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Internal shear layers from librating objects

By Stéphane LE DIZÈS and Michael LE BARS

CNRS, Aix Marseille Univ, Centrale Marseille, IRPHE, Marseille, France

(Received 8 June 2017)

In this work, we analyse the internal shear layer structures generated by the libration
of an axisymmetric object in an unbounded fluid rotating at a rotation rate Ω∗ using
direct numerical simulation and small Ekman number asymptotic analysis. We consider
weak libration amplitude and libration frequency ω∗ within the inertial wave interval
(0, 2Ω∗) such that the fluid dynamics is mainly described by a linear axisymmetric har-
monic solution. The internal shear layer structures appear along the characteristic cones
of angle θc = acos(ω∗/(2Ω∗)) which are tangent to the librating object at so-called
critical latitudes. These layers correspond to thin viscous regions where the singulari-
ties of the inviscid solution are smoothed. We assume that the velocity field in these
layers is described by the class of similarity solutions introduced by Moore & Saffman
[Phil. Trans. R. Soc. A 264, 597-634 (1969)]. These solutions are characterised by two
parameters only: a real parameter m, which measures the strength of the underlying
singularity, and a complex amplitude coefficient C0.

We first analyse the case of a disk for which a general asymptotic solution for small
Ekman numbers is known when the disk is in a plane. We demonstrate that the numerical
solutions obtained for a free disk and for a disk in a plane are both well-described by the
asymptotic solution and by its similarity form within the internal shear layers. For the
disk, we obtain a parameter m = 1 corresponding to a Dirac source at the edge of the
disk and a coefficient C0 ∝ E1/6 where E is the Ekman number.

The case of a smoothed librating object such as a spheroid is found to be different. By
asymptotically matching the boundary layer solution to similarity solutions close to a
critical latitude on the surface, we show that the adequate parameter m for the similarity
solution is m = 5/4, leading to a coefficient C0 ∝ E1/12, that is larger than for the case
of a disk for small Ekman numbers. A simple general expression for C0 valid for any
axisymmetric object is obtained as a function of the local curvature radius at the critical
latitude in agreement with this change of scaling. This result is tested and validated
against direct numerical simulations.

1. Introduction

In a rotating fluid, localized time-harmonic perturbations propagate if their frequency
ω∗ is smaller than twice the fluid rotation rate Ω∗ (Greenspan, 1968). The propagation
occurs along conical surfaces of angle θc = acos(ω∗/(2Ω∗)) with respect to the plane
normal to the rotation axis. Oscillating singularities travel within the fluid the same
way. When these singular surfaces are smoothed by viscosity, they form internal shear
layers. The goal of the present work is to analyse the structure and the amplitude of such
layers when they are created by the (longitudinal) libration of an axisymmetric object
in an open domain.

Longitudinal libration denotes harmonic oscillation of the rotation rate without mod-
ification of the rotation axis. It constitutes one of the possible harmonic forcings in
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planetology. Other forcings such as tide, precession, latitudinal libration are also present
in most gravitational systems (Le Bars et al., 2015). Longitudinal libration is especially
important for so-called synchronized bodies, i.e. bodies locked with their main companion
in a given spin-orbit resonance, which is periodically perturbed by gravitational interac-
tions with other bodies. This includes moons and small planets of our solar system, as
well as some of the detected exoplanets in extra-solar systems, which orbit close to their
star (see e.g. discussion in Cébron et al., 2012). The observed response of those bodies
to libration forcing, and more specifically the small changes in the measured spin rate
of their surface, are used to remotely investigate their internal composition, showing for
instance the presence of a liquid core in Mercury (Margot et al., 2007) and of a global
subsurface ocean in Enceladus (Thomas et al., 2016). Libration driven flows may also be
of importance in the dynamics and evolution of planetary bodies, notably because of the
associated energy dissipation and because of the possibility to generate a magnetic field
(see e.g. Le Bars et al., 2015, and references therein). However, the details of harmonic
flows excited by libration are still largely unknown and controversial (see e.g. Noir et al.,
2009; Koch et al., 2013; Zhang et al., 2013; Klein et al., 2014).

In a close geometry, an external forcing can resonantly excite global modes (Aldridge
& Toomre, 1969). In simple geometries such as the cylinder or the sphere, these modes
can be described by so-called inviscid Kelvin modes. Even in these cases, the viscous
correction to these modes does exhibit internal shear layers. These layers are associated
with corners of the geometry as in a cylinder (McEwan, 1970) or with scaling variations
of the viscous boundary layer close to critical latitudes. Kerswell (1995) demonstrated
that whether the boundary is concave or convex at the critical latitude, different internal
shear layers are expected. From a concave boundary, the boundary layer eruption, which
is on a large O(E1/5) region, is transmitted throughout the interior without modification
(Kida, 2011), while it is transmitted and smoothed on a smaller O(E1/3) width from a
convex boundary (Kerswell, 1995). It is this second kind of internal shear layers that
will be our interest in the present work. We shall in particular correct the prediction
in O(E1/6) found in the literature for the amplitude of the solution in this layer (e. g.
Kerswell, 1995; Calkins et al., 2010).

When the geometry is more complex as in a shell, other types of internal shear layers
can be observed. Some of them result from the viscous smoothing of an inviscid attractor
(e.g. Rieutord & Valdettaro, 1997).

Internal shear layers have been first studied in the context of stationary flows. Many
works have concerned disks (Stewartson, 1957; Moore & Saffman, 1969; van de Vooren,
1992) or spheres (Proudman, 1956; Stewartson, 1966; Marcotte et al., 2016). Similarity
solutions have been introduced for their description by Moore & Saffman (1969) for
rotating flows, and by Thomas & Stevenson (1972) for stratified fluids. Their properties
have been reviewed by Voisin (2003). Extensions to more general situations can also be
found in Stevenson et al. (1974) and Peat (1978). These similarity solutions describe
the viscous smoothing in a O(E1/3) layer of an inviscid singularity propagating along a
characteristic line. These solutions depend on a real parameter which characterises the
strength of the singularity. This parameter also controls the amplitude of the solution and
its decay rate from the source (Machicoane et al., 2015). Surprinsingly, these solutions
were also found to be able to describe the fine viscous structure resulting from an attractor
(Walton, 1975; Rieutord et al., 2001; Ogilvie, 2005).

The paper is organised as follows. In §2, the basic equations and the similarity solutions
are introduced. The numerical tool is also described. In §3, we consider the case of a
librating disk. We show that the internal shear layers obtained from the numerical
simulations are well-described by the similarity solutions derived from the asymptotic
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analysis. In §4, we analyse the case of librating spheroids. We first perform an asymptotic
analysis of the viscous boundary layer in the neighborhood of the critical latitude to
compute the characteristics of the similarity solutions. The asymptotic results are then
validated using the simulation. In the last section §5, the consequences of the results are
briefly discussed.

2. Theoretical background

2.1. Basic equations

We consider the flow generated by the libration of an axisymmetric object in a viscous
incompressible rotating fluid. The fluid rotates with an angular rotation Ω∗ around the
symmetry axis Oz of the object. The frequency and amplitude of the libration are ω∗

and ε∗, respectively, such that the angular rotation vector of the object surface can
be written as Ω∗S(t) = (Ω∗ + ε∗ cos(ω∗t))ez. The frequency is chosen in the inertial
wave regime 0 < ω∗ < 2Ω∗ such that we can define a propagation angle θc satisfying
ω∗ = 2Ω∗ cos θc. The angle θc defines the direction (with respect to the horizontal plane
Oxy) of propagation of the inertial wave of frequency ω∗. It also corresponds to the
inclination angle of the internal shear layers.

We shall be interested in the internal shear layers that are generated from disks and
spheroids. These internal shear layers are issued from the border of the disk, or from the
boundary points of the spheroid corresponding to a critical latitude, that is such that
the direction normal to the object makes an angle θc with respect to the rotation axis
Oz.

In the following, time and space variables are non-dimensionalized using 1/Ω∗ and
the distance r∗c of the internal shear layer source to the rotation axis, respectively. In
non-dimensionalized form, the libration frequency and amplitude are then written as

ω = 2 cos θc , ε = ε∗/Ω∗. (2.1)

The dynamic, which is assumed to remain axisymmetrical, is analysed in a cylindrical
rotating frame such that the internal shear layer source is located on a ring at xc =
(rc, zc) = (1, 0). This choice implicitly assumes that the source is not on the rotation
axis.

Our objective is to describe the internal shear layer structures of the harmonic response
to libration in the limit of small viscosity. Both the libration amplitude ε and the Ekman
number

E =
ν

Ω∗(r∗c )2
, (2.2)

where ν is the kinematic viscosity of the fluid are therefore assumed to be small.
If we write the harmonic response of the velocity and pressure field as

(vt, Pt) = <e
{
ε(v, p)e−iωt

}
, (2.3)

its amplitudes v and p satisfy in the rotating cylindrical frame the equations:

−2i cos θcv + 2ez ∧ v = −∇p+ E∇2v, (2.4a)

∇.v = 0. (2.4b)

The boundary conditions at infinity and on the object impose

v(x) = reφ , on the object surface, (2.5a)

v(x)→ 0 as |x| → ∞. (2.5b)



4 S. Le Dizès and M. Le Bars

0 1

0

r

z

L3

L1

xc

x‖ x⊥

x‖x⊥

x‖x⊥

θc

x⊥
x⊥ x‖

x‖

L2

L4

L5

L6

Figure 1. Definitions of the lines Lj , j = 1, 2, 3, 4, 5, 6 and associated coordinate systems in
the (r, z) plane.

Both v and p are assumed to depend on r and z only.

2.2. Similarity solution for the description of internal shear layers

As already mentioned above, similarity solutions were introduced by Moore & Saffman
(1969) and Thomas & Stevenson (1972). Here, we review some of their properties and
introduce our notations. Additional information can be found in Voisin (2003).

By definition, the source point of the similarity solution is xc = (1, 0). For a given
frequency ω, the propagation occurs along the characteristic lines Lj , j = 1, 2, 3, 4, 5, as
indicated in figure 1. These lines, which actually correspond to sections of cones, make
an angle θc, defined by (2.1), with respect to the horizontal plane. The four lines L1,
L3, L4 and L5 are the four possible directions of emission from xc. The line L2 (and
similarly L6) is different: it is the continuation of the line L1 after reflection on the axis
of symmetry. Finding the properties of the similarity solution along this line is then
slightly more complicated: it requires an analysis of the reflection process on the axis.

We therefore start by the other lines and focus on one of them: L1. Along L1, we
define a local frame (e‖, e⊥) and a local coordinate system (x‖, x⊥) such that rer+zez =
er + x‖e‖ + x⊥e⊥ with

e‖ = −er cos θc + ez sin θc, (2.6a)

e⊥ = er sin θc + ez cos θc. (2.6b)

In this frame, equations (2.4a,b) can be written as

(−2i cos θc − E∆)v‖ = −2 cos θcvφ −
∂p

∂x‖
, (2.7a)

(−2i cos θc − E∆)v⊥ = 2 sin θcvφ −
∂p

∂x⊥
, (2.7b)

(−2i cos θc − E∆)vφ = −2 sin θcv⊥ + 2 cos θcv‖, (2.7c)

∂v⊥
∂x⊥

+
∂v‖
∂x‖

= 2 cos θc
v‖
r
− 2 sin θc

v⊥
r
. (2.7d)

Introducing the local transverse scale η⊥ = x⊥/E1/3 and the ansatz

v‖ =
u
(0)
‖√
r
, v⊥ = E1/3u

(1)
⊥√
r
, vφ =

v
(0)
φ√
r
, p = E1/3 p

(1)

√
r

(2.8)
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we obtain the leading order equations

v
(0)
φ = iv

(0)
‖ , (2.9a)

∂p(1)

∂η⊥
= 2i sin θcv

(0)
‖ , (2.9b)

∂v
(1)
⊥

∂η⊥
= −

∂v
(0)
‖

∂x⊥
− cos θc

v
(0)
‖
2r

, (2.9c)

i
∂3v

(0)
‖

∂η3⊥
+ 2 sin θc

∂v
(0)
‖

∂x‖
= 0. (2.9d)

Similarity solutions are obtained by searching v
(0)
‖ in the form

v
(0)
‖ = C0Hm(x‖, ζ) = C0

(
x‖

2 sin θc

)−m/3
hm(ζ), (2.10)

where m is a real number, C0 a complex constant and

ζ = η⊥

(
2 sin θc
x‖

)1/3

. (2.11)

The function hm is found to satisfy

3h′′′m + iζh′m + imhm = 0 . (2.12)

As shown by Moore & Saffman (1969), the solution which is bounded for m > 0 is a
multiple of

hm(ζ) =
e−imπ/2

(m− 1)!

∫ +∞

0

eipζ−p
3

pm−1dp. (2.13)

The normalization of hm has been chosen such that

Hm(x‖, ζ) ∼
ζ→+∞

η−m⊥ , (2.14a)

Hm(x‖, ζ) ∼
ζ→−∞

(−η⊥)−me−imπ. (2.14b)

The other components can be deduced from (2.9a-c). Here we shall only use the expres-
sion for the azimuthal velocity:

v
(0)
φ = iC0Hm(x‖, ζ). (2.15)

The above analysis applies to L1. A similar analysis can be performed on the other lines
L3, L4 and L5. With the definition of the coordinate system shown in figure 1, we obtain

the same expression (2.10) for v
(0)
‖ with ζ defined by (2.11) for all these lines. However,

(2.15) is valid on the lines L1 and L5 only. On the symmetric lines L3 and L4, we must
use

v
(0)
φ = −iC0Hm(x‖, ζ). (2.16)

As shown in appendix, on L2, we should use the formula

v
(0)
‖ = iC0Hm(x‖, ζ), v

(0)
φ = C0Hm(x‖, ζ), (2.17)

with x‖ = (r + 1) cos θc + z sin θc (that is counted from a symmetric source at (−1, 0)).
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2.3. Description of the numerical method

Axisymmetric direct numerical simulations are performed with the finite-elements com-
mercial software Comsol Multiphysics. Incompressible Navier-Stokes equations are solved
for a Newtonian fluid in the frame of reference rotating at the mean angular velocity Ω∗.
The length scale in the numerics is the axis distance to the point where the characteristic
line L4 crosses the equator. Considering the axial and equatorial symmetries of the prob-
lem, the fluid domain then corresponds to the upper-right quarter of a sphere of radius
4 (see figure 2). Boundary conditions are stress-free at the spherical radial coordinate
ρ = 4, no-slip with imposed libration azimutal velocity v = εr cos(ωt)eφ at the object
boundary, and symmetry conditions along the rotation axis. Regarding the librating disk
problem, we consider 2 configurations for the boundary conditions along the equatorial
plane: either v = 0, which we refer to as the “disk in the plane” configuration, or sym-
metry conditions (that is vz = ∂zvr = ∂zvφ = 0 at z = 0 outside the object), which we
refer to as the “free disk” configuration. Symmetry conditions are also used for all the
spheroidal geometries. From ρ = 2 to ρ = 4, the viscosity increases exponentially with
the radius squared by a factor about 2000, so as to damp outgoing propagating waves:
any wave reflected from the outer boundary is then negligible. The mesh is made of
triangular standard Lagrange elements of type P3-P2 (i.e. cubic for the velocity field
and quadratic for the pressure field). It is strongly refined close to the boundaries and
along the characteristic lines, where rapid variations of the velocity field are expected
(see figure 2). The total number of degrees of freedom ranges between 800000 and 1.2
million, depending on the geometry of the librating object. At each time step, the sys-
tem is solved with the sparse direct linear solver PARDISO and the backward difference
formulae (BDF) temporal solver with a maximal order 2. The time step is limited to
1/150 of the libration period. No stabilization technique is used. Starting from v = 0
everywhere in the fluid at time t = ti = −π/(2ω), the computation is first run during 250
libration cycles so as to reach a steady state; the 5 next oscillations are then recorded
and analyzed. We have checked that our results are not significantly affected by changing
the grid, the size of the domain, the coefficient of the viscous exponential increase, or
the maximum time step.

3. Libration of a disk

3.1. Summary of the asymptotic results for the disk in a plane

Le Dizès (2015) provided an asymptotic expression of the solution for the librating disk
in a plane in the limit of small Ekman numbers. In the inertial wave regime (0 < ω < 2),
he found, using results by Tilgner (2000) that, outside the boundary layer on the disk
(z �

√
E), the velocity amplitude of the harmonic solution can be written with the

present notation as

u = A(2uD − uR), (3.1)

with

A =

√
E

2 sin θc
ei
π
4−i

θc
2 , (3.2)

where the two contributions uD and uR correspond to the solutions generated from
a uniform axial oscillating forcing on the disk of unitary amplitude and from a Dirac
oscillating ring source of axial flow on the disk edge, respectively. These contibutions are
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Figure 2. Geometry and grid of the numerical simulation, shown here for a prolate spheroid
of eccentricity

√
2/3.

given by

uD =


uD = −i

cos θc
sin θc

I
(1)
D

vD = − 1

sin θc
I
(1)
D

wD = I
(0)
D

and uR =


uR = −i

cos θc
sin θc

I
(1)
R

vR = − 1

sin θc
I
(1)
R

wR = I
(0)
R

(3.3)

with

I
(m)
D =

∫ ∞
0

J1(k)Jm(kr)eikz̃e−Ẽk
3z̃dk, (3.4a)

I
(m)
R =

∫ ∞
0

kJ0(k)Jm(kr)eikz̃e−Ẽk
3z̃dk, (3.4b)

where

z̃ =
cos θc
sin θc

z, Ẽ =
E

2 cos θc sin4 θc
. (3.5)

Without the diffusing factor e−Ẽk
3z̃ the integrals I

(m)
D and I

(m)
R are singular on the

characteristic lines Lj shown in figure 1. These lines correspond to the conical structure
along which the singularity at the edge of the disk propagates. Close to these lines, the

functions I
(m)
D and I

(m)
R take a particular form as E goes to zero. The function I

(m)
D is

O(− log(E)) while I
(m)
R becomes O(E−1/3). The part associated with the ring source

therefore provides the dominant contribution to the solution. Close to each line, the
velocity field is found to be mainly aligned along with the conical structure. The two
velocity components v‖ and vφ (aligned along with Lj and the azimut, respectively) are
found to be identical albeit a phase factor. Around the line L1, Le Dizès (2015) obtained
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Figure 3. Contour of the azimuthal velocity vφ in the (r, z̃) plane of the librating disk in the

plane obtained from the numerical simulation at t = 501.5π/ω for E = 10−5, ε = 10−4, ω =
√

2.
The sections Ck, k = 1, 2 and Sj , j = 1, 2, 3 where the profiles are analysed in figures 4 and 5
are also indicated.

that the solution can be written as (2.8) with

v
(0)
‖ = −

√
E

4 sin θc
ei
π
4−i

θc
2

(
2 sin2 θc

3Ez

)1/3

Hi

(
ix⊥

(
2 sin2 θc

3Ez

)1/3
)
. (3.6)

If we recall that the Scorer function Hi can be expressed in term of h1 as

Hi(s) =
31/3i

π
h1(−i31/3s) (3.7)

and that z ∼ sin θcx‖ close to L1, expression (3.6) is found to be of the form (2.10) with

m = 1, (3.8a)

C0 =
E1/6

4π sin θc
e−i

π
4−i

θc
2 . (3.8b)

The same expressions are obtained for the other lines Lj , j = 2, 3, 4, 5, 6.

3.2. Numerical results

In this section, we provide numerical results for both the disk in a plane and the disk in
a free space. The numerical solution is analysed after 250 periods such that transience
has disappeared and a periodic regime has been reached. For the value ε = 10−4 that we
consider, the solution is dominated by the harmonic response. A small Ekman number
E = 10−5 is also chosen such that the solutions can be compared to the asymptotic
expressions given in the previous section. We have chosen a fixed normalized frequency
ω =
√

2 such that θc = π/4.
In figure 3, a typical contour plot of the azimuthal velocity is shown in the (r, z) plane

at a given time for the case of the free disk. In figure 4, the velocity components of the
numerical solutions obtained for a free disk and for a disk in a plane are plotted as a
function of z in the vertical sections C1 and C2 corresponding to r = 1/2 and r = 3/2
respectively. The asymptotic solution (3.1) is also plotted in these graphs at the same
instant. We can see that the free disk and the disk in the plane solutions are very close
to each other and well described by the asymptotic solution.
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Figure 4. Velocity profiles (left: vr, centre: vφ, right: vz) normalized by ε
√
E along the vertical

cut at r = 0.5 (top) and at r = 1.5 (bottom) for E = 10−5, ε = 10−4, ω =
√

2 at to = 508.9π/ω.
Solid lines are numerical results (in black the disk in the plane, in red the free disk) while dashed
lines are asymptotic results for the disk in the plane.
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Figure 5. Velocity profiles across the internal shear layer in the sections S1 (left), S2 (centre)

and S3 (right) (see figure 3) at time to = 508.9π/ω for E = 10−5, ε = 10−4, ω =
√

2. Red
(vφ) and black (v‖) curves are for the disk in the plane, pink (vφ) and grey (v‖) are for the
free disk. Solid lines are numerical results. The other lines are asymptotic results. Dash-dotted
lines: asymptotic formula (3.1) with ring and disk contributions. Dashed lines: similarity
solution constructed using (3.8a,b). All the solutions have been renormalized by the factor

A = ε|C0|(2 sin θc/x‖)
1/3/
√
r with C0 given by (3.8b).

The similarity structure of the numerical solutions is also analysed in figure 5. In this
figure, we plot vφ and v‖, normalized by the amplitude factorA = ε|C0|(2 sin θc/x‖)1/3/

√
r

with respect to the similarity variable ζ defined in (2.11) with the expression (3.8b) for
C0. We consider the numerical solutions in the sections S1, S2 and S3 indicated in figure
3 at the same time. These solutions are compared to the theorerical predictions, which



10 S. Le Dizès and M. Le Bars

0 0.5 1 1.5 2 2.5
0

1

2

3
x 10

−6

x‖

x
1
/
3

‖
√
r|
v
|

0 0.5 1
0

1

2

3
x 10

−6

x‖

L1 L2 L3

Figure 6. Norm of the velocity vector along the characteristic lines Lj normalized by r−1/2x
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for a libration disk in the plane. E = 10−5, ε = 10−4, ω =
√

2, θc = π/4. The solid black lines
are the numerical results obtained for time ωt/(2π) = 250 : 1/25 : 251. The dashed line is
expression (3.11).

can be written after the renormalisation as

V SS‖ = <e
(
h1(ζ)e−iϕ‖

)
, V SSφ = =m

(
h1(ζ)e−iϕφ

)
, (3.9)

where

ϕ‖ = ϕφ = ωto + 3π/8 for S1, (3.10a)

ϕ‖ = ϕφ + π = ωto − π/8 for S2, (3.10b)

ϕ‖ = ϕφ + π = ωto + 3π/8 for S3. (3.10c)

In figure 6, the solutions are analysed along the lines Lj . We plot the norm of the

velocity vector, normalized by 1/(x
1/3
‖
√
r), along the lines Lj (that is for x⊥ = 0) as a

function of x‖ for different times. The theory predicts that this factor should be constant
for all times and equal to

|v|x1/3‖
√
r ∼ ε|h1(0)||C0|(2 sin θc))

1/3 ≈ 0.0895
εE1/6

(sin θc)2/3
. (3.11)

This prediction has been indicated as a red dashed line in figure 6. We do observe that
the numerical results follow relatively well the theoretical prediction. The departure
between L1 and L2 corresponds to the region close to the rotation axis where the theory is
known to be not applicable. We observe that the numerics provide systematically smaller
values than the theory, especially on the line L3. In the future, it would be interesting
to consider smaller Ekman numbers in the numerics to check that this discrepancy is
indeed associated with the not sufficiently small value of the Ekman number.

4. Libration of a spheroid

In this section, we analyze the flow generated by the libration of a spheroid. We have no
asymptotic solution for this geometry but we suspect that the flow structure around the
characteristic rays tangent to the spheroid corresponds to one of the similarity solutions
described in §2.2. To obtain the parameter m and the amplitude factor C0 of the solution,
we perform an asymptotic analysis close to the critical latitude xc. More precisely, these
parameters are obtained by the condition of matching close to xc of the boundary layer
solution on the object with the similarity solution. The theoretical result is then tested
and validated using direct numerical simulations.
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Figure 7. (a) Definition of the coordinate systems near xc. (b) Sketch of the different regions

of the asymptotic analysis. The region of matching is at O(E1/6) from xc within the internal
shear layer (ISL) but outside the boundary layer (BL), i.e. at a distance Lm from the boundary

satisfying E5/12 � Lm � E1/3.

4.1. Asymptotic analysis close to xc

4.1.1. Boundary layer solution

In this section, we consider an arbitrary axisymmetric convex object librating and
rotating around its axis of symmetry Oz. We analyse the solution in a plane Σ containing
this axis Oz. In this plane, we assume that the object surface is described by a smooth
curve (r(s), z(s)), with tangential and normal vectors defined by

t =
r′er + z′ez

α
, n =

−z′er + r′ez

α
, (4.1)

with

α =
√
r′2 + z′2, (4.2)

where the prime denotes derivative with respect to s. The surface being convex, any
point M(ξ, χ) in the fluid (outside the object) is identified by a curvilinear abscissa s
and a distance xn to the surface such that OM = ξer +χez = r(s)er + z(s)ez +xnn [see
figure 7(a)]. We assume that the critical latitude xc on the surface is reached at s = sc.
At such a point, the tangential and normal vectors are given by

tc = cos θcer − sin θcez, nc = sin θcer + cos θcez. (4.3)

We therefore have the following equalities:

r(sc) = rc = 1 , z(sc) = zc = 0, (4.4a)

r′(sc) = r′c = αc cos θc , z′(sc) = z′c = −αc sin θc. (4.4b)

Introducing the boundary layer variable η = xn/
√
E and the following ansatz for the

pressure and velocity components along t, n and eφ:

p =
√
Ep̄(1)(s, η), vt = v̄

(0)
t (s, η), vn =

√
Ev̄(1)n (s, η), vφ = v̄

(0)
φ (s, η), (4.5)

we get from (2.4a,b) (
−2i cos θc −

∂2

∂η2

)
v̄
(0)
t − 2

r′

α
v̄
(0)
φ = 0, (4.6a)
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−2i cos θc −

∂2

∂η2

)
v̄
(0)
φ + 2

r′

α
v̄
(0)
t = 0, (4.6b)

2
z′

α
v̄
(0)
φ =

∂p̄(1)

∂η
, (4.6c)

∂v̄
(1)
n

∂η
+

1

α

∂v̄
(0)
t

∂s
+
r′

rα
v̄
(0)
t = 0. (4.6d)

With the boundary conditions (2.5), the two first equations immediately give

v̄
(0)
φ =

r(s)

2

(
e−λ−η + e−λ+η

)
, (4.7a)

v̄
(0)
t =

ir(s)

2

(
e−λ−η − e−λ+η

)
, (4.7b)

where the functions

λ± =

√
−2i

(
cos θc ±

r′

α

)
(4.8)

are such that <e(λ±) > 0. The third equation (4.6c) can be used to get the pressure
field, while (4.6d) gives

v̄
(1)
n =

ir(s)η

2α

(
λ′+
λ+

e−λ+η − λ′−
λ−

e−λ−η
)

+

(
ir′

2αλ−
− irλ′−

2αλ2−

)(
e−λ−η − 1

)
−
(

ir′

2αλ+
− irλ′+

2αλ2+

)(
e−λ+η − 1

)
.

(4.9)

This last expression can be used to get the Ekman pumping in the bulk. We are
especially interested in its expression close to xc when s goes to sc. Here we consider the
situation illustrated on figure 7(b), which corresponds to L1. For this case, s is always
smaller than sc. Close to sc, λ+ remains finite but λ− goes to zero as

λ− ∼ (1 + i)
√
−κcαc sin θc(sc − s), (4.10)

where κc is the local curvature at xc. The curvature κ is defined by

κ =
z′′r′ − r′′z′

α3
. (4.11)

Here, it is negative in the neighborhood of xc.
If we perform the limits η →∞ (first) and s→ sc (second), we get a normal velocity

which behaves as

vn ∼
(1 + i)

8α
3/2
c

√
−κc sin θc

√
E

(sc − s)3/2
. (4.12)

This limit is valid as long as η
√
sc − s→∞ when s→ sc.

4.1.2. Similarity solution near xc

The similarity solutions introduced in §2.2 are singular as we get close to xc. For a
fixed η⊥, this amounts to consider the limit x‖ → 0. As we are interested in the solution
close to the boundary for L1, we consider a negative η⊥ [see figure 7(b)] such that ζ
defined by (2.11) goes to −∞ as x‖ → 0. In this limit, we obtain

v‖ ∼ C0(−η⊥)−me−imπ, (4.13a)

v⊥ ∼ −C0E
1/3 cos θc

2(m− 1)
(−η⊥)−m+1e−imπ. (4.13b)
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These estimates apply as long as −η⊥(x‖)−1/3 � 1.

4.1.3. Matching

In this section, we show that the similarity solution and the boundary layer solution
are compatible for particular values of C0 and m. The matching is performed in the
region where both expressions (4.12) and (4.13) apply. To determine this region, it is
useful to express the variables x‖ and η⊥ in terms of the boundary layer variables s and
η:

x‖ = − cos θc

(
r(s)− 1−

√
Eη

z′

α

)
+ sin θc

(
z(s) +

√
Eη

r′

α

)
(4.14a)

η⊥ =
sin θc
E1/3

(
r(s)− 1−

√
Eη

z′

α

)
+

cos θc
E1/3

(
z(s) +

√
Eη

r′

α

)
(4.14b)

Close to xc, these expressions become

x‖ ∼ αc(sc − s) +
√
Eκcαcη(sc − s), (4.15a)

η⊥ ∼ E1/6η + E−1/3κcα
2
c

(sc − s)2
2

, (4.15b)

where we recall that κc is the curvature at xc.
If |s−sc| = O(E1/6) and E−1/12 � η � E−1/6, we do have

√
|s− sc|η � 1 as required

by (4.12). Moreover, we then get

x‖ ∼ αc(sc − s), (4.16a)

η⊥ ∼ E−1/3κcα2
c

(s− sc)2
2

, (4.16b)

which implies that −η⊥x−1/3‖ ∝ E−1/3(sc − s)5/3 = O(E−1/18) � 1 as required for the

validity of (4.13). This region is materialized in red in the sketch shown in figure 7(b).
In this figure, we have also indicated the scalings of the different asymptotic regions: the
O(E1/2) width of the boundary layer on the object far from sc, the O(E1/3) width of
the similarity solution around L1 far from sc, and the scalings in E1/5 and E2/5 of the
local region near sc where the singularities of both the boundary layer solution and the
similarity solution are smoothed (Roberts & Stewartson, 1963; Kerswell, 1995).

In this region, we can then match the boundary layer solution with the similarity
solution. The normal velocity vn can be deduced from v‖ and v⊥ using

vn =
1

α

(
(z′ cos θc + r′ sin θc)v‖ + (−z′ sin θc + r′ cos θc)v⊥

)
, (4.17)

which becomes close to sc

vn ∼ v⊥ − κcαc(sc − s)v‖. (4.18)

If we take into account (4.16a,b), the normal velocity obtained from the similarity solution
(4.13a-b) is therefore

vn ∼ Em/3(−κc)−m+12mα−2m+1
c (sc − s)−2m+1C0e

−imπ. (4.19)

This expression is compatible with (4.12) if and only if

m = 5/4, (4.20a)

C0 =
E1/12

8
√

2 sin θc(−2κc)1/4
e−iπ/2 . (4.20b)
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Figure 8. (a) Contour of the azimuthal velocity vφ in the (r, z) plane of a librating sphere

obtained from the numerical simulation at time t = 508.9π/ω for Es = 10−5, ε = 10−4, ω =
√

2.
The sections Sj , j = 1, 2, 3, 4 where the profiles are analysed in figure 9 are also indicated. (b)
Definition of the local coordinate system on the characteristic lines Lj , j = 1, 2, 3, 4. The star
indicates the source point of the similarity solutions.

These expressions for m and C0 apply for the similarity solution along the line L1. A
similar analysis can be carried out for the similarity solution along L4 by performing the
matching on the other side of xc. It gives the same value of m and an amplitude C0 just
different by a phase factor:

C0 =
E1/12

8
√

2 sin θc(−2κc)1/4
e−iπ/4. (4.21)

These values of m and C0 constitute the main result of the present paper. In particular,
it is worth mentioning that the value of m is larger for a smooth surface (spheroid) than
for an angular one (disk). This means that we have the following counter-intuitive result:
the similarity solution describing the internal shear layer is associated with a stronger
singularity at xc for a smooth surface than for an angular one. As a consequence, the
amplitude of the velocity field is larger for the spheroid with a scaling in E1/12 to be
compared with the E1/6 scaling for the disk. Expressions (4.20b) and (4.21) provide the
dependency with respect to the libration frequency through the term 2 sin θc =

√
4− ω2.

The amplitude of the internal shear layer increases when θc decreases, that is when ω
gets close to 2 (or ω∗ close to 2Ω∗). We can also note the dependency with respect to
the local curvature κc. The amplitude decreases as |κc| increases. The more peaky the
surface at xc is, the smaller the amplitude of the internal shear layer is. This is consistent
with the smaller amplitude scaling obtained for the singular case of the disk.

4.2. Comparison with numerical results

In this section, the formulas (4.20a,b) are tested against direct numerical simulations.
Different spheroids as well as different frequencies are considered.

The numerical simulations were first performed for a sphere of radius 1/
√

2 with a
frequency ω =

√
2 such that the singular rays start from the point xc = (1/2, 1/2)

on the surface and cross the meridional plane and the rotation axis at (1, 0) and (0, 1)
respectively, as illustrated in figure 8(a). This normalisation does not correspond to that
chosen for the similarity solution. The Ekman number of the simulation Es is therefore
4 times smaller than the Ekman number defined in (2.2). The internal shear layers are
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Figure 9. Profiles of vφ (red curves) and v‖ (black curves) across the internal shear layer in
the sections S1 (top left), S2 (top right), S3 (bottom left) and S4 (bottom right) as indicated

in figure 8, at time t = 508.9π/ω for Es = 2.5 10−6 (i.e. E = 10−5), ε = 10−4, ω =
√

2. Solid
lines are numerical results. Dashed lines are the similarity solutions. All the solutions have been
renormalized by the factor A = ε|C0|(2 sin θc/x‖)

5/4/
√
r with C0 given by (4.20b) or (4.21).

emitted on either side of xc along the lines L1 and L4 indicated in figure 8(b). The
internal shear layer on L1 is reflected on the axis and continues along L2. The internal
shear layer on L3 corresponds to that emitted from the symmetric point (1/2,−1/2) on
the sphere. The definition of the coordinate systems is given in figure 8(b), in agreement
with the definition used in figure 1.

In figure 9, we compare the numerical solution to the similarity solution in the sections
indicated in figure 8(a) at a particular instant. Both the azimuthal velocity and the
parallel velocity are plotted as a function of the similarity variable. As for the disk, the
normalisation has been chosen such that the theoretical predications for vφ and v‖ are
just given by

V SS‖ = <e
(
h5/4(ζ)e−iϕ‖

)
, V SSφ = =m

(
h5/4(ζ)e−iϕφ

)
, (4.22)

where

ϕ‖ = ϕφ = ωto + π/2 for S1 (4.23a)

ϕ‖ = ϕφ + π = ωto for S2, (4.23b)

ϕ‖ = ϕφ + π = ωto + π/4 for S3 and S4. (4.23c)

As for the disk, we have also looked at the solution along the characteristic lines Lj .
For the spheroid, we expect |x‖|5/12

√
r|v| to remain constant and uniform and given by

|x‖|5/12
√
r|v| ∼ ε|h5/4(0)||C0|(2 sin θc)

5/12 ≈ 0.0776
εE1/12

(sin θc)1/12|κc|1/4
. (4.24)

This is verified in figure 10 where we have plotted |x‖|5/12
√
r|v| versus x‖ along the lines

L1 and L2 (top) and L4 and L3 (bottom) for 25 equidistant times within a period. The
theoretical prediction (4.24) is indicated as a red dashed line. The agreement is good for
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Figure 11. Definition of the characteristic lines and sections for a librating spheroid. (a)
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3/2 for ω = 1. (b) Oblate spheroid of eccentricity
√

2/3 for ω =
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2.

the upper lines L1 and L2. However, as for the disk, there is a weak discrepancy between
the theory and the numerics for the constant on the lower lines L4 and L3. Close to
x‖ ≈

√
2, the departures are associated with the impact of L1 and L2 on the axis, and

with the crossing of L4 and L3.
Other geometries have been tested numerically. We present here two other configu-

rations, a sphere with a different frequency and an oblate spheroid (see figure 11). For
both cases, we have performed the same tests. In figure 12, we provide plots of vφ and
v‖ in different sections indicated in figure 11 using the same normalisation as above such
that formulas (4.22) still apply. In figure 13, we have plotted as in figure 10, the quantity
|x‖|5/12

√
r|v| versus x‖, which is still expected to be provided by (4.24). As previously,
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√
2/3 with ω =

√
2. For both cases, ε = 10−4, Es = 10−5

(i.e. E = 1.78 10−5) and t = 508.9π/ω.
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we do observe a good agreement between theoretical predictions and numerical results.

5. Discussion

We have shown that the internal shear layers created by the libration of a convex object
can be described by the similarity solutions introduced by Moore & Saffman (1969). We
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Ω∗ (rad/s) r∗ (km) ω ε E

Mercury 1.2× 10−6 1000 2/3 1.3× 10−4 8× 10−13

(from 0 to 1700)

Enceladus 5.2× 10−5 200 1 2.1× 10−3 5× 10−13

Table 1. Physical parameters for the librating motion of the liquid core of Mercury (Margot
et al., 2007; Noir et al., 2009) and the subsurface ocean of Enceladus (Thomas et al., 2016). In
both cases, we consider a typical viscosity ν = 10−6 m2/s, which is supposedly representative
of both water/salty water in oceans and liquid iron in planetary cores (see e.g. de Wijs et al.,
1998).

have provided the amplitude and the parameter controlling the form of the solution for
a disk and for any smooth object. For a smooth object, we have in particular shown
that the amplitude is proportional to the local curvature radius at the power 1/4 at the
critical latitude where the internal shear layers are emitted. Interestingly, we have also
obtained that this amplitude is larger for a smooth object (with a scaling in E1/12) than
for a disk (with a scaling in E1/6). The consequence of this larger amplitude in the
internal shear layers is an even larger amplitude in E−1/12 at the point of focus on the
axis (see appendix). At this particular point on the axis, the solution therefore grows
and diverges as E → 0, clearly demonstrating the singular character of the solution in
this limit.

The scaling in E1/12 for the velocity amplitude in the internal shear layers is larger
than that reported in the literature (e.g. Kerswell, 1995; Calkins et al., 2010). As a
consequence, the zonal flow created by the self-interaction of the harmonic solution with
itself is also expected to be larger. Following the analysis performed in Le Dizès (2015),
we can expect a zonal flow in ε2E1/6 in the internal shear layers and in ε2E−1/2 at the
focus point on the axis. This last scaling implies that the nonlinear corrections become
large as soon as ε reaches E1/4, that is well before the linear solution has reached an
amplitude of order 1.

For illustrating the geophysical relevance of our results, let us consider two examples:
the liquid core of Mercury and the subsurface ocean of Enceladus, whose existences
have been demonstrated by studies of their surfacic librating motions (Margot et al.,
2007; Thomas et al., 2016). Relevant physical parameters are listed in table 1. Using
our scaling law (4.24), typical velocities within internal shear layers are 1.3 × 10−6 and
1.6× 10−4 m/s, while estimates for the zonal flow at the focus point give 2.0× 10−2 and
6.3 m/s. For comparison, typical velocities in the Earth’s core related to the convective
dynamo are 10−4m/s (Gubbins & Roberts, 1987) and typical tidal speeds in the Earth’s
oceans are 3×10−2m/s (St Laurent & Garrett, 2002). The influence of the fluid motions
described here on planetary dynamics, for instance through magnetic field generation
and energy dissipation, should thus be taken into account.

We have only considered internal shear layers created by libration of an axisymmetric
object, hence created by viscous coupling. This forcing is weak as it is actually associated
with an oscillating Ekman pumping of order E1/2. A larger forcing is obtained when
it is generated by pressure forces. For example, if the object was oscillated vertically
or horizontally, or when the librating object is non-axisymmetric, as tidally deformed
planetary bodies, a much larger amplitude would have been obtained. This situation
has been analysed in several works in the context of stratified fluids (e.g. Mowbray &
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Rarity, 1967). In these cases, internal shear layers have also been observed and described
by the same family of similarity solutions in the far field (e.g. Thomas & Stevenson,
1972; Hurley & Keady, 1997; Flynn et al., 2003; Voisin, 2003). It would be interesting to
determine whether the present approach can be also used to characterise the near field.

It is finally worth emphasizing that we have considered an open domain only. In a
closed geometry such as a spherical shell, the internal shear layers are reflected on the
boundaries. This implies that they can interact with themselves after a finite number of
reflections modifying their internal structure. Such a modification was already quantified
a long time ago for the stationary flow generated between two differentially rotating
spheres by Stewartson (1966), who showed that the structure of the internal shear layer
becomes more complex with nested regions of widths E1/3, E2/7 and E1/4. We can
imagine that similar complications would occur for the librating case if the internal shear
layer would form a closed circuit.
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Appendix A. Local asymptotic solution for the internal shear layer
close to the axis

The similarity solution diverges as r goes to zero. A new expression has to be obtained
close to the axis. For this purpose, we can use the general expression in terms of the
Hankel transform

vr =

∫ ∞
0

U(k)J1(kr)eiµ1zdk, (A 1a)

vφ =

∫ ∞
0

V (k)J1(kr)eiµ1zdk, (A 1b)

vz =

∫ ∞
0

W (k)J0(kr)eiµ1zdk, (A 1c)

p =

∫ ∞
0

P (k)J0(kr)eiµ1zdk, (A 1d)

where µ1 is the “non-viscous” wavenumber, which expands, when E → 0, as

µ1 ∼ k
cos θc
sin θc

(
1 + iE

k2

2 cos θc sin4 θc

)
. (A 2)

At leading order, the amplitudes U , V , W and P are related with each other by the
relations (see Le Dizès, 2015)

W = i
sin θc
cos θc

U, (A 3a)

U = i cos θcV, (A 3b)

kP = −2V − 2i cos θcU = −2 sin θcV. (A 3c)

Introducing the local variables

r̃ = r/E1/3, z̃ = (z − sin θc)/E
1/3, (A 4)
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(A 1a-d) can be written as

vr = i cos θc

∫ ∞
0

Ṽ J1(k̃r̃)eik̃ cotanθcz̃dk̃, (A 5a)

vφ =

∫ ∞
0

Ṽ J1(k̃r̃)eik̃ cotanθcz̃dk̃, (A 5b)

vz = − sin θc

∫ ∞
0

Ṽ J0(k̃r̃)eik̃ cotanθcz̃dk̃, (A 5c)

p = −2 sin θcE
1/3

∫ ∞
0

Ṽ
J0(k̃r̃)

k̃
eik̃ cotanθcz̃dk̃. (A 5d)

The expression of Ṽ is obtained by matching these expressions with the similarity
solution on L1. When both z̃ and r̃ go to infinity, (A 5b) for vφ can be written as

vφ ∼
√

1

2πr̃

∫ ∞
0

Ṽ√
k̃

(
eik̃(r̃+cotanθcz̃)−3iπ/4 + eik̃(−r̃+cotanθcz̃)+3iπ/4

)
dk̃, (A 6)

using the expansion of the Bessel function J1 at infinity. If we now assume that

Ṽ = E−1/6C0

√
2πk̃m−1/2

(m− 1)! sinm θc
e−k̃

3/(2 cos θc sin
4 θc)e5iπ/4−imπ/2, (A 7)

this expression becomes

vφ ∼
1√
r

(iC0Hm(1/ cos θc, ζ
(1)) + C0Hm(1/ cos θc, ζ

(2))), (A 8)

where ζ(1) and ζ(2) are the similarity variables close to the axis along L1 and L2 respec-
tively:

ζ(1) = (2 sin θc cos θc)
1/3(sin θcr̃ + cos θcz̃), (A 9a)

ζ(2) = (2 sin θc cos θc)
1/3(− sin θcr̃ + cos θcz̃). (A 9b)

The first term in (A 8) is exactly the expression of the azimuthal velocity component of
the similarity solution along L1 close to x‖ = 1/ cos θc [see expressions (2.8) and (2.15)].
The second term corresponds to the similarity solution along L2. It shows that the
azimuthal velocity component of the similarity solution keeps the same amplitude but

with a phase shift of −π/2. Along L2, the expression (2.10) and (2.15) for v
(0)
‖ and v

(0)
φ

have thus to be replaced by

v
(0)
‖ = iC0Hm(x‖, ζ), v

(0)
φ = C0Hm(x‖, ζ), (A 10)

where x‖ starts at the value 1/ cos θc from the point (0, tan θc) on the z-axis.

In the O(E1/3) neighborhood around the focus point, the solution is given by (A 5a-d)
with Ṽ and C0 provided by (A 7) and (4.20b), respectively. In particular, this implies
that the three velocity components become large of order E−1/12 close to the focus point.
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