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Dissolved organic matter (DOM) strongly influences the prop-
erties and fate of engineered nanoparticles (ENPs) in aquatic
environments. There is an extensive body of experiments on
interactions between DOM and ENPs and also larger particles. [We
denote particles on the nano- and micrometer scale as particulate
matter (PM).] However, the experimental results are very hetero-
geneous, and a general mechanistic understanding of DOM–PM
interactions is still missing. In this situation, recent reviews have
called to expand the range of DOM and ENPs studied. Therefore,
our work focuses on the diversity of the DOM and PM types inves-
tigated. Because the experimental results reported in the litera-
ture are highly disparate and difficult to structure, a new format
of organizing, visualizing, and interpreting the results is needed.
To this end, we perform a network analysis of 951 experimental
results on DOM–PM interactions, which enabled us to analyze and
quantify the diversity of the materials investigated. The diversity
of the DOM–PM combinations studied has mostly been decreas-
ing over the last 25 y, which is driven by an increasing focus on
several frequently investigated materials, such as DOM isolated
from fresh water, DOM in whole-water samples, and TiO2 and
silver PM. Furthermore, there is an underrepresentation of stud-
ies into the effect of particle coating on PM–DOM interactions.
Finally, it is of great importance that the properties of DOM used
in experiments with PM, in particular the molecular weight and
the content of aromatic and aliphatic carbon, are reported more
comprehensively and systematically.

nanoparticles | dissolved organic matter | environmental fate |
network analysis | experimental design

The development and use of nanotechnology results in the
release of engineered nanoparticles (ENPs) to the envi-

ronment (1, 2). Much effort in current research is put into
assessing the environmental risks of ENPs, which requires the
understanding of the fate and distribution of ENPs in differ-
ent environmental media, as well as their potential toxicity (3–
6). Dissolved organic matter (DOM) (e.g., humic substances,
polysaccharides, and proteins) is ubiquitous in aquatic systems
and is known to interact with ENPs and modify their surface
properties (7). DOM has been shown to either stabilize or desta-
bilize aqueous ENP suspensions, depending on DOM properties
and medium composition (8, 9). The effects of DOM on the sta-
bility of ENP suspensions are expected to strongly influence the
mobility and distribution of ENPs in the environment (10).

The extraordinary variability in DOM effects on ENPs orig-
inates from the fact that the interactions between DOM and
ENPs depend on numerous interrelated factors, such as pH and
ionic strength of the media, the particles’ surface properties
and size, and the chemical composition and concentration of the

DOM (11). Some types of DOM, such as fulvic and humic acids,
electrostatically stabilize ENPs via the adsorption of the elec-
trically charged DOM on the ENP surface (12–16), where the
strength of the stabilization is correlated (although not linearly)
with the amount of DOM adsorbed (17) and varies with its chem-
ical structure (11, 12, 18, 19). In other settings, particularly in
the presence of divalent cations, DOM such as polysaccharides
and polypeptides enhances the aggregation of ENPs by forming
bridges between the particles (20–24).

The complexity and high diversity of the interactions between
DOM and ENPs makes it very difficult to predict the effect of
DOM on ENPs in aqueous dispersions (25, 26). Louie et al.
(25) proposed to use empirical correlations between the differ-
ent experiments as an alternative to a first-principles mechanis-
tic approach. To achieve this goal, the authors called for, among
others, a broader variety of the DOM and ENP types used in the
experiments (25). The need for higher diversity of materials has
also been expressed by others (26, 27): Philippe and Schaumann
(26) reviewed a large body of experimental work regarding the
effect of DOM on ENP and colloids and pointed out that a
rather small number of DOM types (mainly humic substances)
dominates the experimental settings, which indicates a need to
study new DOM types (26). However, the diversity of materials
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(i.e., the number and range of different DOM–ENP combina-
tions studied) was not explicitly addressed and reasons for the
current low diversity were not discussed.

In response to this call for higher diversity of the materi-
als studied, we set out to explicitly determine the diversity of
ENPs and DOM investigated. Like Philippe and Schaumann
(26), we consider DOM effects on both ENPs and larger par-
ticulate matter (PM) and use the term PM to denote particles in
the nano- and micrometer range. We define diversity as the ratio
of the different DOM–ENP combinations studied vs. the num-
ber of experiments conducted. We maintain that higher diversity
of PM–DOM combinations is a necessary condition for a bet-
ter mechanistic understanding of the interactions between PM
and DOM.

However, it is important to keep in mind that high diversity of
materials alone is not sufficient. Other aspects of diversity such
as investigations of the same PM–DOM combination under dif-
ferent conditions are not covered by our definition of diversity,
which focuses on the diversity of the materials.

High diversity of the PM and DOM types offers an additional
benefit. Because of the high complexity of DOM–PM interac-
tions, it will be useful to use nonmechanistic approaches to eluci-
date relationships between experimental conditions and the fate
of ENPs, as suggested by Louie et al. (25). For example, machine
learning methods can be used to infer such relationships and
develop so-called “empirical models” (28). Two requirements
for the development of empirical models are consistency (i.e., all
data points have the same set of descriptors that were measured
by comparable methods) and diversity (i.e., the dataset contains
a broad range of values for each descriptor). Consistency enables
the inclusion of all information in a coherent manner, and diver-
sity provides that the inferred correlation accounts for a wide
range of experimental settings. Therefore, sufficient diversity of
the DOM and ENP types studied is needed as a basis for empir-
ical models of the interaction of ENPs with DOM.

One striking feature of the experimental field of PM–DOM
interactions is the huge number of potential DOM and PM com-
binations that can be studied, which makes it difficult to obtain,
through a literature search, an overall description of the untested
DOM–PM combinations and of the frequency of already stud-
ied ones in the published experiments. In response to this
combinatorial challenge, we present here a perspective that
quantifies the diversity of the DOM–PM combinations in a large
set of experiments studying the effect of DOM on PM in aquatic
media. We organize the different types of PM and DOM in
a network, which makes it possible to visualize and quantify
the overall diversity of materials by analyzing the topological
features of the network. With this approach, we identify (i) a
long-term decrease in the materials’ diversity over the last 25 y;
(ii) significantly more experiments that do not explicitly con-
sider the PM’s initial coating vs. ones that do, which is con-
trary to recent recommendations that call for the assessment of
PM fate in the context of the particles’ life cycle, which often
includes stages where the materials are coated; and (iii) dom-
inant employment of DOM from fresh water origin and infre-
quent use of DOM from other environments (e.g., soils and
sediments).

Our analysis provides explanations of the discrepancy between
the repeated call for an increase in materials’ diversity, on
the one hand, and the ever increasing number of published
experiments, on the other hand. In particular, our results indi-
cate a “lock-in” effect in the choice of materials (i.e., a pos-
itive reinforcement of the choices of DOM and PM in new
experiments according to combinations already studied). Finally,
our analysis allows researchers to identify the combinations of
materials studied and their prevalence in the experiments and,
thereby, provides a basis for the planning of future experimental
efforts.

DOM and PM Categorization
First, we constructed a database of DOM and PM that were stud-
ied in combination. The identities of the DOM and PM were
obtained from experimental studies that investigate the effects
of DOM on inorganic PM in aquatic media and were published
between 1977 and 2015. Here, we consider an experiment as a
pair of DOM and PM studied in combination. For example, a
publication that separately studied the effect of river humic acid
and alginate on TiO

2

for different pH values and ionic composi-
tion contains two experiments: one for “river humic acid–TiO

2

”
and another for “alginate–TiO

2

.” In total, our database contains
951 experiments from 271 peer-reviewed publications that used
94 different PM types and 133 different DOM types.

Here, we differentiate between three groups of DOM in the
database: (i) group 1 DOM consists of isolates from environ-
mental samples such as humic substances and hydrophilic acids,
which are mixtures of various substances and only character-
ized in terms of averaged properties (48 DOM types); (ii) group
2 DOM consists mostly of individual substances such as syn-
thetic polymers, low-molecular-weight ligands, isolated proteins,
and polysaccharides (68 DOM types); and (iii) group 3 DOM
contains whole-water samples such as lake water, river water,
and sewage treatment plant effluents (18 DOM types). Group
1 DOM, in particular humic substances, are frequently used in
PM–DOM experiments (537 of the 951 experiments) and, at the
same time, difficult to characterize. Therefore, we focus on this
group in the following.

In the absence of a consensus regarding the extraction and
characterization methods for group 1 DOM (29), and lack of
consistency in the reported properties (SI Appendix, Consistency
of Reported DOM Parameters), a DOM categorization fully based
on chemical composition or chemical properties is not currently
feasible. Therefore, in most cases, we characterize the group
1 DOM in our database as either unfractionated DOM, humic
acid, or fulvic acid and in addition in terms of the environmental
sources from which they were sampled (i.e., river, soil, peat, etc.).

In a next step, we add information on chemical composition,
which is possible because humic substances from similar sources
often tend to have similar chemical composition, carbon distri-
butions, and molecular weight distributions (14, 30–36). Below
we investigate this relationship between DOM source and DOM
properties in more detail.

DOM properties that correlate with the type and extent of
DOM–PM interactions and are, therefore, relevant here include
molecular weight, aromaticity, aliphaticity, and carbonyl content
(16, 37–39).

Here, we focus on aliphatic, aromatic, and carbonyl car-
bon content estimated from solid-state 13C-NMR spectra. This
method is often used to characterize humic substances (35, 40).
Solid-state 13C-NMR spectra are readily available for most
humic substances provided by the International Humic Sub-
stances Society (IHSS) (www.humicsubstances.org).

To investigate the relationship between the environmental
sources of group 1 DOM and their carbon composition, we com-
piled a set of 80 different samples of group 1 DOM along with
data on their content of aromatic carbon, aliphatic carbon, and
carbonyl carbon. To increase the diversity of this set, we used
the group 1 DOM from our database in combination with addi-
tional types of group 1 DOM (Dataset S2). We then performed a
principal-component analysis (PCA) to map the 80 DOM types
onto the 2D space spanned by the first to principal components
(PCs). An earlier PCA study of the 13C NMR spectra of 8 DOM
samples discussed the differentiation between humic and fulvic
acids but not the relationship between carbon distribution and
the environmental sources of the DOM (41).

The first two PCs explain 99.9% of the variability in the car-
bon composition of the DOM samples analyzed. The first PC
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(denoted PC1) is a linear combination of the aromatic carbon
and carbonyl carbon contents in relationship to the aliphatic car-
bon content (PC1 weights: 0.67, �0.57, and �0.47 for aliphatic,
aromatic, and carbonyl carbon, respectively). The second PC
(denoted PC2) is the difference between carbonyl carbon con-
tent and aromatic carbon content (PC2 weights: 0, �0.59, and
0.81 for aliphatic, aromatic, and carbonyl carbon, respectively)
(SI Appendix, Annex A).

The first two PCs, therefore, divide the space of group 1 DOM
carbon distribution into four quadrants (quadrants a–b in Fig. 1).
Fig. 1 shows for each quadrant, derived from the DOM that falls
into the quadrant, the distributions of aliphatic (red), aromatic
(green), and carbonyl (blue) carbon.

Based on the PC weights listed above, DOM samples with a
high PC2 score have low aromatic carbon content (often less than
20% of total carbon), which is similar to their content of carbonyl
carbon. These materials belong to quadrants a or b. DOM that
falls in quadrants c or d has a low PC2 score and is characterized
by high content of aromatic carbon (mostly above 20% and up to
60%). Finally, DOM samples that score high in PC1 have high
aliphatic carbon content (more than 50%), and therefore fall in
quadrants b or c.

The distribution of all 80 group 1 DOM samples in the 2D
space spanned by the first two PCs is depicted in SI Appendix,
Fig. S6. Most aquatic DOM has relatively low aromatic carbon
content and either low or high aliphatic carbon content (quad-
rants a and b). More specifically, all river fulvic acids share sim-
ilar fractions of aliphatic, aromatic and carbonyl carbon, which
agrees with earlier findings (35) (SI Appendix, Fig. S7). Gener-
ally, freshwater DOM shows relatively little variability in its car-
bon distribution. DOM from soil, in contrast, shows the highest
variability and is found in all four quadrants. Soil humic acids,
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Fig. 1. Distributions of aliphatic, aromatic, and carbonyl carbon content in
the four quadrants defined by the first two PCs, based on 80 group 1 DOM
samples in total. “High” and “low” in the following are relative terms and
specific to each type of carbon. Quadrant a is low content of both aliphatic
and aromatic carbon and high content of carbonyl carbon. Quadrant b is
low aromatic carbon and high carbonyl and aliphatic carbon content. Quad-
rant c is low content of carbonyl and aliphatic carbon and high content of
aromatic carbon. Quadrant d is high content of aliphatic and aromatic car-
bon and low content of carbonyl carbon. In each quadrant, the percentages
indicate how many DOM samples belong to the different types of environ-
mental DOM sources.

specifically, have a high aromatic carbon content and therefore
show up in quadrants c or d. Some soil samples, primarily fulvic
acids, have carbon distributions similar to that of aquatic DOM
and are found in quadrants a and b. Extraction and purifica-
tion processes of soil DOM are a potential cause to this large
variability in its carbon composition (35, 42), but natural het-
erogeneity can also be a cause. Overall, humic substances show
important differences in their carbon distribution. In experi-
ments with PM, humic substances should be chosen in such a
way that they actually reflect the type of environment that is in
the focus of the experiment. For example, many experiments use
Aldrich humic acid as a generic DOM. In the PC1–PC2 graph,
Aldrich humic acid lies in the bottom part of quadrant c, typ-
ical of coal and soil humic acids (SI Appendix, Fig. S6), which
makes this DOM type not representative of any aquatic envi-
ronment. The map of humic substances in SI Appendix, Fig. S7
can assist in the selection of humic substances for experiments
with PM. For further details of the relationship between the
composition and the sources of group 1 DOM, see SI Appendix,
Environmental Sources and Chemical Composition of Dissolved
Organic Matter.

In conclusion, our analysis allows us to differentiate between
several group 1 DOM categories with substantially different frac-
tions of aromatic, aliphatic and carbonyl carbon. We will use
these categories (and DOM subgroups within the categories) to
characterize the diversity of the group 1 DOM, such as humic
substances, investigated in experiments with PM.

Regarding PM, the focus of the experiments is often material-
specific [e.g., fate of TiO

2

(43)]. Accordingly, the PM types in
our database are defined by the chemical composition of both
the core material and the coating (e.g., citrate-coated silver, sil-
ver, and titanium dioxide). Additionally, we also interpret the
results of the analysis in terms of broader PM groups based on
the core material (e.g., metal, metal oxide, metal sulfide, etc.).
The complete list of DOM and PM used in the experiments and
the respective references are given in Dataset S1.

Organizing the Experimental Data in a Network
In our analysis of the diversity of the PM–DOM combinations
studied, the experimental field needs to be represented as a
coherent entity. Such a representation can be attained by con-
necting the different types of DOM and PM that have been inves-
tigated in a network [i.e., a single structure that represents con-
nections (links) between pairs of objects (nodes) (44)]. Here, we
say a certain DOM and PM are connected by a link if they were
studied together; the link’s weight equals the number of exper-
iments studying the connected DOM and PM (note that these
experiments may still use different conditions of other parame-
ters such as pH, ionic strength and ionic composition). The net-
work is bipartite, which means that connections are allowed only
between objects of different type (45), here DOM and PM.

Network Topology
Fig. 2A shows the network derived from a set of 951 experiments
with 94 PM nodes and 133 DOM nodes. In Fig. 2A, the sizes
of nodes is proportional to the number of counterparts a given
material was studied with (e.g., the size of a PM node type is
proportional to the number of DOM types the PM was studied
with). The empirical network is called “complex” because it con-
tains topological features absent from random networks of the
same size (46) (SI Appendix, Table S3 compares basic proper-
ties between the empirical and random networks, in which each
DOM–PM combination is linked with a fixed probability).

Two important features of the empirical network are central
nodes that have a large number of links (“hubs”) and relatively
isolated, star-like shapes (“stars”) (the central and peripheral
regions in Fig. 2A, respectively). These features reflect different
types of experimental studies. Hubs (central nodes in Fig. 2A)
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Fig. 2. Important aspects of the empirical network. (A) The empirical network with nodes scaled according to their degree (i.e., number of links) and
colored by material type as indicated in the legends. Five material types with high node degrees are indicated for each class, PM and DOM. Link widths are
proportional to the number of experiments using the linked combination. (B) Distribution of the number of DOM or PM types studied with any given PM or
DOM, respectively (node degrees). (C) Distribution of the number of experiments conducted per each unique combination of DOM and PM (link weights).

correspond to well-studied materials that are frequently investi-
gated in combination with new materials (e.g., Fe

2

O
3

, TiO
2

and
Sigma-Aldrich humic acid). The presence of star-like shapes is
quantified by the network’s negative degree assortativity, which
means that the correlation between the number of links of neigh-
boring nodes is negative (SI Appendix, Table S3). Materials form-
ing the centers of stars were studied in combination with many
others (edges of the stars), which in turn were studied mainly or
exclusively with the central material. Stars indicate the introduc-
tion of new combinations of materials that were rarely studied
in other experiments (e.g., lake humic acid, wetland total DOC,
and CuS).

If materials are selected for new experiments that lead to hubs
or peripheral stars, then the overall materials’ diversity increases,
because new links are added to the network. It remains unclear,
however, whether the call for an increase in the materials’ diver-
sity intends to promote the systematic investigation of selected
and well-studied materials with new counterparts (hubs), or
whether the need is for general expansion of the network by using
completely new materials (peripheral stars). The simultaneous
presence of hubs and stars in the empirical network is reflected
by the right-skewed degree distribution, which reflects the distri-
bution of the number of material types with which each material
was studied (see Fig. 2B).

The diversity of the experimental field increases with the num-
ber of DOM–PM combinations studied. In the empirical net-
work, diversity is reflected by the density of the links (i.e., the
fraction of existing links out of all possible links). The density of
the empirical network is 4.3%, which means that 4.3% of the pos-
sible DOM–PM combinations (535 of 12,502 possible ones) have
been studied in one or more experiments. However, some exper-
iments study the same combinations of DOM and PM. Had each
experiment studied a different DOM–PM combination (i.e., all
links have a weight of 1), the overall number of links in the net-
work would be the total number of experiments, which results in
a density of 7.6% (951 DOM–PM combinations of 12,502 possi-
ble ones). The network’s density is specific to the empirical net-
work presented here, and addition of new materials (i.e., nodes)
will result in a network with a different structure and density.

Because the number of experiments studying a given DOM–
PM combination is the weight of the link connecting the two mate-
rials, high diversity of DOM–PM combinations studied will yield
links with weights of 1 (under the assumption that the number
of experiments is lower than the number of DOM–PM combina-
tions). On the other hand, low diversity will result in links of higher
weights. In our empirical network, most links have low weight, but
there are a few links that have substantially higher weights (up to
13). The resulting right-skewed distribution of link weights (Fig.
2C) indicates that the topology of the empirical network is the
result of two opposing trends in the choice of materials.

It is desirable that any given DOM–PM combination will be
studied under different conditions by different researchers (i.e.,
the link connecting the given DOM and PM will have a weight
>1). However, the fact that most links have a weight of 1 means
that only a handful of DOM–PM combinations undergo such
a more detailed investigation. For example, of the 951 experi-
ments in our database, soil fulvic acid and Fe

2

O
3

were studied
only once, whereas river humic acid in combination with citrate-
coated silver was studied in 13 experiments.

Not all DOM types in the empirical network have the same
environmental abundance (e.g., humic substances vs. proteins).
To test the effect of different DOM types on the structure of the
network, we built a “reduced” network only from experiments
that use humic substances as DOM. Importantly, this reduced
network has similar properties as the full empirical network. Par-
ticularly, both the full and the reduced networks are sparse (i.e.,
have low density), have a similar topology (i.e., core-periphery
structure with hubs and star-like regions), and share many of
the central nodes (SI Appendix, Table S4 and Fig. S10). There-
fore, the reduced network reflects similar trends in the choices
of materials as the full network, and the properties of the full
network are not caused by mixing DOM types of different envi-
ronmental abundance and relevance.

Network Evolution from 1990 to 2015
Here, we investigate how temporal changes in the diversity of
materials shape the global structure of the empirical network.
To this end, we compare the empirical network to two simulated
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networks that exhibit either high or low diversity, and track their
structural changes over time.

The simulated networks were obtained by replacing in each
publication in our database the DOM–PM combinations that
were actually studied by DOM–PM combinations that were
selected according to two rules: To obtain a network that exhibits
low diversity, for each publication a DOM–PM combination was
chosen that repeats one of those mentioned in the references
cited in the publication. Correspondingly, choosing DOM–PM
combinations different from the ones used in the cited refer-
ences of each publication (by sampling uniformly at random from
all combinations not studied in the cited references), resulted
in a network with high diversity. We simulated 1,000 networks
in each year for each network type (i.e., low- and high-diversity
networks).

The simulated and empirical networks differ by the number
of nodes and links as well as link weights. Because low diver-
sity implies that over the years fewer DOM–PM combinations
are studied, the corresponding network is smaller than the one
exhibiting high diversity. In the high-diversity case, the network
is constantly expanded by the introduction of new materials. The
only quantity that is conserved across all networks is the total
sum of link weights (i.e., the number of experiments performed
in each year), which is used as a basis of comparison between
the empirical and simulated networks: to compare the diversity
of the networks, we measure how many DOM–PM combina-
tions were studied compared with the number of experiments
performed up to a given year. Accordingly, we define a diversity
index, D

comb,i, as:

D
comb,i =

ncomb,i

nexp,i
, D

comb,i 2


1
nexp,i

, 1

�
, [1]

where i counts the years and ncomb,i and nexp,i are the number
of DOM–PM combinations studied and the number of experi-
ments, respectively, in all years from 1990 to year i .

When the diversity is maximal, each experiment studies a dif-
ferent DOM–PM combination and D

comb,i takes the value of
1. A decrease in D

comb,i indicates that the number of combi-
nations studied compared with the total number of experiments
decreases. The minimum value for D

comb,i is 1/nexp,i , which cor-
responds to the case where all experiments up to year i studied
the same combination of materials. Similarly, we define a diver-
sity index for each class of material, DOM and PM:

D
mat,i =

nmat,i

nexp,i
, D

mat,i 2


1
nexp,i

, 1

�
, [2]

where nmat,i is the number of different types of DOM or PM
studied in all years from 1990 to year i .

All simulations started from the empirical network in 1990
(Fig. 3A, network 1). As can be seen in Fig. 3A, in the networks
with high diversity D

comb

increases with time (network 2); when
the diversity is low (network 3), D

comb

primarily decreases with
time. After 2007, there is a strong increase in the number of
experiments per year (see bars in Fig. 3 B and C), which cor-
relates with a clear decrease in the D

comb

of the low-diversity
network (lower series of boxplots in Fig. 3A). In contrast, for
the high-diversity network the number of experiments per year
has almost no correlation with the D

comb

values (upper series of
boxplots in Fig. 3A). The reason for this finding is that the high-
diversity network quickly approaches a high D

comb

value, and
new DOM–PM combinations increase both the numerator and
the denominator in Eq. 1 and D

comb

does not change much. The
maximum value of 1 is not observed because at the starting point
of the simulations (in 1990) several experiments already studied
the same DOM–PM combinations. The boxplots represent the
range of D

comb

for each year, obtained from the 1,000 simulated
high- and low-diversity networks (for a detailed discussion, see
SI Appendix).
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Fig. 3. Temporal changes in the diversity of the materials studied. (A) Diver-
sity index of the DOM–PM combinations, Dcomb, as a function of time. Net-
work 1 represents the experimental field in 1990 and is the starting point for
the simulated networks. Network 2 is the expected structure of the experi-
mental field in 2015, when the diversity of the DOM and PM was simulated
to be high during 1990–2015. Network 3 is the result of simulating low diver-
sity during this period. Boxplots represent distributions of Dcomb for 1,000
simulated networks in each year. Network 4 is the current empirical net-
work; red asterisks represent the change in Dcomb of the empirical network.
The light red band shows the variation in Dcomb as a result of either a finer
(upper bound) or coarser (lower bound) categorization of DOM types. The
left vertical axis in B shows the material diversity index, Dmat, of DOM as a
function of time. Bars in B show the number of experiments in each year
(right vertical axis); the color code indicates different DOM types, and the
legend shows DOM types mentioned in the text. The left vertical axis in C
shows the material diversity index, Dmat, of PM as a function of time. Bars
in C show the number of experiments in each year (right vertical axis); the
color code indicates different PM types, and the legend lists some of the
most-used PM types between 2012 and 2015.

The D
comb

of the empirical network (network 4 in Fig. 3A)
decreases over time, however, not monotonously. Numerous
factors influence the choice of materials (e.g., scientific inter-
est and preferences of individual scientists, established scientific
collaborations, trends in the field, costs and availability of mate-
rials, etc.), which results in the study of both new combina-
tions and combinations studied before. Accordingly, the D

comb

of the empirical network shows alternating periods of increase
and decrease. Still, the significantly negative slope of a linear
regression line fitted to the D

comb

values (see Methods section)
indicates that it is mainly a trend toward lower diversity of the
materials studied that has shaped the structure of the experimen-
tal field over the last 25 y.

We performed several tests to check how stable the decreasing
trend in D

comb

is. Specifically, we analyzed how D
comb

is influ-
enced by potential missing publications in our database (e.g., not
retrieved in the publication search), and by finer or coarser def-
initions of the DOM types. The decreasing trend in D

comb

was
stable in both tests: the decreasing diversity was also observed
under random perturbations of the publications in our database,
which we used to simulate the effect of missing publications.
Decreasing diversity is also shown by the red band in Fig. 3A,
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which shows the influence of finer and coarser definitions of the
DOM types on D

comb

. For a detailed discussion, see SI Appendix,
Resilience of the Experimental Network.

In conclusion, the observation of an overall decrease in the
D

comb

holds for a wide range of possible definitions of DOM
types. Therefore, the decrease in diversity is unlikely to be an
artifact of the DOM categorization scheme used.

In Fig. 3 B and C, temporal changes in the material diversity
index (D

mat

) are depicted separately for DOM and PM, respec-
tively (y axes on the left). For DOM, D

mat

decreases over the
entire period. In contrast, the decrease in PM diversity slows
down after the year 2000. In the early 2000s, calls were made to
assess the potential risks of nanotechnology (3, 47), which were
followed by extensive research aimed at evaluating the fate of
ENPs in the environment (48). Because these ENPs are more
diverse (e.g., in terms of their surface properties and morpholo-
gies) than natural PM, ENP research introduced some additional
diversity into the experiments. Thus, the overall decrease in the
diversity of the experimental field is likely due to the constant
decrease in DOM diversity.

There are several plausible explanations for the observed
decrease in D

comb

; from the perspective of an individual sci-
entist, low diversity between the experiments might be of a
minor concern or is even desirable (e.g., for the purpose of
reproducibility of experiments). The overall diversity and its
importance is only evident when the entire experimental field
is assessed as a whole. Therefore, the decrease in diversity
may arise from the discrepancy between the individual and
the collective perspectives. Additionally, even when individual
researchers aim at studying new DOM–PM combinations to
increase the diversity, the large number of possible DOM–
PM combinations makes it difficult to assess (based on pub-
lished experiments) which additional DOM–PM combinations
should be investigated. Another possibility is that the increas-
ing occurrence of certain materials used in the experiments may
result in the perception of these materials as standards, creat-
ing drift toward the use of these materials in a positive feedback
process.

The last period (2012–2015), which displays a decrease in
D

comb

for the empirical network (Fig. 3), is of special interest
because the number of experiments carried out in this period
comprises about 46% of the total number of experiments ana-
lyzed here (442 of 951). We will therefore analyze the origin of
the decreasing trend, in particular in the last years, in more detail
in the following section.

Systematic Trends in Experimental Designs Explain the
Reduction in the Diversity of Materials
Here, we investigate the temporal trends and frequency of use of
specific materials, first for DOM and then for PM.

Fig. 3B shows that the various DOM types used in the exper-
iments in recent years originate mainly from whole-water sam-
ples (e.g., lake water, river water, sea water, etc.; group 3 DOM)
(orange parts of the bars in Fig. 3B) and from group 1 DOM
sampled from river water (blue parts of the bars in Fig. 3B). The
focus on group 1 humic substances from river water has become
more pronounced in 2010–2015 and the fraction of experiments
with group 1 DOM from other environment types such as peat,
soil, seawater, and coal, has correspondingly decreased (purple
part of bars in Fig. 3B; also see SI Appendix, Fig. S3 B and C,
where the groups of DOM are shown in more detail than in Fig.
3B). Other relevant parts of DOM visible in Fig. 3B are Aldrich
humic acid (red parts of the bars) and group 2 DOM such as
alginate (green).

The river DOM shown in blue in Fig. 3B mostly belongs to
quadrant a on the map spanned by the first two PCs of the PCA
(Fig. 1 and SI Appendix, Fig. S6). These are substances that have
relatively low aliphatic and aromatic carbon content. On the

other hand, use of DOM that belongs to quadrant c constantly
decreases. This DOM has low aliphatic and high aromatic car-
bon content and includes humic acids from peat, soil, and coal
(SI Appendix, Fig. S6). Finally, the experiments in our database
only rarely use DOM that contains high aliphatic and high aro-
matic carbon content, such as the ones that belong to quadrant
d (e.g., sediment humic substances), and high aliphatic and low
aromatic carbon content (i.e., marine humic substances in quad-
rant b).

The increasing focus on group 1 DOM types with similar car-
bon distribution (predominantly from quadrant a) parallels the
decreasing diversity index of both DOM types used and DOM–
PM combinations studied, primarily between 2012–2015 (Fig. 3
A and B).

Soil DOM is highly heterogeneous and, at the same time, has
low prevalence in the experiments (Fig. 3B). Accordingly, the
information regarding the interaction of PM with soil DOM is
still scarce. Because there is no “representative” soil DOM (see
results of the PCA above), studies on the interaction between
soil DOM and PM, for example in pore water, need to account
for the heterogeneity of soil DOM, and use DOM extracted from
different specific soil types.

Group 2 DOM, which primarily includes isolated and well-
defined substances, was used in only 22% of all experiments (211
out of 951 experiments). Group 1 DOM is the major focus of
the experimental effort, which confirms previous observations of
high prevalence of humic substances as the DOM component in
the DOM–PM experiments (26).

The DOM isolated from environmental media (blue and pink
in Fig. 3B), on the one hand, and DOM in water samples without
further processing (yellow in Fig. 3B), on the other hand, pro-
vide two complementary options for studying DOM–PM interac-
tions. With isolated DOM, a deeper mechanistic understanding
of the interaction between DOM and PM can be obtained. How-
ever, it is not always the case that the synthetic conditions created
are environmentally relevant. Water samples, on the other hand,
better represent environmental conditions but lack of control of
the concentration and properties of the DOM present in a water
sample limits the mechanistic understanding of the experimental
output (25). Because these two approaches are complementary
(49), it follows that, when researchers have obtained a mechanis-
tic understanding, their insights could be expanded and corrob-
orated in follow-up experiments with natural-water samples, for
example see refs. 50 and 51.

Water-sample DOM types comprise a large number of the
overall experiments (Fig. 3B). In the empirical network, however,
water-sample DOM types occupy only a small region in the net-
work (light blue squares in the network shown in SI Appendix,
Fig. S5A). This finding indicates that the large number of exper-
iments that use water samples are investigated in combination
with only a small fraction of all PM types present in our database.

Therefore, there is a potential for more diversity through
investigation of water-sample DOM with more PM types. How-
ever, in these experiments the DOM and also the experimen-
tal conditions in general would have to be characterized in a
more detailed, more comprehensive, and more systematic way
than what is found in many existing studies. Without that, the
added value of more experiments with water samples will remain
unclear.

For the PM in our database, it is the combinations of coat-
ing and core material that need to be investigated to understand
the trend in diversity. The initial coating of ENPs strongly influ-
ences the interaction of the particles with DOM, which in turn
can affect the stability of the ENPs (52–54). For this reason, every
PM that was reported to have a distinct initial coating is a sepa-
rate entry in our database. On the other hand, if the authors of an
experimental study did not mention the exact PM coating (and if
this information could not be found in the material description
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of the supplier), or the authors explicitly referred to the PM as
“bare,” we consider this PM as uncoated. Therefore, “uncoated”
PM in the empirical network means that a possible initial coating
of the PM was not considered as a parameter in the experiments,
and therefore the experimental results do not account for the
coating’s interaction with DOM.

PM types with novel coatings are continuously introduced into
the network, which increases the diversity of the PM in the exper-
imental network (because the PM types in our database are dis-
tinguished by both their core material and their coating (Fig.
3C, years 2011–2013) or keeps the decrease shallow (years 2014–
2015). However, the diversity of the PM–DOM combinations
further decreases (Fig. 3A, years 2012–2015) because the coated
PM types are investigated only with a (very) limited number of
DOM, as is demonstrated by the network shown in Fig. 4A.

In Fig. 4A, the 45 nodes that correspond to coated PM
(orange dots) mainly occupy the periphery of the network,
whereas those that correspond to uncoated PM (49 nodes)
are mostly central (light blue circle in Fig. 4A). Particularly,
coated PM is studied with significantly fewer DOM counter-
parts than uncoated PM (Fig. 4B). When the well studied citrate-
and poly(vinylpyrrolidone) (PVP)-coated nanosilver as well as
citrate-coated nanogold are not considered, the number of times
a given coated PM was studied (i.e., number of experiments) is
considerably smaller than a given uncoated PM (Fig. 4C).

We conclude that uncoated materials are often re-studied
in combination with different DOM types and possibly varying
other medium conditions. However, for coated PM, follow-up
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Fig. 4. Differences between coated PM and PM where coating was not
considered (uncoated). (A) Uncoated PM (green) are located mainly at the
center of the empirical network (light blue circle), whereas the coated PM
(orange) are located mainly at the periphery of the network. Size of nodes
is proportional to their degree. (B) Boxplots showing the distributions of
the number of DOM types studied with uncoated and coated PM (i.e., the
degrees of the PM nodes). (C) Boxplots showing the number of experi-
ments performed (i.e., sum of link weights of the PM nodes) with uncoated
and coated PM (with citrate- and PVP-coated nanosilver and citrate-coated
nanogold omitted). The borders of the boxplots are the 25th and the 75th
percentiles. P values are for the two-sample, nonparametric Mann–Whitney
U test (alternative hypotheses: “uncoated PMs are studied with more DOM
types than coated PMs” and “uncoated PMs are studied in more experi-
ments than coated PMs”).

experiments with different DOM types are performed only spo-
radically. As explained earlier, uncoated PM refers to any PM
not explicitly described as being coated. The imbalance between
the study of coated vs. uncoated PM implies that the role of the
initial coating in determining the interaction of a PM with DOM
is often not considered. However, ENPs are frequently coated,
and, accordingly, coated ENPs are also likely to be released
to the environment (52). Therefore, the underrepresentation
of experiments with coated PM in the network indicates that
more experiments that explicitly consider the coating of ENPs
are needed to sufficiently characterize the interaction of ENPs
with DOM.

Finally, in SI Appendix, Fig. S11, we observe that the net-
work’s core, which contains the majority of the uncoated PM, is
comprised mostly of recent experiments. Therefore, the low con-
sideration of the effect of initial PM coating on DOM–PM inter-
actions is a current phenomenon.

Conclusions and Recommendations
Over the last 25 y, numerous experiments have been performed
that aim to elucidate the effect of DOM on ENPs specifically
and PM in general. Still, recent reviews call for additional exper-
iments (25, 26), and it is important to consider carefully which
DOM–PM combinations should be studied in future experi-
ments. Here, the overall objective of the experiments plays an
important role. One objective is to investigate the fate of PM in
specific environments, such as ENPs in surface water. For exper-
iments with this objective, DOM representative of the environ-
ment considered will be used (e.g., river and lake humic acids and
fulvic acids for surface water but not Aldrich humic acid, which
reflects soil DOM properties; SI Appendix, Fig. S7).

Another objective is to mechanistically study the PM–DOM
interactions without a focus on a specific environment, but with
the aim to improve the general mechanistic understanding of
these interactions. For this kind of experiment, a broad range
of material properties is needed.

To increase the diversity of materials, researchers can study
entirely new materials (i.e., add new nodes to the empirical net-
work) and/or study DOM–PM combinations that were not stud-
ied together before (i.e., add new links between existing nodes
in the empirical network). For the selection of DOM for new
experiments, the PC1–PC2 map in SI Appendix, Figs. S6 and S7
can guide the identification of suitable DOM. In any case, it is
imperative that the experiments will be comparable in terms of
the materials’ characterization to foster the development of both
empirical models and a better mechanistic understanding.

The development of a DOM classification based on physico-
chemical properties and chemical functionality requires a consis-
tent reporting of relevant DOM characteristics (chemical com-
position, carbon distribution, molecular weight, etc.). In 40% of
the publications in our database that use one or more group 1
DOM, there is no information regarding the molecular weight
nor the chemical composition nor the carbon distribution for
at least one of the group 1 DOM studied. Similarly, less than
half of the publications in our database that use DOM from
the IHSS report the sample’s identifier (SI Appendix, Fig. S1).
It is essential that the basic characteristics of the DOM used in
experiments with PM are reported much more systematically and
comprehensively.

What are possible reasons for the observed decrease in diver-
sity? To some extent, the decrease has been caused by the many
studies focusing on ENPs in aquatic systems in the last years
(which is an intentional focus on an environmentally relevant
problem).

In addition, because the experimental field is large and dis-
parate, it is difficult to obtain a comprehensive overview of
past experimental achievements. This situation may lead to a
lock-in dynamics that reinforces the use of certain DOM–PM
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combinations and makes other combinations less visible and
likely to be studied.

Such a lock-in effect in favor of certain experimental settings
or materials is not limited to the field of environmental fate
of ENPs. It is known that in science in general an initial focus
on certain experimental settings reinforces the use of these set-
tings in the future. For example, in nanomaterial ecotoxicology
it has been pointed out that the majority of the ecotoxicologi-
cal data are confined to, among others, fresh water organisms,
although more studies on terrestrial and marine organisms are
needed (55). Another example is the various databases that sum-
marize key properties of ENPs to facilitate ENP risk assessment.
These databases often offer information on selected ENP types
(e.g., TiO

2

and ZnO) but lack the required information on oth-
ers (e.g., Ag and Fe

2

O
3

) (56). In both examples, the materials
and/or experimental settings are criticized as being unrepresen-
tative or too narrow (55, 56).

This problem is also discussed in a more general way in phi-
losophy of science. Weisberg and Muldoon (57) point out that
the ability of a scientific community to discover new knowledge
depends on the balance between scientists who use established
settings and scientists who apply new approaches to new settings
(57). Our analysis shows how an imbalance between these two
approaches can emerge over time.

A network perspective as shown here is useful because in a net-
work the entire experimental field, consisting of diverse experi-
mental settings, can be visualized as a single entity. This visu-
alization provides a graphical summary of the current state of
the science, but also a tool for modeling and understanding how
the structure of the research field has developed; finally, it helps
identify gaps in the body of experiments performed and future
research needs. In the context of DOM and PM research, fur-
ther research should (i) place more emphasis on the initial coat-
ing of the PM and its interaction with DOM; (ii) confront results
from experiments with isolated DOM against studies with natu-
ral water samples; and (iii) strive to increase the diversity of the
types of DOM and PM investigated.

Materials and Methods
Publication Search. The empirical network is based on experiments that
study the effects and/or interactions of DOM with PM in aquatic media.
Experiments that report transport of PM in porous media were included if in
addition they studied the DOM effects on the PM in aqueous media. Exper-
iments where the PM is a naturally occurring colloid (e.g., suspended sedi-
ment) were not included. Relevant studies published until 2013 were taken
from the review by Philippe and Schaumann (26). Studies between 2013–
2015 were obtained from two search queries in SciFinder (58) performed
on July 2, 2015 using the keywords (i) colloids and organic matter, yielding
352 results; and (ii) nanoparticles and organic matter, yielding 493 results.
The search results were automatically filtered, using a designated R script,
and the remaining publications contained in their abstract either one of the
(stemmed) keywords: “stability,” “aggregation,” “adsorption,” “sorption,”
“sedimentation,” “coating,” “deposition,” “mobility,” “surface,” “disag-
gregation,” and “precipitation.”

In a second search (July 12, 2016) additional publications were obtained
from two more queries in SciFinder (58): “dissolved organic matter and
nanoparticles” and “dissolved organic matter and inorganic colloids,” for
experimental papers published between 1977–2015. This search resulted in
173 and 58 papers for the first and second query, respectively. Of those,
26 were relevant based on their title and abstract and were not already
in our database. A third SciFinder search (December 12, 2016) was car-
ried out for experimental papers published between 1977–2015 using four
additional queries: “dissolved organic matter and nanoparticles dissolu-
tion,” “dissolved organic matter and nanoparticles precipitation,” “dis-
solved organic matter and colloids precipitation,” and “dissolved organic
matter and colloids dissolution.” This search gave 53, 7, 28, and 95 hits for
the first to fourth query, respectively. Of those, six were pertinent to our
analysis and were not yet in the database. The remaining papers were stud-
ied in detail and kept if they report the effect of DOM on PM aggrega-
tion/dissolution/precipitation or if they study the coating of PM by DOM in
aquatic media.

Types of Studies. Of the 271 publications, 172 investigate, among others, PM
aggregation; 45 study, among others, PM dissolution and precipitation; and
58 study only DOM adsorption onto PM surfaces. A full list of publications
and the used materials are given in Dataset S1.

PCA. We analyzed the carbon distribution of different DOM types reported
in the literature and on the IHSS website (www.humicsubstances.org;
accessed November 8, 2016). The full list of materials and their properties
are given in Dataset S2. Because of the many missing values for different
parameters (above), we could not use all DOM types listed in the references.

The publications analyzed here report the carbon distribution as
obtained from 13C-NMR spectra. Different authors sometimes use differ-
ent regions of the chemical shift to quantify different carbon types such as
aliphatic, heteroaliphatic, acetal, aromatic, carboxyl and carbonyl carbon.
To smooth out these differences, we combined smaller integration intervals
to larger ranges that account for three basic carbon types: aliphatic carbon
(i.e., heteroaliphatic and acetal carbon), aromatic carbon, and carbonyl (also
accounts for carboxyl) (International Humic Substances Society and refs. 59
and 60): (i) aliphatic carbon (%), integrated area between 0 and 110 ppm;
(ii) aromatic carbon (%), integrated area between 110 and 165 ppm; and
(iii) carbonyl carbon, integrated area between 165 and 220 ppm.

Next, we performed a PCA (on the scaled database). In short, a PCA finds
the set of orthogonal vectors (also called the principal components or, in
short, PCs) that define the linear combinations of the parameters that cap-
ture the highest variability in the database. Each data point is projected into
the respective PC dimension by calculating the linear combination of the
parameters, weighted by the respective PC coefficients. The analysis was
done using the function princomp in R, and its output is presented in SI
Appendix, Annex A.

Empirical Network Construction. From the publications collected a list of all
studied DOM–PM combination was extracted and converted to a bipartite
network (45) using the igraph package 61, available in R, version 3.3.0 (62).
This network has two types of nodes, PM or DOM, and links are only possible
between nodes of different types. The network, G, is defined by

G = (U,V,E), E ✓ U ⇥ V, [3]

where U and V are the sets of all DOM and PM, respectively, and U ⇥ V is
the Cartesian product, i.e., the set of all possible links. The set E denotes all
DOM–PM combinations studied. The weight of a given link is the number
of experiments studying the DOM and PM connected by this link. Links are
undirected because they imply the presence of both materials in the corre-
sponding experiments.

Coated PM was regarded as a new material (i.e., citrate-coated silver
NPs were regarded different from polyvinylpyrrolidone-coated silver NPs)
because the coating/surface functionalization has been shown to alter the
interaction of the particles with DOM. The broad PM groups are based on
chemical composition of the core material. The different types of DOM were
categorized according to source (e.g., humic acid from a river or a lake) and
physicochemical properties (e.g., anionic and nonionic surfactant). Excep-
tions included commercial humic acids, often from an unspecified source
(63), which were categorized according to the manufacturer’s name (e.g.,
Aldrich humic acid). For experiments reporting the effects of the total DOM
from a given source as well as the different DOM fractions, the entry in the
database is for the unfractionated DOM (e.g., different molecular fractions
of Suwannee River Natural Organic Matter (64) were given a single node in
the network).

Linear Regression on the Diversity Values Between 1990 and 2015. A linear
regression line was fitted to the Dcomb values presented in the section
Network evolution between 1990–2015. However, inference of regression
parameters by means of ordinary least squares (OLS) requires independence
of the error terms (i.e., residuals), which is not the case for the OLS resid-
uals of the Dcomb values. Rather, they exhibit a serial correlation that can
be modeled by an autoregressive (AR) process of order 1. Therefore, the
linear regression was carried out using generalized least squares with resid-
uals correlation structure of the respective AR process, using the function
gls() from the package nlme (65) in R (62). The resulting regression line is
given by

Dcomb = 0.807 � 0.00893 · t (t: years from 1 to 25). [4]

The 95% confidence interval for the slope is [�0.0133 � 0.00455].
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Simulation of Networks with High and Low Diversity of DOM–PM Combinations.
For each case (i.e., high and low diversity of the studied DOM–PM com-
binations), 1,000 networks were simulated for each year from 1990–2015.
Networks of high diversity were simulated by replacing the DOM–PM com-
binations used in a given publication by combinations sampled uniformly at
random from all possible combinations that were not studied in the cited
publications of this given publication. Networks of low diversity were simu-
lated by replacing the studied DOM–PM combination of a given publication
by the most frequent combinations used in the cited references of this pub-
lication; if all experimental combinations cited in a publication are unique,
DOM–PM combinations were sampled uniformly at random from the ones
studied in the cited references of the publication.

Supporting Information. SI Appendix contains results and figures from addi-
tional analyses. The analysis of the robustness of the diversity trend using
bootstrap simulation was performed with the package boot (66) in R (62).

Some figures in the SI Appendix were created by the ggplot (67) and ggre-
pel (68) packages in R (62). Dataset S1 contains the experiments (with ref-
erences) used to create the empirical network. Dataset S2 lists the carbon
distribution of the DOM types used for the PCA. The analysis code and its
description are publicly available at https://github.com/nicolesanikast/DOM-
PM network.
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the Seminar for Statistics (Eidgenössische Technische Hochschule Zurich),
in particular Claude Renaux, for the valuable statistic consulting, support,
and guidance. Funding from the Swiss Federal Office for the Environment
is gratefully acknowledged. This work is part of the NANOHETER project
under the European Area Network (ERA-NET) on Safe Implementation of
Innovative Nanoscience and Nanotechnology (SIINN). M.S. acknowledges
financial support from the Czech Ministry of Education, Youth, and Sports
(Grant LM2015051) and Masaryk University (CETOCOEN PLUS Project Grant
CZ.02.1.01/0.0/0.0/15 003/0000469).

1. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: A review
of the benefits and potential risks. Environ Health Perspect 117(12):1823–1831.

2. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the envi-
ronment. J Environ Monit 13(5):1145–1155.

3. Colvin VL (2003) The potential environmental impact of engineered nanomaterials.
Nat Biotechnol 21(10):1166–1170.

4. Boxall ABA, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water:
How do they behave and could they pose a risk to human health? Nanomedicine
2(6):919–927.

5. Hannah W, Thompson PB (2008) Nanotechnology, risk and the environment: A review.
J Environ Monit 10(3):291–300.

6. Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic
and terrestrial environments. Acc Chem Res 46(3):854–862.

7. Beckett R, Le NP (1990) The role or organic matter and ionic composition in deter-
mining the surface charge of suspended particles in natural waters. Colloids Surf 44:
35–49.

8. Liu J, Legros S, von der Kammer F, Hofmann T (2013) Natural organic matter concen-
tration and hydrochemistry influence aggregation kinetics of functionalized engi-
neered nanoparticles. Environ Sci Technol 47(9):4113–4120.

9. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles:
Influence of particle concentration, pH and natural organic matter. Sci Total Environ
407(6):2093–2101.

10. Aiken GR, Hsu-Kim H, Ryan JN (2011) Influence of dissolved organic matter on
the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol
45(8):3196–3201.

11. Majedi SM, Kelly BC, Lee HK (2014) Role of combinatorial environmental factors in
the behavior and fate of ZnO nanoparticles in aqueous systems: A multiparametric
analysis. J Hazard Mater 264:370–379.

12. Gallego-Urrea JA, Perez Holmberg J, Hassellöv M (2014) Influence of different types
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