over the daily

Scalar-BEKK. However, the model is still almost uniformly rejected. Applying the HEAVY model to

CholCov offers more substantial improvements. However, the short memory HEAVY model is still

rejected by the data. For CholCov, conditional gaussianity is rejected for lag-length K = 2 but not

for K = 1. This suggests more lags are needed, and as such we have considered a HEAVY(2,2) model,

which is also rejected by the data.

The cRDCC with ARFIMA dynamics on the variances takes into account the long-memory prop-

erties of Realized Variance. The cRDCC model utilizing RCOV has similar performance to the cDCC

model using daily returns, with rejections in the left tail. However, due to the flexibility of the model,

combined with the accurate CholCov estimates based on liquidity sorted assets, it can capture both

the unconditional coverage and pass the test for independence of violations, with only a single rejection
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at the 5 percent level for the 1% VaR for K = 2.

To see the economic significance of using liquidity sorting instead of observation count sorting,

Table 4 also reports the results using the CholCov based on observation count sorting along with the

empirically best model, the ARFIMA cRDCC. The resulting VaR forecasts are inferior. For the Value

Weighted portfolio, rejections are similar to the liquidity sorting based forecasts, but for the Equal

Weighted portfolio there are again problems in the left tail, with rejections for the two most extreme

quantiles.

Second we consider the evaluation of the loss function on VaR forecasts. Table 5 shows which

models are part of the 90% Model Confidence Set for each VaR quantile and for both portfolios.

The cRDCC model on CholCov is always in the MCS for both portfolios. Nearer the centre of the

distribution, the cDCC on daily returns and cRDCC on RCOV are also included in the MCS. For

the right tail of the return distribution, the CholCov using observation count sorting are part of the

MCS. In general, the Scalar-BEKK/HEAVY-type models are rejected here as well.

The results suggest that, for diversified portfolios like the ones considered here, accurate VaR

forecasts can be obtained under the assumption of conditional normality, by utilizing the Cholcov

estimator to make efficient use of the information content of high-frequency data and an appropriate

dynamic model.

7. Empirical illustration II: Forecasting betas

A further application in which we expect the CholCov to be of practical relevance is the forecasting

of dynamic exposures to observed risk factors, which we will refer to as betas. As in the previous

section, this requires an accurate and positive semidefinite estimator of the covariance matrix. We

estimate the exposures of the 52 financial institutions in our previous exercise to ten sector Exchange

Traded Funds (ETFs), being SPY, XLB, XLE, XLF, XLI, XLK, XLP, XLU, XLV, XLY. Our sample

for the ETFs only runs until April 30th 2012, for a total of 1336 observations.

We compare the betas produced by one-step-ahead forecasts of the cDCC-type models for CholCov,

RCOV and daily returns. As our sample is slightly reduced, we now consider the last 800 observations

of our out-of-sample window. The betas are obtained by forecasting the 11-dimensional covariance

matrix, of the 10 ETFs and the individual financial institution. We then obtain the 10-dimensional

beta vector as

β̂k,t|t−1 = ŜkE,t|t−1Ŝ
−1
EE,t|t−1,
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where the covariance forecast St|t−1 is partitioned into the firm k and the ten ETFs E:

St|t−1 =

Skk,t|t−1 SEk,t|t−1

SkE,t|t−1 SEE,t|t−1

 .
We use a regression-based comparison that was proposed by Engle (2014). To do so, define the

variables

Zk,t|t−1 = β̂′k,t|t−1ETFt,

where ETFt is the vector of realized sector returns. We consider three different estimators of β̂k,

based on the CholCov, RCOV and daily return, leading to three different auxiliary variables, denoted

ZCholCovk,t|t−1 , ZRCOVk,t|t−1, and ZDCCk,t|t−1. We then estimate the following model by OLS:

rk,t = α+ δCholCovk ZCholCovk,t|t−1 + δRCOVk ZRCOVk,t|t−1 + δDCCk ZDCCk,t|t−1 + ηk,t, (45)

for each k = 1, ..., 52. A perfect specification for the β-vector would lead to a δ coefficient equal to

one, while the other coefficients would be zero. Engle (2014) does an in-sample comparison of a static

beta with a DCC beta, and Hansen et al. (2014) add the Realized Beta GARCH to the analysis and

perform an out-of-sample analysis.

It follows that we can test which model is ‘superior’ by testing the following three null hypotheses:

HCholCov : δCholCovk = 1, δRCOVk = δDCCk = 0

HRCOV : δRCOVk = 1, δCholCovk = δDCCk = 0

HDCC : δDCCk = 1, δCholCovk = δRCOVk = 0,

taking into account heteroskedasticity by using White (1980) standard errors. Additionally, we

wish to identify the benefits of using CholCov over RCOV. To test this, we consider the regression

(45) but without ZDCCk,t|t−1, and test the hypotheses:

H ′CholCov : δCholCovk = 1, δRCOVk = 0

H ′RCOV : δRCOVk = 1, δCholCovk = 0.

Second, we compare the betas in terms of a beta hedging tracking exercise. We compute the time

series
(
rk,t − ZCholCovk,t|t−1

)
,
(
rk,t − ZRCOVk,t|t−1

)
and

(
rk,t − ZDCCk,t|t−1

)
for each asset k, and seek the series

with the smallest sample variance by means of the Model Confidence Set of Hansen et al. (2011).
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The results are reported in Table 6. The first two panels show the results from the regression

based test, whereas Panel C shows the beta hedging exercise. Panel A shows descriptive statistics of

the cross-sectional variation of the estimated δ coefficients across the 52 assets. The beta stemming

from the CholCov estimates has the highest weight on average and cannot be rejected as the ‘superior’

model for over 40 percent of the assets. It almost completely encompasses the explanatory power of

beta forecasts based on RCOV, which obtains very low loadings and is always rejected. The model

based on daily returns has slightly higher loadings, but is also almost always rejected as the superior

model.

In the direct comparison between CholCov and RCOV forecasts, CholCov provides superior results,

and cannot be rejected in almost 60 percent of the cases.

The beta hedging exercise provides the same conclusion. We obtain Model Confidence Sets, which

contain the set of models with the smallest tracking error with a probability of no less than 90%. The

CholCov tracking portfolios are never rejected, and the DCC based portfolios are in slightly over 40%

of the sets.

8. Conclusions

We propose an ex-post estimator of the integrated covariance that uses the Cholesky decomposition

to obtain an estimate that is ensured positive semidefinite. The elements are estimated sequentially,

on an increasing set of series. As such, the estimator uses many more observations than the traditional

multivariate estimators, but fewer than pairwise estimators. Cholcov is flexible and can use any other

estimator for the intermediate calculations, adopting their robustness properties. The asymptotic

distribution is derived for the constant volatility, no-noise case, but with asynchronicity. Simulations

confirm its properties and demonstrate that the resulting estimates are accurate and better conditioned

than full-dimensional or composite estimates.

In an empirical application we use CholCov in a portfolio setting which requires the covariance

matrix estimate to be positive semidefinite. The problem is moderately large, involving over 50

stocks. Using an appropriate dynamic model, which allows for long memory in the variances, we

forecast portfolio Value-at-Risk and are unable to reject the model, using standard normal quantiles.

This is in contrast to models based on daily returns and dynamic models on CholCov not allowing for

long memory, which are rejected by the data.

As a second application, we forecast conditional betas with respect to ten sector ETFs. We
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evaluate them using a regression-based comparison and a beta hedging tracking exercise. We find

that the forecasts based on the CholCov provide the best results in terms of both evaluation criteria,

compared to forecasts based on RCOV and daily returns.
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Table 1: Results Simulation II

Panel A mrcCholCov mrcCholCov• MRC cMRC PSD cMRC
Fraction PSD
ξ2 = 0.000 1.000 1.000 1.000 0.377 1.000
ξ2 = 0.001 1.000 1.000 1.000 0.199 1.000
ξ2 = 0.010 1.000 1.000 1.000 0.000 1.000

Panel B
mrcCholCov mrcCholCov• MRC cMRC PSD cMRC
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Covariances
All elements
ξ2 = 0.000 -0.005 0.093 -0.003 0.091 0.025 0.230 -0.004 0.097 -0.004 0.097
ξ2 = 0.001 -0.006 0.094 -0.005 0.093 0.030 0.233 -0.004 0.098 -0.004 0.098
ξ2 = 0.010 -0.005 0.100 -0.007 0.096 0.035 0.246 -0.006 0.105 -0.006 0.105
Liquid elements
ξ2 = 0.000 -0.002 0.086 -0.001 0.084 0.026 0.230 -0.001 0.090 -0.001 0.090
ξ2 = 0.001 -0.004 0.088 -0.001 0.087 0.029 0.233 -0.001 0.091 -0.001 0.091
ξ2 = 0.010 -0.002 0.093 -0.003 0.090 0.035 0.247 -0.003 0.098 -0.003 0.098
Illiquid elements
ξ2 = 0.000 -0.035 0.143 -0.034 0.142 0.025 0.226 -0.035 0.143 -0.035 0.143
ξ2 = 0.001 -0.028 0.139 -0.036 0.135 0.029 0.230 -0.034 0.145 -0.034 0.144
ξ2 = 0.010 -0.036 0.146 -0.041 0.137 0.034 0.241 -0.034 0.157 -0.034 0.154

Correlations
All elements
ξ2 = 0.000 -0.002 0.019 -0.002 0.019 -0.004 0.037 0.000 0.020 -0.002 0.019
ξ2 = 0.001 -0.002 0.019 -0.001 0.018 -0.004 0.039 -0.001 0.021 -0.002 0.020
ξ2 = 0.010 0.001 0.026 -0.001 0.023 -0.008 0.060 -0.003 0.030 -0.010 0.030
Liquid elements
ξ2 = 0.000 -0.001 0.017 -0.000 0.017 -0.004 0.037 0.000 0.017 -0.001 0.017
ξ2 = 0.001 -0.002 0.017 -0.001 0.016 -0.004 0.039 -0.001 0.018 -0.001 0.018
ξ2 = 0.010 0.001 0.025 -0.001 0.022 -0.008 0.060 -0.002 0.026 -0.007 0.026
Illiquid elements
ξ2 = 0.000 -0.012 0.032 -0.017 0.032 -0.004 0.035 -0.004 0.035 -0.006 0.034
ξ2 = 0.001 -0.003 0.029 -0.002 0.028 -0.004 0.036 -0.004 0.036 -0.008 0.035
ξ2 = 0.010 -0.001 0.035 0.001 0.031 -0.007 0.056 -0.007 0.056 -0.032 0.053

Variances
All elements
ξ2 = 0.000 -0.004 0.111 -0.004 0.104 0.029 0.248 -0.004 0.104 -0.004 0.104
ξ2 = 0.001 -0.004 0.114 -0.004 0.106 0.033 0.252 -0.004 0.106 -0.003 0.106
ξ2 = 0.010 -0.004 0.129 -0.004 0.117 0.046 0.274 -0.004 0.117 -0.004 0.116
Liquid elements
ξ2 = 0.000 -0.002 0.103 -0.001 0.097 0.029 0.249 -0.001 0.097 -0.001 0.097
ξ2 = 0.001 -0.002 0.106 -0.001 0.098 0.033 0.253 -0.001 0.098 -0.001 0.098
ξ2 = 0.010 -0.003 0.121 -0.002 0.109 0.046 0.275 -0.002 0.109 0.004 0.109
Illiquid elements
ξ2 = 0.000 -0.048 0.209 -0.058 0.199 0.026 0.227 -0.058 0.199 -0.055 0.198
ξ2 = 0.001 -0.035 0.211 -0.055 0.204 0.033 0.232 -0.055 0.204 -0.049 0.202
ξ2 = 0.010 -0.031 0.231 -0.048 0.216 0.042 0.245 -0.048 0.216 -0.009 0.207
Note: Simulation results of the multivariate factor diffusion with d = 20 with λ = 5, 5, . . . , 5, 120. Panel A reports the
fraction of PSD estimates. Panel B reports the average bias and RMSE of the covariance, correlation and variances, displayed
separately for those elements involving the illiquid asset and those that do not.
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Table 2: Results Simulation II: Condition numbers

d ICOV mrcCholCov mrcCholCov• MRC cMRC

2 21.22 23.78 24.03 22.08 22.53
5 51.55 93.01 91.58 134.65 99.30

10 102.11 321.16 305.51 822.71 400.43
20 203.22 1892.58 1714.24 13878.14 2259.41
50 506.55 9978.12 9663.10 46336.40 10831.52
Note: Simulation results of the multivariate factor diffusion with d =
2, 5, 10, 20, 50 with λ = 5, 5, . . . , 5, 120 and ξ2 = 0.001.

Table 3: Rejection rates of the normality assumption for the realized covariances based CholCov estimates

Asynchronisity Constant Noise Infeasible Feasible
Type Volatility

80% 95% 80% 95%

I Yes No 19.8 4.9 19.1 4.3
II Yes No 18.7 5.2 17.0 3.9
I No No 20.8 4.1 18.5 5.8
II No No 19.5 4.2 18.9 5.7
Note: Type I has no asynchronicity, and all observations are equispaced.
Type II has asynchronicity, where for the first series each second is observed,
and for each next series, an additional 5% of observed prices are removed.
The series are asynchronous, but Tk+1 ⊂ Tk.
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Table 4: Dynamic Quantile Test P-Values

K\c 1.0% 2.5% 5.0% 95.0% 97.5% 99.0%

Equal Weighted

Scalar-BEKK 1 0.018 0.000 0.011 0.001 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000

cDCC 1 0.029 0.015 0.335 0.499 0.754 0.950
2 0.022 0.034 0.227 0.566 0.779 0.976

HEAVY-RCOV 1 0.000 0.001 0.102 0.198 0.016 0.000
2 0.000 0.003 0.152 0.000 0.000 0.000

cRDCC-RCOV 1 0.028 0.270 0.764 0.902 0.591 0.042
2 0.022 0.219 0.548 0.012 0.002 0.078

HEAVY-CholCov 1 0.385 0.204 0.557 0.262 0.800 0.042
2 0.000 0.007 0.015 0.000 0.000 0.011

cRDCC-CholCov 1 0.010 0.008 0.272 0.777 0.899 0.746
Observation Count Sorting 2 0.002 0.014 0.210 0.213 0.944 0.856

cRDCC-CholCov 1 0.746 0.719 0.531 0.688 0.413 0.797
Liquidity Sorting 2 0.078 0.831 0.240 0.414 0.547 0.918

Value Weighted

Scalar-BEKK 1 0.000 0.000 0.002 0.011 0.006 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000

cDCC 1 0.130 0.030 0.133 0.506 0.667 0.236
2 0.055 0.057 0.246 0.712 0.735 0.354

HEAVY-RCOV 1 0.887 0.014 0.002 0.000 0.000 0.000
2 0.060 0.028 0.004 0.000 0.000 0.000

cRDCC-RCOV 1 0.065 0.041 0.914 0.674 0.474 0.036
2 0.000 0.076 0.954 0.174 0.003 0.068

HEAVY-CholCov 1 0.565 0.021 0.283 0.380 0.838 0.385
2 0.000 0.003 0.189 0.000 0.000 0.085

cRDCC-CholCov 1 0.385 0.193 0.135 0.788 0.719 0.887
Observation Count Sorting 2 0.000 0.214 0.253 0.253 0.831 0.944

cRDCC-CholCov 1 0.950 0.675 0.900 0.946 0.667 0.625
Liquidity Sorting 2 0.039 0.315 0.920 0.387 0.735 0.809

Note: P-values of the Dynamic Quantile Test for the Equal Weighted and Value Weighted
portfolio Value-at-Risks. The Scalar-BEKK and cDCC are estimated on daily returns, while
the last two models are estimated using the proposed mrcCholCov• covariance estimate.
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Table 5: Loss function MCS results

c 1.0% 2.5% 5.0% 95.0% 97.5% 99%
Equal Weighted

Scalar-BEKK
cDCC X X X
HEAVY-RCOV
cRDCC-RCOV X X X
HEAVY-CholCov X X
cRDCC-CholCov Observation Count Sorting X X X
cRDCC-CholCov Liquidity Sorting X X X X X X

Value Weighted
Scalar-BEKK
cDCC X X
HEAVY-RCOV
cRDCC-RCOV X X
HEAVY-CholCov X
cRDCC-CholCov Observation Count Sorting X X
cRDCC-CholCov Liquidity Sorting X X X X X X
Note: The table shows the models included in the 90% Model Confidence set for the different
VaR forecast quantiles and the two portfolios, based on the loss function (44).

Table 6: Beta Comparisons

Panel A: Summary of parameter estimates
Full Model Excluding DCC Single series

δCholCovi δRCOVi δDCCi δCholCovi δRCOVi δCholCovi δRCOVi δDCCi

Mean 0.724 0.064 0.258 0.922 0.122 0.976 0.995 1.017
Stdev. 0.199 0.142 0.230 0.131 0.151 0.103 0.325 0.086

5% 0.461 -0.178 -0.083 0.702 -0.102 0.841 0.394 0.880
Median 0.713 0.077 0.268 0.912 0.138 0.957 0.997 1.018
95% 1.061 0.293 0.637 1.115 0.368 1.117 1.457 1.137

Panel B: Rejection Frequencies
HCholCov : 0.577 HRCOV : 1.000 HDCC : 0.962 H ′CholCov : 0.404 H ′RCOV : 1.000

Panel C: Frequency in Model Confidence Set
CholCov: 1.000 RCOV: 0.038 DCC: 0.442

Note: Comparison of the betas obtained from CholCov and RCOV cRDCC forecasts, and cDCC
forecasts based on daily returns. Panel A presents descriptive statistics of the estimated coeffi-
cients of regression (45). Panel B shows the rejection frequencies for the hypothesis outlined in
the text and Panel C reports the frequency that each of the models are included in the MCS in
the beta hedging exercise.
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Appendix A: The Pecatti and Nualart’s fourth moment theorem

In this appendix, we present a version of Pecatti and Nualart’s fourth moment theorem (see Nualart

and Peccati, 2005 and Peccati and Tudor, 2005) which plays a key role in the proof of Theorem 1.

Let (Ω,F ,P) be a complete probability space and (Wt)0≤t≤1 a d-dimensional Brownian motion

satisfying that F = σ
(

(Wt)0≤t≤1

)
, the σ-algebra generated by (Wt)0≤t≤1. Recall that the underlying

log-price process Yt is assumed to follow a multivariate Brownian Semi-Martingale with constant

covariance, i.e.,

dYt = σ0dWt.

Observe that, since σ0σ0′ is assumed to be positive definite, then F = σ
(

(Yt)0≤t≤1

)
.

Let T= [0, 1] × {1, . . . , d}, and µ (dsdx) = ds# (dx), where # (dx) is the counting measure on

{1, . . . , d}. Define

IW1 (ξ) :=

d∑
i=1

∫ 1

0

ξ (s, i) dW i
s (46)

IW2 (ϕ) := 2

d∑
i=1

d∑
i=1

∫ 1

0

∫ r

0

ϕ [(s, i) , (r, j)] dW i
sdW

j
r , (47)

with ξ : T → R µ-square integrable, and ϕ : T × T → R (µ× µ)−square integrable such that

ϕ [(s, i) , (r, j)] = ϕ [(r, j) , (s, i)] , (r, j) , (s, i) ∈ T. (48)

We define in an analogous way IY1 and IY2 . The collection of (µ× µ)−square integrable functions

satisfying (48) will be denoted by H�2.

The following result is an ad hoc simplification of Nualart and Peccati (2005) and Peccati and

Tudor (2005):

Theorem 2 (Pecatti and Tudor, 2005) Let m ≥ 2 and consider a sequence of functions
{
ϕ1
n, . . . , ϕ

m
n

}
n≥1

such that ϕin ∈ H�2 and for every i, j = 1, . . . ,m, the limit

lim
n→∞

E
[
IW2

(
ϕin
)
IW2

(
ϕjn
)]

= C (i, j) ,

exists. Then the following statements are equivalent

1. The vector
(
IW2

(
ϕin
))m
i=1

converges in distribution to a m-dimensional Gaussian vector N =
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(N1, . . . , Nm)
′

with covariance matrix C = (C (i, j))i,j=1,...,m;

2. For every j = 1, . . . ,m, IW2
(
ϕjn
) d−→ Nj .

Additionally, for our proof of Theorem 1, we will need the following result, obtained under the

assumptions listed in this appendix.

Proposition 3

1. We have

IY1
(
ξ1
)
IY1
(
ξ2
)

= IW2
(
σ0ξ1⊗̃σ0ξ2

)
+

d∑
i=1

d∑
j=1

∫ 1

0

ξ1 (s, i) Σ0
i,jξ

2 (s, j) ds, (49)

where Σ0 = σ0σ0′, σ0ξ (s, i) =
d∑
x=1

σ0
i,xξ (s, x) and

ξ1⊗̃ξ2 [(s, i) , (r, j)] =
1

2

[
ξ1 (s, i) ξ2 (r, j) + ξ1 (r, j) ξ2 (s, i)

]
,

i.e., the symmetric tensor product.

2. For every ϕ1, ϕ2 ∈ H�2

E
[
IW2

(
ϕ1
)
IW2

(
ϕ2
)]

= 2

d∑
i=1

d∑
j=1

∫ 1

0

∫ 1

0

ϕ1 [(r, j) , (s, i)]ϕ2 [(r, j) , (s, i)] dsdr. (50)

Proof. A general proof for part 2 can be found in Nualart (2006), so let us focus on the first part.

Since

dY is =

d∑
j=1

σ0
ijdW

j
s ,
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we get, once we apply Itô’s formula, that

IY1
(
ξ1
)
IY1
(
ξ2
)

=

d∑
i,j,x,y=1

∫ 1

0

ξ1(s, i)σ0
ijdW

j
s

∫ 1

0

ξ2(s, x)σ0
xydW

y
s

=

d∑
i,j,x,y=1

∫ 1

0

∫ s

0

ξ1(r, i)σ0
ijξ

2(s, x)σ0
xydW

j
r dW

y
s

+

d∑
i,j,x,y=1

∫ 1

0

∫ s

0

ξ1(s, i)σ0
ijξ

2(r, x)σ0
xydW

y
r dW

j
s

+

d∑
i,j,x,y=1

∫ 1

0

ξ1(s, i)σ0
ijξ

2(s, x)σ0
xyd[W j ,W y]s

=

d∑
i,j=1

∫ 1

0

∫ s

0

σ0ξ1 (r, j)σ0ξ2 (s, i) dW j
r dW

i
s

+

d∑
i,j=1

∫ 1

0

∫ s

0

σ0ξ1 (s, i)σ0ξ2 (r, j) dW j
r dW

i
s

+
d∑
i=1

d∑
j=1

∫ 1

0
ξ1 (s, i) Σ0

i,jξ
2 (s, j) ds.

Equation (49) follows by comparing the previous equation and (47).

Appendix B: Proofs

Proof of Proposition 1. In view that the mapping (H,G) 7→ HGHT is a continuously differentiable

bijection between M+
d,chol and M+

d and in this case Σ̂ is the realized covariance, we only need to check

that
(
Ĥ, Ĝ

)
=
(
H,G

)
. We only consider the bivariate case but the general case follows by induction.

Trivially, we have that ĝ11 = g11. Now, since

ĥ21 =

∑n
j=1 r

(2)
l (T ) f

(1)
j (T )

ĝ11

=

∑n
j=1 r

(2)
l (T ) r

(1)
j (T )

ĝ11
,

we obtain that ĥ21 = h21, or in other words Ĥ = H. Finally, in view that for i = 1, . . . , n

f
(2)

j (T ) = r
(2)
j (T )− Σ21

Σ11

r
(1)
j (T ) ,
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we get

ĝ22 =

n∑
j=1

[
f

(2)

j (T )
]2

=

n∑
j=1

[
r

(2)
j (T )− Σ21

Σ11

r
(1)
j (T )

]2

= Σ22 − 2
Σ21

Σ11

n∑
j=1

r
(1)
j (T ) r

(2)
j (T ) +

(
Σ21

Σ11

)2 n∑
i=1

[
r

(1)
j (T )

]2
= Σ22 −

(
Σ21

)2
Σ11

= g22,

which concludes the proof.

Proof of Proposition 2. Following the same reasoning as in Remark 1, we have that

∥∥∥Σ̂ (k)− Σ̃ (k)
∥∥∥ ≤ sup

∣∣∣∣ 1

∆j (Tk)Nk
− 1

∣∣∣∣ ∥∥∥Σ̂ (k)
∥∥∥ , (51)

where Σ̂ (k) is the realized covariance of the process πk (Xt). Note that from (22) and (23), we get

Σ̂ (k)− Σ0 (k) = Πk

(
Σ̂− Σ0

)
Π′k,

and

rvech
(

Σ̂ (k)− Σ0 (k)
)

= Bk rvech
(

Σ̂− Σ0
)

,

for some matrix Bk. It follows that
∥∥∥Σ̂ (k)− Σ̃ (k)

∥∥∥ = oP

(
Nk (n)

−1/2
)

. The first conclusion of this

proposition follows trivially from this and the fact that

q (k)− q0 (k) = Πk(k+1)/2

(
q̂ − q0

)
,

with q̂ as in Proposition 1. The final result follows from the following equation

q̂k − q0
k = Ak

[
q̂ (k)− q0 (k)

]
, k = 1, . . . , d.

Proof of Theorem 1. From Proposition 2, βk converges to a normal random vector, for k = 1, . . . , d.

Thus, for any k = 1, . . . , d and i = 1, . . . , k, βk (i) is asymptotically normal. To show the desired
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result of joint asymptotic normality, we use Theorem 2. Therefore, in order to conclude the proof,

we only need to show that βk (i) = IW2 (ϕ) for some ϕ ∈ H�2 depending on (i, k) , and that the

limit limn→∞ E [βk (i)βk+l (j)] exists and is given by (32), for every k = 1, . . . , d, l = 1, . . . , d − k,

i = 1, . . . , k, and j = 1, . . . , k + l.

Let us first verify that βk (i) = IW2 (ϕ). Let Σ̂kij be the ijth element of Σ̂ (k). Then

Σ̂kij =

Nk∑
l=1

(
Y itkl
− Y itkl−1

)(
Y j
tkl
− Y j

tkl−1

)
=

Nk∑
l=1

IY1
[
ξi,l (Tk)

]
IY1
[
ξj,l (Tk)

]
,

where

ξi,l (Tk) (s, x) := 1Λk
l

(s) δi (x) , i = 1, . . . , k,

with Λkl as in (35) and δi the Dirac delta on i. Using (49) in Proposition 3, we have that

IY1
[
ξi,l (Tk)

]
IY1
[
ξj,l (Tk)

]
= IW2

(
σ0ξi,l (Tk) ⊗̃σ0ξj,l (Tk)

)
+

d∑
x=1

d∑
y=1

∫ 1

0

ξi,l (Tk) (s, x) Σ0
i,jξ

j,l (Tk) (s, y) ds,

where Σ0
ij is the ijth element of Σ0. In view that

d∑
x=1

d∑
y=1

∫ 1

0

ξi,l (Tk) (s, x) Σ0
x,yξ

j,l (Tk) (s, y) ds = ∆l (Tk) Σ0
ij ,

we deduce that

βk (i) =
√
Nk

(
Σ̂kki − Σ0

ki

)
=

√
Nk

Nk∑
l=1

IW2
(
σ0ξk,l (Tk) ⊗̃σ0ξi,l (Tk)

)
. (52)

We conclude that βk (i) = IW2 (ϕ), with ϕ =
√
Nk
∑Nk

l=1

(
σ0ξk,l (Tk) ⊗̃σ0ξi,l (Tk)

)
∈ H�2.

We now show that the limit limn→∞ E [βk (i)βk+l (j)] exists and is given by (32). From (52), for
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every k = 1, . . . , d, i = 1, . . . , k, l = 1, . . . , d− k, j = 1, . . . , k + l.

E [βk (i)βk+l (j)] =
√
NkNk+lE


[

Nk∑
m=1

IW2

(
σ0ξk,m (Tk) ⊗̃σ0ξi,m (Tk)

)]Nk+l∑
p=1

IW2

(
σ0ξk+l,p (Tk+l) ⊗̃σ0ξj,p (Tk+l)

)
=

√
NkNk+l

Nk∑
m=1

Nk+l∑
p=1

E
[
IW2

(
σ0ξk,m (Tk) ⊗̃σ0ξi,m (Tk)

)
IW2

(
σ0ξ

k+l,p (Tk+l) ⊗̃σ0ξj,p (Tk+l)
)]
. (53)

Furthermore, since

σ0ξk,m (Tk) ⊗̃σ0ξi,m (Tk) [(s, x) , (r, y)] =
1

2
1Λk

m
(s)1Λk

m
(r)
(
σ0
kxσ

0
iy + σ0

kyσ
0
ix

)
,

we get from (50)

E
[
IW2

(
σ0ξk,m (Tk) ⊗̃σ0ξi,m (Tk)

)
IW2

(
σ0ξk+l,p (Tk) ⊗̃σ0ξj,p (Tk)

)]
= Ψ ((k, i) , (k + l, j))Leb

(
Λk+l
p ∩ Λkm

)2
,

with Ψ ((k, i) , (k + l, j)) as in (34). This implies that

E [βk (i)βk+l (j)] = Ψ ((k, i) , (k + l, j)) ρk,k+l (n) ,

where

ρk,k+l (n) :=
√
NkNk+l

Nk∑
m=1

Nk+l∑
p=1

Leb
(
Λk+l
p ∩ Λkm

)2
.

If Ψ ((k, i) , (k + l, j)) = 0, the limit limn→∞E [βk (i)βk+l (j)] exists trivially, so without loss of gen-

erality we may and do assume that Ψ ((k, i) , (k + l, j)) 6= 0. Consequently, limn→∞E [βk (i)βk+l (j)]

exists if and only if the limit limn→∞ ρk,k+l (n) exists and it is finite. To prove this, we first prove

in Lemma 2 that this limit in case of equispaced observations exists and is finite. We then show in

Lemma 3 that, under Assumption 1, the error in approximating ρk,k+l by its analog for equispaced

observations is convergent. Together, these results imply that

ρk,k+l (n) = ρ̃k,k+l (n) +O (1) , (54)

where

ρ̃k,k+l (n) :=
√
Nk+lNk

Nk∑
m=1

Nk+l∑
p=1

Leb
(

Λ̃k+l
p ∩ Λ̃km

)2

,

49

Electronic copy available at: https://ssrn.com/abstract=2383871



with

Λ̃km =

(
(m− 1)

Nk
,
m

Nk

]
, m = 1, . . . , Nk.

Moreover, the error is convergent. Lemma 2 below guarantees that the limit of the sequence ρ̃k,k+l (n)

exists and is finite, so ρk,k+l (n), which concludes the proof.

Lemma 1 Let

F̃ k,k+l
n :=

{
(m, p) : Leb

(
Λ̃k+l
p ∩ Λ̃km

)
> 0
}
.

where Λ̃km =
(
m−1
Nk

, mNk

]
. Then

#F̃ k,k+l
n = Nk +O (Nk) , (55)

where # denotes the counting measure.

Proof. If Nk = Nk+l, the result is trivial, so without loss of generality, we may and do assume that

Nk > Nk+l. Moreover, from Assumption 1, either limn→∞
Nk+l

Nk
= 1 or 0 < limn→∞

Nk+l

Nk
< 1.

On the other hand, note that in general

Leb
(
Λk+l
p ∩ Λkm

)
= max

{
tkm ∧ tk+l

p − tkm−1 ∨ tk+l
p−1, 0

}
,

where ∧ and ∨ stand respectively for the maximum and minimum of two numbers. Due to the formulas

a ∧ b =
1

2
(a+ b− |a− b|) ; c ∨ d =

1

2
(c+ d+ |c− d|) ,

we deduce that

Leb
(
Λk+l
p ∩ Λkm

)
=

1

2
max

{
∆k
m + ∆k+l

p −
(∣∣tkm − tk+l

p

∣∣+
∣∣tkm−1 − tk+l

p−1

∣∣) , 0} , (56)

and thus that

Leb
(

Λ̃k+l
p ∩ Λ̃km

)
=

1

2
max

{
1

Nk
+

1

Nk+l
−
(∣∣∣∣ mNk − p

Nk+l

∣∣∣∣+

∣∣∣∣m− 1

Nk
− p− 1

Nk+l

∣∣∣∣) , 0} .
This implies that (m, p) ∈ F̃ k,k+l

n if and only if

1

Nk
+

1

Nk+l
>

∣∣∣∣ mNk − p

Nk+l

∣∣∣∣+

∣∣∣∣m− 1

Nk
− p− 1

Nk+l

∣∣∣∣ . (57)
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Now, decompose

F̃ k,k+l
n = F̃ k,k+l

n (1) ∪ F̃ k,k+l
n (2) ∪ F̃ k,k+l

n (3) ,

where

F̃ k,k+l
n (1) :=

{
(m, p) : m = p, Leb

(
Λ̃k+l
m ∩ Λ̃km

)
> 0
}
,

F̃ k,k+l
n (2) :=

{
(m, p) : m < p,Leb

(
Λ̃k+l
p ∩ Λ̃km

)
> 0
}
,

F̃ k,k+l
n (3) :=

{
(m, p) : m > p,Leb

(
Λ̃k+l
p ∩ Λ̃km

)
> 0
}

are mutually disjoints. As a consequence,

1. (m, p) ∈ F̃ k,k+l
n (1) if and only if m = p and

m (Nk −Nk+l) < Nk; (58)

2. (m, p) ∈ F̃ k,k+l
n (2) if and only if m < p and

(p−m)Nk +m (Nk −Nk+l) < Nk; (59)

3. (m, p) ∈ F̃ k,k+l
n (3) if and only if m > p and one of the following holds:

(a) m < Nk

Nk+l
p and

(p−m)Nk+l + p (Nk −Nk+l) < Nk; (60)

(b) m ≥ Nk

Nk+l
p and

(m− p)Nk+l + p (Nk+l −Nk) < Nk+l. (61)

As we will see later, the cardinality of F̃ k,k+l
n (1) , F̃ k,k+l

n (2) and F̃ k,k+l
n (3) depends on the limiting

behavior of Nk

Nk+l
, reason why we divide our analysis of the cardinality of F̃ k,k+l

n in two cases.

Let (m, p) ∈ F̃ k,k+l
n . Then:

Case 1. If limn→∞
Nk+l

Nk
= 1, we have that one and only one of the following holds:

1. (m, p) ∈ F̃ k,k+l
n (1) or equivalently from (58) and the fact that Nk = Nk+l + o (Nk) with

o (Nk) > 0, m = p and

m <
Nk

o (Nk)
,
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or in other words

Nk
o (Nk)

− 1 ≤ #F̃ k,k+l
n (1) <

Nk
o (Nk)

.

In view that

lim sup
n→∞

(
1− 1

o (Nk)

)
=


1 if lim infn→∞ o (Nk) =∞

1− 1
lim infn→∞ o(Nk) if lim infn→∞ o (Nk) <∞,

where we used the fact that ∞ ≥ lim infn→∞ o (Nk) = lim infn→∞ (Nk −Nk+l) > 0. We

infer that lim supn→∞
1
Nk

(
Nk − Nk

o(Nk)

)
<∞, or in other words

#F̃ k,k+l
n (1) = Nk +O (Nk) .

2. (m, p) ∈ F̃ k,k+l
n (2) which, from (59), holds if and only if m < p and

1 > (p−m) +m
1

Nk
(Nk −Nk+l)

= (p−m) +mo (1) ,

i.e., (p− 1) (1 + o (1)) < m < p. This implies that, whenever limn→∞

(
Nk

Nk+l
− 1
)

= 0,

F̃ k,k+l
n (2) is empty for n large enough.

3. (m, p) ∈ F̃ k,k+l
n (3) , which by (60), (61), and the fact that 1 + o (1) = Nk

Nk+l
, corresponds to

one and only one of the following situations:

3.1. Equation (60) holds and p < m < p + o (1). Thus, as in the previous case, F̃ k,k+l
n (3)

is empty for n large enough.

3.2. It holds that

p (1 + o (1)) ≤ m < p (1 + o (1)) + 1.

Once again, we conclude that for n large enough, F̃ k,k+l
n (3) is empty.

As a consequence, we conclude that if limn→∞

(
Nk

Nk+l
− 1
)

= 0, then

#F̃ k,k+l
n = #F̃ k,k+l

n (1)

= Nk +O (Nk) .
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Case 2. Now, suppose that Nk+l

Nk
= Kk+l,k + o (1), with 0 < Kk+l,k < 1. Then, it holds that

limn→∞

(
Nk

Nk−Nk+l

)
= (1−Kk+l,k)

−1
=: K∗k,k+l. As in the previous case, (m, p) ∈ F̃ k,k+l

n if

and only if

1. (m, p) ∈ F̃ k,k+l
n (1), i.e. m = p and

m <
Nk

Nk −Nk+l
.

Consequently, (m,m) ∈ F̃ k,k+l
n (1) if and only if m < K∗k,k+l which reads, for n large

enough, as

#F̃ k,k+l
n (1) = K∗k,k+l + o (1) .

2. (m, p) ∈ F̃ k,k+l
n (2) which, from (59), holds if and only if m < p and

1 > p−mNk+l

Nk

= p−m (Kk+l,k + o (1)) ;

i.e. (p− 1) (Kk+l,k + o (1))
−1

< m < p. This implies that, for n large enough, #F̃ k,k+l
n (2)

is empty.

3. By reasoning as in the previous case, if (m, p) ∈ F̃ k,k+l
n (3), then:

3.1. (p− 1)
(
K−1
k+l,k + o (1)

)
< m < p

(
K−1
k+l,k + o (1)

)
;

3.2. p
(
K−1
k+l,k + o (1)

)
≤ m < 1 + p

(
K−1
k+l,k + o (1)

)
.

We conclude that

#F̃ k,k+l
n (3) = #

{
(m, p) : (p− 1)

(
K−1
k+l,k + o (1)

)
< m < p

(
K−1
k+l,k + o (1)

)}
= K−1

k+l,kNk+l + o (1)

= Nk +O (Nk) .

Hence

#F̃ k,k+l
n = #F̃ k,k+l

n (1) + #F̃ k,k+l
n (3)

= K∗k,k+l + o (1) +Nk +O (Nk)

= Nk +O (Nk) .
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We see that in all cases, (55) holds.

Lemma 2 Under the notation of the previous lemma, we have that

lim
n→∞

√
Nk+lNk

Nk∑
m=1

Nk+l∑
p=1

Leb
(

Λ̃k+l
p ∩ Λ̃km

)2

<∞.

Proof. As in the proof of the previous lemma, we divide the analysis in two cases, namely limn→∞
Nk+l

Nk
=

1 or 0 < limn→∞
Nk+l

Nk
< 1.

Case 1. If limn→∞
Nk+l

Nk
= 1, we have from the proof of the previous lemma that

Nk∑
m=1

Nk+l∑
p=1

Leb
(

Λ̃k+l
p ∩ Λ̃km

)2

=
∑

(m,m)∈F̃k,k+l
n (1)

Leb
(

Λ̃k+l
m ∩ Λ̃km

)2

.

Now, from (56), if (m,m) ∈ F̃ k,k+l
n (1) then

NkLeb
(

Λ̃k+l
m ∩ Λ̃km

)
=

Nk
Nk+l

−m
(
Nk
Nk+l

− 1

)
→ 1, as n→∞.

Therefore

√
Nk+lNk

Nk∑
m=1

Nk+l∑
p=1

Leb
(

Λ̃k+l
p ∩ Λ̃km

)2

=
∑

(m,m)∈F̃k,k+l
n (1)

(
1

Nk
+ o

(
N−1
k

))2

=
√
Nk+lNk (Nk +O (Nk))

(
1

Nk
+ o

(
N−1
k

))2

= 1 + o (1) .

Case 2. By assuming that Nk+l

Nk
= Kk+l,k + o (1), with 0 < Kk+l,k < 1 and using the proof of the

previous lemma we have that if (m,m) ∈ F̃ k,k+l
n (1) , then m < K∗k,k+l and

NkLeb
(

Λ̃k+l
m ∩ Λ̃km

)
=

Nk
Nk+l

−m
(
Nk
Nk+l

− 1

)
→ K−1

k+l,k −m
(
K−1
k+l,k − 1

)
, as n→∞.

Furthermore, if (m, p) ∈ F̃ k,k+l
n (3) then p < m < Nk

Nk+l
p, and

NkLeb
(

Λ̃k+l
p ∩ Λ̃km

)
=

Nk
Nk+l

−
(
Nk
Nk+l

p−m
)
→ K−1

k+l,k −
(
K−1
k+l,kp−m

)
, as n→∞.
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Using the previous asymptotics and applying Lemma 1, we conclude that

√
Nk+lNk

Nk∑
m=1

Nk+l∑
p=1

Leb
(

Λ̃k+l
p ∩ Λ̃km

)2

=
∑

(m,m)∈F̃k,k+l
n

(
1

Nk
+O

(
N−1
k

))2

=
√
Nk+lNk (Nk +O (Nk))

(
1

Nk
+O

(
N−1
k

))2

=

√
Nk+l

Nk
+O (1) ,

where the error term is convergent as n→∞.

To sum up, in all cases, the conclusion of this lemma holds.

Lemma 3 Under Assumption 1, we have that

1. For any 0 < β ≤ 3

Leb
(
Λk+l
p ∩ Λkm

)
= Leb

(
Λ̃k+l
p ∩ Λ̃km

)
+ o

[
(NkNk+l)

−β
]
.

2. Denoting # the counting measure,

#F k,ln = #F̃ k,ln + o (1) ,

with F̃ k,ln as in Lemma 1.

Proof. From (56) we get that

2
∣∣∣Leb (Λk+l

p ∩ Λkm
)
− Leb

(
Λ̃k+l
p ∩ Λ̃km

)∣∣∣ ≤ ∣∣∣∣∆k
m −

1

Nk

∣∣∣∣+

∣∣∣∣∆k+l
p − 1

Nk+l

∣∣∣∣ (62)

+

∣∣∣∣tkm − m

Nk

∣∣∣∣+

∣∣∣∣tk+l
p − p

Nk+l

∣∣∣∣
+

∣∣∣∣tkm−1 −
m− 1

Nk

∣∣∣∣+

∣∣∣∣tk+l
p−1 −

p− 1

Nk+l

∣∣∣∣ .
It is immediate from Assumption 1, that for any 0 < β ≤ 3, as n→∞

(NkNk+l)
β

∣∣∣∣∆k
m −

1

Nk

∣∣∣∣ = (Nk+l/Nk)βN2β−1
k

∣∣∆k
mNk − 1

∣∣→ 0.
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On the other hand, once again, applying Assumption 1, we see that

(NkNk+l)
β

∣∣∣∣tkm − m

Nk

∣∣∣∣ ≤ (Nk+l/Nk)βN2β−1
k

m∑
j=1

∣∣∆k
jNk − 1

∣∣ (63)

≤ m(Nk+l/Nk)βN2β−1
k sup

j

∣∣∆k
jNk − 1

∣∣→ 0, n→∞.

Part 1 is obtained as a combination of (62) and (63).

Now we proceed to verify part 2. To do this, it is enough to show that as n→∞,

#
(
F k,ln \F̃ k,ln

)
+ #

(
F̃ k,ln \F k,ln

)
→ 0. (64)

We only verify that #
(
F k,ln \F̃ k,ln

)
→ 0, the other part can be obtained in an analogous way. To do

this, we show that for n large, still finite, F k,ln \F̃ k,ln is empty. Let us, as previously, divide our analysis

in two cases, namely limn→∞
Nk+l

Nk
= 1 or 0 < limn→∞

Nk+l

Nk
< 1.

Case 1. If Nk = Nk+l + o (Nk) , we have from the proof of Lemma 1, that for n large enough,

F k,ln \F̃ k,ln =

{
(m, p) : m = p,

Nk
o (Nk)

< m ≤ Nk, Leb
(
Λk+l
m ∩ Λkm

)
> 0

}
.

From the first part and (56), (m, p) ∈ F k,ln \F̃ k,ln if and only if Nk

o(Nk) < m ≤ Nk

0 < Leb
(
Λk+l
m ∩ Λkm

)
=

1

Nk+l
−m

(
1

Nk+l
− 1

Nk

)
+ o

[
(NkNk+l)

−β
]
,

for some β > 1,which implies that

m <
Nk

o (Nk)
+ o (1) .

Therefore, (m, p) ∈ F k,ln \F̃ k,ln if and only if

Nk
o (Nk)

< m <
Nk

o (Nk)
+ o (1) .

Therefore, for n enough large, F k,ln \F̃ k,ln is empty.

Case 2. Now, suppose that Nk+l

Nk
= Kk+l,k + o (1), with 0 < Kk+l,k < 1. By the proof of Lemma 1,
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for n large

F k,ln \F̃ k,ln = F k,ln \F̃ k,ln (1) ∪ F k,ln \F̃ k,ln (3) .

From the first part of this lemma, (m, p) ∈ F k,ln \F̃ k,ln (1) if and only if

m < K∗k,k+l + o (1) ,

where K∗k+l,k = (1−Kk+l,k)
−1

, meaning that we can choose n0 finite, such that F k,ln \F̃ k,ln (1) is

empty for any n ≥ n0. Reasoning as in the proof of Lemma 1, we can, in an analogous way as

before, deduce that F k,ln \F̃ k,ln (3) is empty for n large enough.

To conclude, this implies that #
(
F k,ln \F̃ k,ln

)
= 0 for n sufficiently large.

Appendix C: The score function and Fisher Information of the ML estimators under the

assumptions of Proposition 1

This section is devoted to deriving the score function, the Hessian matrix, and the Fisher infor-

mation for the ML estimator of q0 under the assumptions of Proposition 1. For notational clarity we

will omit the 0 subscript and the grid dependence of the durations in the remainder of this section.

We derive these quantities with respect to generic gkk and hkl elements.

Remark 8 Note that f (k) = r(k) −
∑k−1
l=1 hklf

(l) when k > l. As such, ∂f(k)

∂hlm
= −

∑k−1
i=1 hki

∂f(i)

∂hlm
for

k > l > m, and 0 otherwise.

We first compute the score functions:

∂Qn
∂gkk

= −1

2

N∑
j=1

[
1

∆jgkk
−

f
(k)2
j

∆jg2
kk

]
, (65)

∂Qn
∂hkl

= −1

2

 d∑
i=1

N∑
j=1

2f
(i)
j

∆jgii

∂f
(i)
j

∂hkl

 . (66)
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The Hessian is as follows:

∂2Qn
∂gkk∂gkk

=

N∑
j=1

[
1

2∆jg2
kk

−
f

(k)2
j

∆jg3
kk

]
(67)

∂2Qn
∂hmn∂gkk

=
∂2Qn

∂gkk∂hmn
= −

N∑
j=1

[
f

(k)
j

∆jg2
kk

∂f
(k)
j

∂hmn

]
(68)

∂2Qn
∂hkl∂hmn

= −
N∑
j=1

[
d∑
i=1

1

∆jgii

[
∂f

(i)
j

∂hmn

∂f
(i)
j

∂hkl
+ f

(i)
j

∂2f
(i)
j

∂hkl∂hmn

]]
. (69)

We compute the components of the Fisher matrix as the negative of the expected value of the Hessian.

−E
[
∂2Qn
∂g2

kk

]
= −E

 N∑
j=1

1

2∆jg2
kk

−
f

(k)2
tj

g3
kk

 =
1

2g2
kk

∀k (70)

−E
[

∂2Qn
∂gkk∂hmn

]
= −E

− N∑
j=1

[
f

(k)
tj

∆jg2
kk

∂f
(k)
tj

∂hmn

] = 0, (71)

since not a single partial derivative of f
(k)
j contains f

(k)
j and E(f (k)f (l)) = 0 for k 6= l.

Next let, p = max(k,m).

−E
[

∂2Qn
∂hkl∂hmn

]
=


0 if l 6= n

gpp
gll

∂2f(p)

∂hkl∂f(l)

∂2f(p)

∂hmn∂f(l) otherwise,

(72)

where the last two partial derivatives are in fact functionals of hkl.
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