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Perturbed human sub-networks by
Fusobacterium nucleatum candidate
virulence proteins
Andreas Zanzoni1* , Lionel Spinelli1, Shérazade Braham1 and Christine Brun1,2

Abstract

Background: Fusobacterium nucleatum is a gram-negative anaerobic species residing in the oral cavity and implicated
in several inflammatory processes in the human body. Although F. nucleatum abundance is increased in inflammatory
bowel disease subjects and is prevalent in colorectal cancer patients, the causal role of the bacterium in gastrointestinal
disorders and the mechanistic details of host cell functions subversion are not fully understood.

Results: We devised a computational strategy to identify putative secreted F. nucleatum proteins (FusoSecretome) and
to infer their interactions with human proteins based on the presence of host molecular mimicry elements.
FusoSecretome proteins share similar features with known bacterial virulence factors thereby highlighting their
pathogenic potential. We show that they interact with human proteins that participate in infection-related
cellular processes and localize in established cellular districts of the host–pathogen interface. Our network-based analysis
identified 31 functional modules in the human interactome preferentially targeted by 138 FusoSecretome proteins,
among which we selected 26 as main candidate virulence proteins, representing both putative and known virulence
proteins. Finally, six of the preferentially targeted functional modules are implicated in the onset and progression of
inflammatory bowel diseases and colorectal cancer.

Conclusions: Overall, our computational analysis identified candidate virulence proteins potentially involved in
the F. nucleatum—human cross-talk in the context of gastrointestinal diseases.

Keywords: Fusobacterium nucleatum, Secretome, Molecular mimicry, Short linear motifs, Bioinformatics, Interaction
network, Colorectal cancer, Inflammatory bowel diseases, Virulence proteins

Background
Fusobacterium nucleatum is a gram-negative anaerobic
bacterium best known as a component of the oral plaque
and a key pathogen in gingivitis and periodontitis [1]. It
has also been isolated in several inflammatory processes
in distinct body sites (e.g., endocarditis, septic arthritis,
liver and brain abscesses) and implicated in adverse
pregnancy outcomes (reviewed in [2]). Moreover, it has
been demonstrated that F. nucleatum can adhere to and
invade a variety of cell types, thereby inducing a pro-
inflammatory response [3–8]. Recent work showed that
(i) F. nucleatum is prevalent in colorectal cancer (CRC)
patients [9–11] and (ii) its abundance is increased in

new-onset Crohn’s disease (CD) subjects [12]. Interest-
ingly, follow-up studies suggested a potential role of this
bacterium in CRC tumorigenesis and tumor-immune
evasion [13–16].
Despite these findings, a large fraction of F. nucleatum

gene products are still uncharacterized. Moreover, to
date, only a handful of pathogenic factors has been ex-
perimentally identified [17, 18] and protein interaction
data between these factors and human proteins, which
could inform on the molecular details underlying host-
cell subversion mechanisms, are sparse [4, 16, 19].
Altogether, this underlines that a comprehensive view of
the molecular details of the F. nucleatum—human
cross-talk is currently missing.
How could F. nucleatum hijack human cells? Patho-

gens employ a variety of molecular strategies to reach an
advantageous niche for survival. One of them consists of
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subverting host protein interaction networks. Indeed,
they secrete and deliver factors such as toxic com-
pounds, small peptides, and even proteins to target the
host molecular networks. To achieve this, virulence fac-
tors often display structures resembling host compo-
nents in form and function [20–22] to interact with host
proteins, thus providing a benefit to the pathogen [23].
Such “molecular mimics” (e.g., targeting motifs, enzym-
atic activities, and protein–protein interaction elements)
allow pathogens to enter the host cell and perturb cell
pathways (e.g., [24–26]).
Over the years, several experimental approaches have

been applied to identify protein–protein interactions
(PPIs) between pathogens and their hosts providing new
insights on the pathogen’s molecular invasion strategies.
However, the vast majority of these systematic studies
focused on viruses (e.g., [27–29]) and, to a lesser extent,
on bacteria [30–33] and eukaryotic parasites [33, 34].
Indeed, as cellular pathogens have large genomes and
complex life cycles, the experimental identification of
virulence proteins and the large-scale mapping of host-
pathogen PPIs require a lot of effort and time [35, 36]. In
this context, computational approaches have proved to be
instrumental for the identification of putative pathogenic
proteins (e.g., [37, 38]), the characterization of molecular
mimics [23, 39, 40], and the inference of their interactions
with host proteins (for a review see [41]).

Here, in order to gain new insights on the molecular
cross-talk between F. nucleatum and the human host, we
devised a computational strategy combining secretion
prediction, protein–protein interaction inference, and
protein interaction network analyses (Fig. 1). Doing so, we
defined a secretome of the bacterium and the human
proteins with which they interact based on the presence of
mimicry elements. We identified the host cellular
pathways that are likely perturbed by F. nucleatum includ-
ing immune and infection response, homeostasis, cyto-
skeleton organization, and gene expression regulation.
Interestingly, our results identify candidate virulence
proteins, including the established Fap2 adhesin, and
provide new insights underlying the putative causative
role of F. nucleatum in colorectal cancer and inflamma-
tory bowel diseases.

Results
Prediction of F. nucleatum secreted proteome
Previous computational analyses highlighted that F.
nucleatum has a reduced repertoire of secretion machin-
ery [42, 43] meaning that it might exploit alternative
“non-classical” translocation mechanisms to unleash
virulence proteins. Thus, we sought to identify putative
F. nucleatum secreted proteins by analyzing the 2046
protein sequences of the type species F. nucleatum
subsp. nucleatum (strain ATCC 25586) proteome using

Fig. 1 Flow strategy of our computational approach
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two distinct algorithms: SignalP [44] for peptide-
triggered secretion and SecretomeP [45] for leaderless
protein secretion. While the SignalP algorithm predicted
61 F. nucleatum sequences being secreted via classical/
regular secretion pathways, SecretomeP found 176 pro-
teins as possibly secreted through non-classical routes. In
total, we identified 237 putative secreted proteins in the F.
nucleatum proteome (herein called “FusoSecretome”) (see
Additional file 1: Table S1). Notably, we were able to cor-
rectly predict as secreted all the F. nucleatum virulence
proteins known so far, namely FadA (FN0264), Fap2
(FN1449), RadD (FN1526), and the recently identified
Aid1 adhesin (FN1253) [46]. This result underlines the
relevance of secretion prediction to identify novel putative
virulence proteins in the F. nucleatum proteome.
It has been shown that disorder propensity is an emer-

ging hallmark of pathogenicity [47, 48]. As SecretomeP
exploits protein disorder as a predicting feature, we ana-
lyzed the intrinsic disorder content of the FusoSecretome
proteins identified by the SignalP algorithm only. We
indeed observed a significantly higher disorder propensity
of these proteins compared to the non-secreted proteins
(P value = 1.9 × 10−4, Kolgomorov–Smirnov test, two-
sided) (Fig. 2; Additional file 2: Figure S1; Additional file 3:
Table S2), further reinforcing the possible role of the
FusoSecretome in the infection/invasion process.
To detect functional elements that can further contrib-

ute to F. nucleatum pathogenicity, we sought for the pres-
ence of globular domains in the FusoSecretome. We
observed an enrichment of domains mainly belonging to
the outer membrane beta-barrel protein superfamily (Table
1). Six out of the eight over-represented domains among
the FusoSecretome proteins are also found in known
virulence proteins of gram-negative bacteria [49] and are
involved in adhesion, secretion, transport, and invasion.

Altogether, these findings suggest that FusoSecretome pro-
teins display features of known virulence proteins and can
likely be involved in the cross-talk with the human host.

Inference of the FusoSecretome—human interaction
network
Generally, pathogens employ a variety of molecular
strategies to interfere with host-cell networks, control-
ling key functions such as plasma membrane and cyto-
skeleton dynamics, immune response, and cell death/
survival. In particular, their proteins often carry a range
of mimics, which resemble structures of the host at the
molecular level, to “sneak” into host cells [20–22, 50].
Here, we focused on putative molecular mimicry

events that can mediate the interaction with host pro-
teins: (i) globular domains that occur in both FusoSecre-
tome and the human proteome and (ii) known
eukaryotic short linear motifs (SLiMs) found in FusoSe-
cretome proteins. SLiMs are short stretches of 3–10
contiguous amino acids residues that often mediate tran-
sient PPIs and tend to bind with low affinity [51].
We first scanned the sequences of the FusoSecretome

and human proteins for the presence of domains as de-
fined by Pfam [52]. We identified 55 “host-like” domains
in 50 FusoSecretome proteins out of 237, including several
domains related to ribosomal proteins, aminopeptidases,
and tetratricopeptide repeats (TPR) (Additional file 4:
Table S3). Interestingly, 29 of these domains are also
found in known bacterial binders of human proteins [30].
We next detected the occurrence of experimentally

identified SLiMs gathered from the Eukaryotic Linear
Motif (ELM) database [53]. As linear motifs are short
and degenerate in sequence, SLiM detection is prone to
over-prediction [54]. To reduce the number of false
positives, we kept occurrences falling in conserved and
disordered protein sequences (see the “Methods”
section). Indeed, known functional SLiMs show a higher
degree of conservation compared to surrounding
residues [51] and are located in unstructured regions
[55, 56]. In this way, we identified at least one putative
mimicry SLiM in 139 FusoSecretome proteins. Most of
the 57 different detected SLiMs represents binding sites
such as motifs recognized by PDZ, SH3, and SH2
domains (Additional file 4: Table S3).
We exploited these putative mimicry events to infer

the interaction with human proteins by using tem-
plates of domain–domain and SLiM–domain interac-
tions (see the “Methods” section for further details).
Doing so, we obtained 3744 interactions (1544 domain-
and 2201 SLiM-mediated interactions, respectively)
between 144 FusoSecretome, which we designated as
“candidate virulence proteins,” and 934 human proteins
(Additional file 5: Table S4 and Additional file 6: Table S5)
designated as “human inferred interactors.”

Fig. 2 Disorder propensity of the FusoSecretome. SignalP-secreted
proteins show a significantly higher fraction of disordered residues
compared to non-secreted proteins (P value = 1.9 × 10−4, Kolgomorov–
Smirnov test, two-sided)
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In order to assess the reliability of the inferences, we
evaluated the biological relevance of the putative human
interactors by performing enrichment analyses of differ-
ent orthogonal datasets using as a reference background
all the proteins encoded by the human genome.
First, human proteins experimentally identified as

binders or targets of bacterial and viral proteins are
over-represented among the 934 inferred human interac-
tors of the FusoSecretome proteins (415 proteins, 1.3-fold, P
value = 1.61 × 10−11). Notably, the over-representation holds
when bacterial and viral binders are considered separately
(176 bacterial interactors, 1.1-fold, P value = 3.5 × 10−3 and
338 viral interactors, 1.5-fold, P value <2.2 × 10−16). This re-
sult is consistent with current knowledge on convergent tar-
geting of host proteins by distinct pathogens [30, 33, 57, 58].
Second, according to the Human Proteins Atlas (see the
“Methods” section), the vast majority of the inferred human
interactors has been detected either in small intestine (652,
70%) or colorectal (671 proteins, 72%) tissues as well as in
the saliva (673, 72%), confirming their presence in human
body sites hosting F. nucleatum. Third, we assessed whether
the inferred human interactors are implicated in gastro-
intestinal disorders by seeking for an over-representation of

genes associated to such diseases (see the “Methods” sec-
tion). Indeed, the human interactors of the FusoSecretome
are enriched in (i) proteins identified in the human
colon secretomes of colorectal cancer (CRC) tissue samples
(3.5-fold, P value <2.2 × 10−16), (ii) proteins encoded by
genes whose expression correlates with F. nucleatum abun-
dance in CRC patients [13] (twofold, P value = 4 × 10−4),
and (iii) genes associated with inflammatory bowel diseases
(IBDs) (twofold, P value = 8 × 10−4). We obtained very
similar enrichments by using a reduced statistical
background corresponding to the interaction inference
space (see the “Methods” section and Additional file 7:
Supplementary Results).
Altogether, the results of these analyses highlight the

relevance of the inferred human interactors as putative
binders of FusoSecretome proteins and their potential
implication in gut diseases, therefore validating the
undertaken inference approach.

Functional role of the human proteins targeted by F.
nucleatum
Globally, the inferred FusoSecretome human interactors are
involved in several processes related to pathogen infection

Table 1 Enrichment of Pfam domains in the FusoSecretome compared to non-secreted proteins

Pfam domain Pfam clana Function VFDBb Humanc FusoSecretomed non-
secretede

Corrected
P valuef

MORN repeat variant MORN repeat Invasion – – 16 2 2.17 × 10−12

Autotransporter beta-domain Outer membrane
beta-barrel protein
superfamily

Adhesion ✓ – 9 0 2.4 × 10−7

Haemolysin secretion/activation protein
ShlB/FhaC/HecB

Outer membrane
beta-barrel protein
superfamily

Secretion ✓ – 5 0 0.002

TonB-dependent Receptor Plug Domain Ubiquitin superfamily Transport ✓ – 5 0 0.002

TonB dependent receptor Outer membrane
beta-barrel protein
superfamily

Transport ✓ – 4 0 0.011

Surface antigen variable number repeat POTRA domain
superfamily

Folding – – 4 0 0.011

YadA-like C-terminal region Pilus subunit Adhesion ✓ – 4 0 0.011

Haemagluttinin repeat Pectate lyase-like
beta helix

Adhesion ✓ – 4 0 0.011

Bacterial extracellular solute-binding
proteins, family 5 Middle

Periplasmic binding
protein clan

Transport – – 5 4 0.082

Coiled stalk of trimeric autotransporter
adhesion

– Adhesion ✓ – 3 0 0.09

Pyruvate flavodoxin/ferredoxin
oxidoreductase, thiamine diP-bdg

Thiamin diphosphate-
binding superfamily

Metabolism – – 3 0 0.09

TPR repeat Tetratrico peptide
repeat superfamily

Protein
binding

✓ ✓ 6 8 0.094

aA clan is defined as a collection of related Pfam entries sharing sequence or structural similarity
bPfam entry detected in at least one protein sequence stored in the database of known bacterial virulence factors
cPfam entry detected in at least one human protein sequence
dNumber of occurrences in the FusoSecretome
eNumber of occurrences in non-secreted proteins
fPfam domain matches with a corrected P value <0.1
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such as immune response and inflammation, response to
stress, endocytosis as shown by the 137 significantly
enriched Biological Processes Gene Ontology (GO) terms
among their annotations (Table 2, Additional file 8: Table
S6A). Similarly, the targeted human proteins are over-
represented in 125 pathways (54 from KEGG and 71 from
Reactome databases [59, 60]) involved in cell adhesion and
signaling, extracellular matrix remodeling, immunity, re-
sponse to infection, and cancer-related pathways (Table 2,
Additional file 8: Table S6A). These human proteins are
mainly localized in the extracellular space, plasma mem-
brane, and at cell-cell junctions that represent the main dis-
tricts involved in the initial encounter between a pathogen
and the host, as indicated by the over-representation of 30
Cellular Component GO terms (Table 2, Additional file 8:
Table S6A). A substantial fraction of these enriched func-
tional categories is significantly over-represented when
using the reduced statistical background as well (see the
“Methods” section and Additional file 8: Table S6B). Over-
all, this indicates that our inferred interactions can partici-
pate in the F. nucleatum—human cross-talk.

F. nucleatum targets topologically important proteins in
the host network
To gain a broader picture of the inferred interactions in
the cellular context, we mapped the FusoSecretome hu-
man interactors on a binary human interactome built by
gathering protein interactions data from both small-scale
experiments and systematic screens reported in the litera-
ture (see the “Methods” section and Additional file 9:
Table S7). Around 70% of the inferred human interactors
(i.e., 663 proteins) are present in the human binary inter-
actome. Interestingly, the human targeted proteins occupy
topologically important positions in the interactome as
shown by their significantly higher number of interactions
and higher values of betweenness centrality compared to
other network proteins (number of interactions: mean = 23
vs. 11, P value = 1.9 × 10−10; betweeness centrality:
mean = 0.00078 vs. 0.00018, P value = 6.2 × 10−12; two-
sided Mann–Whitney U test) (Fig. 3).
The human interactome is composed of functional

network modules, defined as group of proteins densely
connected through their interactions and involved in the
same biological process [61] (see the “Methods” section).
We thus next investigated the 855 functional modules
that we previously detected [62] using the OCG algorithm
that decomposes a network into overlapping modules,
based on modularity optimization [63] (Additional file 10:
Table S8). A significant number of interactors participate
in 2 or more of these functional units (259 proteins, 1.3-
fold enrichment, P value = 1.4 × 10−7), indicating that the
FusoSecretome tends to target multifunctional proteins in
the human interactome [63]. Moreover, among the multi-
functional inferred human interactors, we found an

enrichment of extreme multifunctional proteins (52 inter-
actors, twofold enrichment, P value = 1.0 × 10−5), which
are defined as proteins involved in unrelated cellular func-
tions and may represent candidate moonlighting proteins
[64]. This suggests that the FusoSecretome might perturb
multiple cellular pathways simultaneously by targeting
preferentially a whole range of multifunctional proteins.

Functional subnetworks of the human interactome
perturbed by F. nucleatum and identification of the main
candidate virulence proteins
Based on their enrichment in inferred human interactors,
31 network modules (~4% of the 855 detected modules)
are preferentially targeted by 138 distinct proteins of the
FusoSecretome (Table 3). Targeted modules are involved
in relevant processes such as immune response, cytoskel-
eton organization, cancer, and infection-related pathways
(Table 3 and Additional file 11: Table S9). Moreover, pro-
teins belonging to these modules are mainly localized in
the extracellular space or in membranous structures
(Table 3 and Additional file 11: Table S9), which represent
important districts of the microbe-host interface. Interest-
ingly, the enrichment of functional categories related to
gene expression regulation (Additional file 11: Table S9) in
several modules suggests novel potential host subversion
mechanisms by F. nucleatum.
These modules are targeted on average by 50 Fuso-

Secretome proteins (ranging from 2 to 104 per mod-
ule) and the number of inferred host–pathogen
interactions for each module varies considerably
(Table 3). What are the main network perturbators
among the FusoSecretome proteins? To quantify their
impact on network modules based on the number of
interactions, they have with each of them, we computed a
Z score (see the “Methods” section, Additional file 12:
Table S10). We considered the 26 FusoSecretome proteins
having a perturbation Z score >2 in at least one module as
main candidate virulence proteins. They consist in outer
membrane proteins, enzymes, iron-binding proteins, and
protein involved in transport (Table 4). Ten of them (38%)
can perturb at least two distinct modules (Fig. 4a). Not-
ably, we identified among the candidates, the known viru-
lence protein Fap2 (FN1449) (Fig. 4b) that targets 4
modules, and a protein containing the MORN_2 domain
(FN2118) (Fig. 4c) recently identified as a key element in
actively invading F. nucleatum species [65], which per-
turbs 6 modules. On the other hand, 25 preferentially
targeted modules are perturbed by at least two candidate
virulence proteins, Module 78 involved in immune
response being the most potentially subverted (Fig. 4a).

F. nucleatum and gut diseases from a network perspective
Among the 855 network modules detected in the human
interactome, 38 are enriched in genes involved in at least
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Table 2 Significant Gene Ontology and pathways annotations among FusoSecretome inferred human interactors

Annotation source Annotation ID Annotation name Corrected P-value

Biological process

GO:0006415 Translational termination 7.57 × 10−41

GO:0006414 Translational elongation 2.65 × 10−34

GO:0006457 Protein folding 2.51 × 10−29

GO:0006413 Translational initiation 6.63 × 10−27

GO:0072376 Protein activation cascade 1.17 × 10−25

GO:0051604 Protein maturation 5.45 × 10−23

GO:0006614 SRP-dependent cotranslational protein
targeting to membrane

1.93 × 10−22

GO:0006956 Complement activation 3.62 × 10−21

GO:0002697 Regulation of immune effector process 4.03 × 10−18

GO:0030449 Regulation of complement activation 4.10 × 10−18

Cellular component

GO:0005840 Ribosome 9.81 × 10−37

GO:0022626 Cytosolic ribosome 2.76 × 10−23

GO:0005912 Adherens junction 4.15 × 10−22

GO:0098552 Side of membrane 2.46 × 10−18

GO:0030055 Cell-substrate junction 2.85 × 10−17

GO:0072562 Blood microparticle 9.20 × 10−17

GO:0005761 Mitochondrial ribosome 4.28 × 10−12

GO:0019897 Extrinsic component of plasma membrane 2.35 × 10−09

GO:0005911 Cell-cell junction 4.54 × 10−08

GO:0031012 Extracellular matrix 3.91 × 10−07

KEGG

KEGG:03010 Ribosome 4.34 × 10−39

KEGG:04610 Complement and coagulation cascades 2.28 × 10−22

KEGG:04514 Cell adhesion molecules (CAMs) 2.88 × 10−09

KEGG:04141 Protein processing in endoplasmic reticulum 2.03 × 10−08

KEGG:04660 T cell receptor signaling pathway 1.33 × 10−07

KEGG:05150 Staphylococcus aureus infection 1.78 × 10−06

KEGG:04380 Osteoclast differentiation 7.25 × 10−06

KEGG:05203 Viral carcinogenesis 8.21 × 10−06

KEGG:05169 Epstein-Barr virus infection 1.11 × 10−05

KEGG:05164 Influenza A 1.77 × 10−05

Reactome

REAC:1,592,389 Activation of Matrix Metalloproteinases 4.77 × 10−28

REAC:192,823 Viral mRNA Translation 2.14 × 10−19

REAC:156,902 Peptide chain elongation 2.14 × 10−19

REAC:975,956 Nonsense Mediated Decay independent of
the Exon Junction Complex

1.83 × 10−17

REAC:977,606 Regulation of Complement cascade 5.13 × 10−16

REAC:202,733 Cell surface interactions at the vascular wall 7.22 × 10−16

REAC:5,368,287 Mitochondrial translation 3.61 × 10−14

REAC:3,371,453 Regulation of HSF1-mediated heat shock response 3.92 × 10−14

REAC:3,371,599 Defective HLCS causes multiple carboxylase deficiency 1.33 × 10−08

REAC:420,597 Nectin/Necl trans heterodimerization 1.33 × 10−08

For each annotation source, the ten most significant terms are reported. The full list of annotation enrichments is available in Additional file 8: Table S6
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one gut disease (i.e., CRC and IBDs, see the “Methods”
section). Interestingly, 27 of them (i.e., 71%) are targeted
by at least one FusoSecretome protein, among which 3
contain a statistically significant fraction of inferred hu-
man interactors (Fig. 5). Notably, Module 78, involved in
immune response, is enriched in genes associated to in-
flammatory bowel diseases (IBDs) (28 proteins, 5.2-fold en-
richment, P value = 4.78 × 10−4) as well as in CD-specific
(9 proteins, 13.4-fold enrichment, P value = 2.52 × 10−3)
and CRC-mutated (11 proteins, fourfold enrichment, P
value = 1.46 × 10−2) genes. Moreover, it is enriched in genes
whose expression correlates with F. nucleatum abundance
in CRC patients (24 proteins, 3.7-fold enrichment, P
value = 3.35 × 10−4). This module is targeted by several
main candidate virulence proteins, including a hemolysin
(FN0291), an outer membrane protein (FN1554) and the
MORN_2 domain containing protein (FN21118) (Fig. 4a),
which therefore, may play critical roles in these diseases.
IBD genes are also enriched in Module 702 (5 proteins,
11-fold enrichment, P value = 2.13 × 10−2), whose
proteins participate in Jak-STAT signaling, whereas CD-
specific genes are over-represented in Module 9 impli-
cated in immunity (5 proteins, 28-fold enrichment, P
value = 2.52 × 10−3). Interestingly, Module 9 is specifically
perturbed by Fap2 (FN1449) (Fig. 4b), which is known to
modulate the host immune response.
Three other modules enriched in inferred human

interactors show a significant dysregulation of the ex-
pression of their constituent proteins during CRC pro-
gression [66] and are implicated in infection-response
pathways and cytoskeleton organization (Fig. 5). In par-
ticular, two of these modules (Modules 138 and 216)
show significant and specific upregulation in stage II,

whereas the third (Module 371) is significantly upregu-
lated in normal and stage II samples. Overall, these re-
sults indicate that F. nucleatum could contribute to the
onset and progression of IBDs and CRC by perturbing
some of the underlying network modules.

Comparison with additional bacterial strains
We applied our computational approach on the recently
released proteomes of 6 actively invading Fusobacteria
strains isolated from biopsy tissues [8, 65] (i.e., 4 F.
nucleatum subspecies and 2 F. periodonticum strains),
and the proteome of E. coli K-12 as a “control strain”
(see Additional file 7: Supplementary Results, Table S12).
We found that the secretomes of these 7 bacteria share
common features (i.e., disorder propensity, enriched do-
mains, host-like domain and mimicry SLiM content) with
the FusoSecretome (Additional file 7: Table S13–S15 and
Figure. S2–S8). However, we observed a moderate overlap
in terms of inferred interactors, enriched functions and
preferentially targeted network modules (Additional File 7:
Table S16–S18), and a modest concordance in term of net-
work module perturbators (Additional File 7: Table S19).
The results of these analyses suggest that, on the one

hand, actively invading Fusobacteria species share common
mechanisms to interact with host cell and, on the other
hand, are consistent with the fact that F. nucleatum is an
unusual heterogeneous species both at the genotypic and
phenotypic level [8, 65, 67]. Finally, the commonalities
between the FusoSecretome and the E. coli K-12
secreted proteins are not surprising, since previous
work showed that E. coli K-12 carries cryptic genes
coding for virulence factors [68], whose expression is
activated by mutations in the histone-like protein HU,

a b

Fig. 3 Topological properties of inferred human interactors in the human interactome. a Inferred human interactors have more interaction partners and
b higher values of betweenness centrality compared to non-interacting proteins in the human interactome
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Table 3 Network module significantly enriched in inferred human interactors

Module Module
proteins

Interactors Inferred
interactions

FusoSecretome
proteins

Annotations

9 74 13 188 64 Immune response-regulating cell surface receptor signaling pathway (GO:0002768),
cell-cell junction (GO:0005911)

16 67 12 122 65 Metal ion homeostasis (GO:0055065), cell surface (GO:0009986)

19 80 15 260 55 Cellular response to organonitrogen compound (GO:0071417), membrane raft
(GO:0045121)

42 140 19 312 56 Endocytosis (GO:0006897), membrane raft (GO:0045121)

74 113 26 78 26 Extracellular structure organization (GO:0043062), cell surface (GO:0009986)

78 292 54 752 100 Immune response-regulating cell surface receptor signaling pathway (GO:0002768),
cell surface (GO:0009986)

89 45 10 169 48 Immune response-activating cell surface receptor signaling pathway (GO:0002429),
nucleolar ribonuclease P complex (GO:0005655)

90 51 10 28 12 I-kappaB kinase/NF-kappaB cascade (GO:0007249), inclusion body (GO:0016234)

138 126 22 57 26 I-kappaB kinase/NF-kappaB cascade (GO:0007249), perinuclear region of cytoplasm
(GO:0048471)

165 81 17 327 71 Neuron projection guidance (GO:0097485), synapse (GO:0045202)

194 38 12 119 48 G1/S transition of mitotic cell cycle (GO:0000082), cyclin-dependent protein kinase
holoenzyme complex (GO:0000307)

216 47 11 261 80 Blood coagulation (GO:0007596), membrane raft (GO:0045121)

246 50 15 83 32 T cell activation (GO:0042110), Golgi membrane (GO:0000139)

277 25 7 7 2 Collagen catabolic process (GO:0030574), extracellular matrix (GO:0031012)

298 106 16 242 75 Actin cytoskeleton organization (GO:0030036), Arp2/3 protein complex (GO:0005885)

300 37 9 164 49 Stress-activated MAPK cascade (GO:0051403), nuclear speck (GO:0016607)

371 25 7 79 48 Actin filament organization (GO:0007015), lamellipodium (GO:0030027)

433 38 9 121 49 Positive regulation of intracellular protein kinase cascade (GO:0010740), spindle
(GO:0005819)

451 40 9 55 34 Mitotic cell cycle phase transition (GO:0044772), heterochromatin (GO:0000792)

456 36 9 142 59 Regulation of system process (GO:0044057), dendrite (GO:0030425)

563 26 8 43 29 Regulation of sequence-specific DNA binding transcription factor activity
(GO:0051090), external side of plasma membrane (GO:0009897)

571 42 11 206 53 Cell cycle phase transition (GO:0044770), transcription factor complex (GO:0005667)

577 33 10 66 48 Complement activation (GO:0006956), ER membrane insertion complex
(GO:0072379)

587 17 6 109 46 Axonogenesis (GO:0007409), signalosome (GO:0008180)

615 36 11 26 10 Response to unfolded protein (GO:0006986), perinuclear region of cytoplasm
(GO:0048471)

625 25 8 226 104 Regulation of sequence-specific DNA binding transcription factor activity
(GO:0051090), chromatin (GO:0000785)

689 38 14 151 72 Blood coagulation (GO:0007596), apical junction complex (GO:0043296)

702 23 8 157 46 Peptidyl-tyrosine phosphorylation (GO:0018108), nucleolar ribonuclease P complex
(GO:0005655)

745 18 6 113 46 Axon guidance (GO:0007411), cell leading edge (GO:0031252)

794 22 7 151 46 Gamma-aminobutyric acid signaling pathway (GO:0007214), postsynaptic
membrane (GO:0045211)

831 15 6 129 45 Fc-gamma receptor signaling pathway involved in phagocytosis (GO:0038096), cell
leading edge (GO:0031252

For each module the following information is reported: identifier, number of constituent proteins, number of inferred human interactors in the module, number of
inferred interactions between proteins in the module and FusoSecretome proteins, number of interacting FusoSecretome proteins, representative annotations
(Biological Process and Cellular Component) selected as the most frequent and significantly enriched annotations for the given module (for the complete list of
functional annotations see Additional file 11: Table S9)
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Table 4 List of the main candidate virulence proteins in the FusoSecretome

UniprotKB AC Protein name Gene symbol Domains Interacting
domains

Interacting SLiMs

Q8RIM1 Fusobacterium outer
membrane protein family

FN1554 Autotransportera – LIG_FHA_1, LIG_FHA_2, LIG_PP1b, LIG_SH2_SRCb,
LIG_SH2_STAT5, LIG_SH3_3b, LIG_SUMO_SBM_1b,
MOD_N-GLC_1b, TRG_ENDOCYTIC_2b

Q8RGK2 Hemolysin FN0291 Fil_haemagg_2a – LIG_FHA_1, LIG_FHA_2, LIG_Rb_pABgroove_1b,
LIG_SH2_GRB2, LIG_SH2_SRCb, LIG_SH2_STAT5,
LIG_SUMO_SBM_1b, MOD_CK1_1, MOD_CK2_1b,
MOD_GSK3_1, MOD_N-GLC_1b, MOD_PIKK_1,
TRG_ENDOCYTIC_2b

Q8RGT9 Peptide methionine
sulfoxide reductase MsrA

msrA PMSR, SelR PMSR, SelR CLV_PCSK_PC1ET2_1, LIG_FHA_1, LIG_SH2_GRB2,
LIG_SH2_SRCb, LIG_SH2_STAT5,
MOD_Cter_Amidation, MOD_PIKK_1,
TRG_ENDOCYTIC_2b

Q8RHB9 Hypothetical exported
24-amino acid repeat protein

FN2118 MORN_2 – LIG_SH2_GRB2, LIG_SH2_SRCb

Q8R609 Pyruvate-flavodoxin
oxidoreductase

FN1421 POR_N, POR,
EKR, Fer4_7,
TPP_enzyme_C

TPP_enzyme_C LIG_CYCLIN_1b, LIG_SH2_GRB2, LIG_SH2_STAT5,
LIG_SH3_3b, LIG_SUMO_SBM_1b, LIG_WW_Pin1_4,
MOD_CK1_1, MOD_CK2_1b, MOD_GSK3_1,
MOD_PIKK_1, MOD_ProDKin_1,
TRG_ENDOCYTIC_2b

Q8RH03 Chaperone protein DnaJ dnaJ DnaJ,
DnaJ_CXXCXGXG,
CTDII

DnaJ,
DnaJ_CXXCXGXG

CLV_NDR_NDR_1, CLV_PCSK_SKI1_1,
LIG_CYCLIN_1b, LIG_FHA_2, LIG_SH2_STAT5,
LIG_SH3_3b, LIG_SUMO_SBM_1b, LIG_TRAF2_1b,
LIG_WW_Pin1_4, MOD_CK2_1b, MOD_PLK,
MOD_ProDKin_1, TRG_ENDOCYTIC_2b

Q8R643 Pyruvate-flavodoxin
oxidoreductase

FN1170 POR_N, POR,
EKR, Fer4_7,
TPP_enzyme_C

TPP_enzyme_C LIG_BRCT_BRCA1_1, LIG_SH2_GRB2,
LIG_SH2_STAT5, LIG_SH3_3b, LIG_SUMO_SBM_1b,
LIG_WW_Pin1_4, MOD_CK1_1, MOD_CK2_1b,
MOD_GSK3_1, MOD_ProDKin_1,
TRG_ENDOCYTIC_2b

Q8RDQ9 Fusobacterium outer
membrane protein family

FN1449 – – CLV_PCSK_SKI1_1, LIG_FHA_1, LIG_FHA_2,
LIG_PDZ_Class_2, LIG_SH2_SRCb, LIG_SH2_STAT5,
LIG_SUMO_SBM_1b, MOD_GSK3_1,
MOD_N-GLC_1b, MOD_PLK

Q8R608 Serine protease FN1426 Peptidase_S8a,
Autotrns_rpta,
Autotransportera

Peptidase_S8 CLV_PCSK_SKI1_1, LIG_FHA_2, LIG_PDZ_Class_2,
LIG_SH2_STAT5, LIG_SUMO_SBM_1b,
MOD_CK1_1, MOD_CK2_1b, MOD_GSK3_1,
MOD_PKA_2, TRG_ENDOCYTIC_2b

Q8RFV3 Hypothetical
cytosolic protein

FN0579 MG1, A2M_N,
A2M_N_2, A2M

A2M_N,
A2M_N_2, A2M

LIG_CYCLIN_1b, LIG_FHA_2, LIG_SH2_STAT5,
LIG_SUMO_SBM_1b, MOD_CK2_1b, MOD_PIKK_1,
MOD_PKA_2

Q8R5P1 DNAse I homologous
protein DHP2

FN0891 Exo_endo_phos Exo_endo_phos LIG_SH2_GRB2, TRG_ENDOCYTIC_2b

Q8R5Y8 Biotin carboxyl carrier
protein of glutaconyl-
COA decarboxylase

FN0200 Biotin_lipoyl Biotin_lipoyl LIG_SUMO_SBM_1b, LIG_WW_Pin1_4,
MOD_ProDKin_1, MOD_SUMOb

Q8R6D6 Serine protease FN1950 Peptidase_S8a,
Autotransportera

Peptidase_S8 LIG_FHA_2, LIG_SH2_STAT5, LIG_SUMO_SBM_1b,
MOD_CK1_1, MOD_CK2_1b, MOD_GSK3_1,
MOD_PKA_2

Q8RE26 Single-stranded DNA-
binding protein

ssb SSBa SSB LIG_BRCT_BRCA1_1, LIG_FHA_1, LIG_FHA_2,
LIG_PDZ_Class_2, LIG_SUMO_SBM_1b,
MOD_PKA_2, TRG_ENDOCYTIC_2b

Q8REJ1 Dipeptide-binding protein FN1111 SBP_bac_5 – CLV_PCSK_SKI1_1, LIG_BRCT_BRCA1_1,
LIG_CYCLIN_1b, LIG_SH2_GRB2,
LIG_SUMO_SBM_1b, LIG_WW_Pin1_4,
MOD_CK2_1b, MOD_ProDKin_1

Q8RG20 Hemin receptor FN0499 Pluga – CLV_PCSK_PC1ET2_1, LIG_CYCLIN_1b, LIG_FHA_1,
LIG_MAPK_1, LIG_PDZ_Class_2, LIG_SH2_STAT5,
LIG_SH3_3b, LIG_SUMO_SBM_1b, MOD_GSK3_1,
MOD_N-GLC_1b
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which convert this established commensal strain to an
invasive species in intestinal cells [69].

Discussion
Over the years, it has been shown that F. nucleatum can
adhere and invade human cells triggering a pro-
inflammatory response. Nevertheless, the current know-
ledge on the molecular players underlying the F.
nucleatum—human cross-talk is still limited.
For this reason, we carried out a computational study

to identify F. nucleatum putative secreted factors (Fuso-
Secretome) that can interact with human proteins.
The originality of our study is manifold compared to

previous work. First, we used secretion prediction to
identify potential F. nucleatum proteins that can be
present at the microbe–host interface. Second, we
exploited both domain–domain and domain–motif tem-
plates to infer interactions with human proteins. Earlier
works, including one on F. nucleatum, chiefly applied
homology-based methods for interaction inference with

host proteins (e.g., [70–73]). To our knowledge,
domain–motif templates have been only exploited so far
to infer or to resolve human–virus protein interaction
networks [39, 74]. Indeed, SLiM mimicry is widespread
among viruses [21, 75], but increasing evidence shows
that it can be an effective subversion strategy in bacteria
as well [22]. Third, we performed a network-based
analysis on the human interactome to identify the main
candidate F. nucleatum virulence proteins and the sub-
networks they likely perturb.
Our approach relies on two prediction steps: (i) the

definition of the FusoSecretome based either on the
presence of a signal peptide or several protein features
such as disorder content, and (ii) the detection of host
mimicry elements involved in the interaction with the
host. It could be argued that the SecretomeP algorithm
may incorrectly predict some proteins as secreted be-
cause of their high disorder content. For instance, a pre-
vious study considered as erroneous the secretion
prediction of ribosomal proteins [76]. We assigned 20

Table 4 List of the main candidate virulence proteins in the FusoSecretome (Continued)

Q8RGC9 Iron(III)-binding protein FN0375 SBP_bac_8 – LIG_PP1b, LIG_SH2_GRB2, LIG_SUMO_SBM_1b,
LIG_WW_Pin1_4, MOD_CK1_1, MOD_ProDKin_1

Q8RGZ4 Hemolysin activator protein FN0131 POTRA_2a, ShlBa – CLV_PCSK_PC1ET2_1, LIG_SH2_STAT5,
LIG_SUMO_SBM_1b, LIG_TRAF2_1b

Q8RH05 Chaperone protein DnaK dnaK HSP70 HSP70 CLV_PCSK_PC1ET2_1, CLV_PCSK_SKI1_1,
LIG_BRCT_BRCA1_1, LIG_EVH1_1, LIG_FHA_2,
LIG_SH2_STAT5, LIG_SH3_3b, LIG_SUMO_SBM_1b,
LIG_WW_Pin1_4, MOD_CK1_1, MOD_CK2_1b,
MOD_GSK3_1, MOD_PIKK_1, MOD_PLK,
MOD_ProDKin_1, TRG_ENDOCYTIC_2b,
TRG_LysEnd_APsAcLL_1b

Q8RHM4 Tetratricopeptide repeat
protein

FN1990 DnaJ DnaJ –

Q8RHU4 Hypothetical lipoprotein FN1899 DUF3798 – CLV_C14_Caspase3–7, LIG_FHA_1, LIG_FHA_2,
LIG_SH2_STAT5, LIG_SUMO_SBM_1b,
LIG_WW_Pin1_4, MOD_CK2_1b, MOD_GSK3_1,
MOD_PIKK_1, MOD_PLK, MOD_ProDKin_1

Q8RI19 Hemolysin FN1817 Fil_haemagg_2a – LIG_CYCLIN_1b, LIG_FHA_1, LIG_FHA_2,
LIG_SH2_STAT5, LIG_SUMO_SBM_1b,
LIG_WW_Pin1_4, MOD_CK1_1, MOD_CK2_1b,
MOD_GSK3_1, MOD_N-GLC_1b, MOD_PIKK_1,
MOD_PLK, MOD_ProDKin_1, TRG_ENDOCYTIC_2b

Q8RI47 Tetratricopeptide repeat
family protein

FN1787 TPR_11a, TPR_1 TPR_11, TPR_1 –

Q8RIF8 50S ribosomal protein L2 rplB Ribosomal_L2,
Ribosomal_L2_C

Ribosomal_L2,
Ribosomal_L2_C

CLV_PCSK_SKI1_1, LIG_BIR_II_1, LIG_PP1b,
LIG_SH3_3b, LIG_SUMO_SBM_1b, LIG_USP7_1b,
LIG_WW_Pin1_4, MOD_PLK, MOD_ProDKin_1,
TRG_ENDOCYTIC_2b

Q8RII5 Competence protein FN1611 HHH_3 – LIG_TRAF2_1b, MOD_CK2_1 b

Q8RIK0 Hypothetical lipoprotein FN1590 DUF3798 – CLV_C14_Caspase3–7, LIG_FHA_1, LIG_FHA_2,
LIG_SH2_STAT5, LIG_SUMO_SBM_1b,
LIG_WW_Pin1_4, MOD_CK2_1b, MOD_GSK3_1,
MOD_PIKK_1, MOD_PLK, MOD_ProDKin_1,
TRG_ENDOCYTIC_2b

For every protein, the detected Pfam domains are reported along with the list of domains and SLiMs for which at least one interaction has been inferred
aPfam entry detected in at least one protein sequence stored in the database of known bacterial virulence factors
bMotif for which it was experimentally identified at least one instance in a viral or bacterial protein
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ribosomal proteins to the FusoSecretome. Although we
cannot exclude a misprediction, ribosomal proteins can
be secreted in some bacteria and be involved in host
interaction [77, 78]. Furthermore, increasing evidence
shows that ribosomal proteins are moonlighting proteins
with extra-ribosomal functions such as the E. coli

ribosomal L2 protein that moonlights by affecting the
activity of replication proteins [79]. Among the 337 in-
ferred interactions between the 20 FusoSecretome ribo-
somal and 183 human proteins, only a third of latter
belong to ribosomal protein families. Interestingly, only
3 of the 41 human interactors inferred for F. nucleatum

a

b c

Fig. 4 Interaction network between FusoSecretome candidate virulence proteins and preferentially targeted modules. a Candidate virulence proteins
are depicted as green rectangular nodes labeled with respective gene symbol, whereas network modules as orange circles, whose size is proportional to
the number of proteins belonging to each module and are labeled with the corresponding identifier. Edge width is proportional to the number of
inferred interactions of a virulence protein with a given module. Network modules enriched in gut-related disease gene sets are labeled with symbols
of different colors (i.e., light blue star: Crohn’s disease, CD; dark blue star: Inflammatory bowel disease, IBD; violet star: genes whose expression correlates
with F. nucleatum abundance in colorectal cancer patients, FusoExpr; rose star: genes mutated in colorectal cancer, CRC-mutated; rose zig-zag arrow:
dysregulated expression during colorectal cancer progression, CRC-dysregulated). b The protein Fap2 (FN1449) interacts with 9 proteins (nodes with a
green border) of Module 9 and c the MORN2 domain containing protein (FN2118) interacts with 8 proteins in Module 89
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L2 are ribosomal proteins, and we identified the L2
protein as candidate virulence protein preferentially
targeting Module 451. As this module is mainly involved
in cell cycle and DNA repair, this result is consistent
with the ability of L2 in E. coli to interfere with DNA
processing factors [79] and further reinforces the confi-
dence in the secretome prediction. Moreover, we have
here underlined the value of the proposed approach: the
interactome provides, on the one hand, the proper
biological context to filter out potential false positive in-
ferred interactions and, on the other, pinpoints candidate
proteins that can be involved in the F. nucleatum—host
interface.
Concerning the host mimicry elements, SLiM detec-

tion is notorious for over-prediction [54], given their
relative short length and degeneracy (i.e., few fixed
amino acid positions). Our strategy to control for false
positives was to consider only conserved SLiM occur-
rences in the FusoSecretome protein regions predicted
as disordered. Indeed, the vast majority of known func-
tional SLiMs falls in unstructured regions [54, 56] and
shows higher levels of conservation compared to neigh-
boring sequences. Conversely, we might also have missed
some “true” mimicry instances in the FusoSecretome by
using too stringent parameters for domains and SLiMs
identification and our interaction inferences may well be
incomplete due to the limited number of available inter-
action templates. However, their functional significance
fortifies our confidence in the predictive approach. Indeed,
the FusoSecretome shares similar features with known
virulence proteins highlighting its pathogenic potential. In

addition, interactors are implicated in established
biological processes and cellular districts of the host–
pathogen interface and significantly overlap with known
pathogen protein binders. Furthermore, more than 70% of
interactors are expressed in either the saliva or intestinal
tissues. This suggests that most of the inferred interactions
can occur in known F. nucleatum niches in the human
body. Finally, we found among the human interactors an
over-representation of genes whose expression correlates
with F. nucleatum in CRC patients [13] as well as in IBD-
related genes [80], which are mainly involved in immune-
and infection-response pathways.
Moreover, we gained a broader view of the cellular

functions that can be perturbed by the FusoSecretome
by investigating the human interactome. Although our
interactome contains some functional inherent biases
typical of literature-based interaction networks [81] (see
Additional file 7), it better covers the interactions space
of human secreted proteins, which are not easy to inves-
tigate using large-scale interaction screening methods
such as yeast-two hybrid [82].
In agreement with previous experimental observa-

tions of host cell networks targeted by distinct patho-
gens, F. nucleatum targets hubs and bottlenecks in
the human interactome [30, 33, 57]. Interestingly, the
FusoSecretome tend to interact with multifunctional
proteins. This can represent an effective strategy to inter-
fere with distinct cellular pathways as the same time [83].
Among the network modules preferentially targeted

by the FusoSecretome, we identified, besides the well-
established functions related to host—pathogen

Fig. 5 Enrichment of FusoSecretome inferred human interactors and gut disease related proteins in network modules. Each column of the heatmap
represents a module. The color of the cells corresponds to the log-transformed enrichment ratio. Pink circles indicate enriched sets. Modules showing a
significant dysregulation in CRC progression are highlighted by an empty circle with green border. For the six modules showing an enrichment in inferred
interactions and at least in one of gut disease related proteins, the most representative functions are reported. FusoExpr: genes whose expression correlates
with F. nucleatum abundance in CRC patients; CRC: genes mutated in colorectal cancer samples; IBD: genes associated to inflammatory bowel disease; CD
and UC: genes specifically associated to Crohn’s disease and ulcerative colitis respectively

Zanzoni et al. Microbiome  (2017) 5:89 Page 12 of 17



interactions, several modules involved in chromatin
modification and transcription regulation (Modules
246, 451, 571, and 625), and localized in compart-
ments such as perinuclear region of the cytoplasm
(Modules 90, 138, and 615). Intriguingly, this is rem-
iniscent of the fact that invading F. nucleatum strains
localize in perinuclear district of colorectal adenocar-
cinoma cells [8] and that bacteria can tune host-cell
response by interfering directly—or indirectly—with
the chromatin organization and the regulation of gene
expression [84].
We propose 26 FusoSecretome candidate virulence

proteins as major network perturbators. They are the
predominant interactors of preferentially targeted mod-
ules. Among the candidates, we identified the known
virulence protein Fap2, which was recently shown to
promote immune system evasion by interacting with the
immunoreceptor TIGIT [19]. Interestingly, Fap2 inter-
acts specifically with Module 9, which is involved in im-
mune response, thus suggesting novel potential binders
mediating Fap2 subversion.
A recent report found that abundance of F. nucleatum

is associated with high microsatellite instability tumors
and shorter survival [14]. Notably, three preferentially
targeted network modules (i.e., Modules 138, 216, and
371) show a significant upregulation in a stage associ-
ated to high microsatellite instability during CRC pro-
gression (stage II) [66, 85] and poor prognosis [86, 87].
This suggests that these modules may be important for
CRC progression and outcome and that the inferred in-
teractions targeting these modules can mediate the
cross-talk between F. nucleatum and the host in this
particular subtype of CRC.
Overall, our functional and network-based analysis

shows that the proposed interactions can occur in vivo
and be biologically relevant for the F. nucleatum—human
host dialog.

Conclusions
Over the last years, many microbes have been identi-
fied as key players in chronic disease onset and
progression. However, untangling these complex mi-
crobe–disease associations requires lot effort and
time, especially in the case of emerging pathogens
that are often difficult to manipulate genetically. By
detecting the presence of host mimicry elements, we
have inferred the protein interactions between the pu-
tative secretome of F. nucleatum and human proteins,
and ultimately provided a list of candidate virulence
proteins and their human interactors that can be ex-
perimentally exploited to test new hypotheses on the
F. nucleatum—host cross-talk. Our computational
strategy can be helpful in guiding and speeding-up
wet lab research in microbe–host interactions.

Methods
Protein sequence data
The reference proteomes of Fusobacterium nucleatum
subsp. nucleatum strain ATCC 25586 (Proteome ID:
UP000002521) and Homo sapiens (Proteome ID:
UP000005640) were downloaded from the UniProtKB
proteomes portal [88] (April 2013). The protein
sequences of known gram-negative bacteria virulence
factors were taken from the Virulence Factors DataBase
[49] (January 2014).

Secretome prediction
We identified putative secreted proteins among the F.
nucleatum proteins by applying two algorithms: SignalP
4.1 [44] that detects the presence of a signal peptide and
SecretomeP 2.0 [45] that identifies non-classical secreted
proteins (i.e., not triggered by a signal peptide) using a
set of protein features such as amino acid composition
and intrinsic disorder content.

Disorder propensity
To evaluate the intrinsic disorder propensity of F.
nucleatum proteins predicted as secreted, we used the
stand-alone programs of the following algorithms:
DISOPRED (version 2.0) [89], IUPred (both long and
short predictions) [90] and DisEMBL (COILS and
HOTLOOPS predictions, version 1.4) [91]. We compared
the disorder propensity distribution of SignalP-predicted
secreted proteins to non-secreted proteins using the
Kolmogorov–Smirnov test (two-sided, alpha = 0.05).

Detection of functional domains
We ran the pfamscan program [92] on F.nucleatum, H.
sapiens, and virulence factors protein sequences to detect
the presence of Pfam domains [52] (release 26). We kept
only Pfam-A matches with an E value <10−5.

Identification of short linear motifs
We used the SLiMSearch 2.0 tool from the SLiMSuite
[93] to identify occurrences of known short linear
motifs from the ELM database [53] (downloaded in
May 2013) in the F. nucleatum proteome. To select
putative mimicry motifs, we applied two SLIMSearch
context filters: (i) the motif must be in a disordered
region (average motif disorder score >0.2, calculated
by IUPred) and (ii) must be conserved in at least one
putative ortholog detected in a database of 694
proteomes of commensal/pathogen bacteria in Mammalia
downloaded from UniprotKB (March 2014). Sequence
alignments and conservation assessment were performed
using the GOPHER program from the SLiMSuite using
standard parameters [94].
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Protein interaction inference
We built an interaction network between F. nucleatum
putative secretome and human proteins by using inter-
action templates from the 3did database [95], which
stores 6290 high-resolution three-dimensional templates
for domain–domain interactions, and the iELM resource
[96, 97] that lists 578 high-confidence motif-mediated
interfaces between 191 ELM motifs and 402 human pro-
teins. Both datasets were downloaded in August 2013.
The domain-based interaction inference works as follow:
given a pair of known interacting domains A and B, if
domain A is detected in the F. nucleatum protein a and
domain B in the human protein b, then an interaction
between a and b is inferred. Analogously, for the SLiM-
mediated interaction inference: for a given known ELM
motif m interacting with the domain C in the human
protein c, if the motif m occurs in the F. nucleatum pro-
tein a, then a is inferred to interact with c.

Human proteins targeted by bacteria and viruses
We gathered a list of 3428 human proteins that were ex-
perimentally identified as interaction partners of three
bacterial pathogen proteins (Bacillus anthracis, Francisella
tularensis, and Yersinia pestis) in a large-scale yeast two-
hybrid screen [30]. We downloaded interaction data with
viruses for 4897 human proteins from the VirHostNet
database [98].

Human expression data
RNA-seq expression data for 20,345 protein coding
genes in normal colorectal, salivary gland and small intes-
tine (i.e., jejunum and ileum) tissues was downloaded
from the Human Protein Atlas (version 13), a compen-
dium of gene and protein expression profiles in 32 tissues
[99]. We considered as expressed those protein-coding
genes with a FPKM >1, that is 13,640 for colorectal,
13,742 for salivary gland and 13,220 for small intestine.

Functional enrichment analyses
We have compiled several gut-related disease gene sets
gathering data from the literature and public repositories.
Patient secretome profiling (2566 proteins) for tumor
colorectal tissue samples were taken from [100]. We re-
trieve 152 colorectal cancer genes from the Network of
Cancer Genes database (version 4.0, [101]). The list of hu-
man genes whose expression correlates with F. nucleatum
abundance in colorectal cancer patients [13] was kindly
provided by Aleksandar Kostic (Broad Institute, USA).
The compendium of 163 loci associated with inflamma-
tory bowel diseases was taken from a large meta-analysis
of Crohn’s disease and ulcerative colitis genome-wide as-
sociation studies [80]. The enrichment of these gut-related
disease gene sets among inferred interactors was tested
using a one-sided Fisher’s exact test.

We assessed the over-representation of cellular func-
tions by performing a enrichment analysis on the list of
inferred human interactors using the g:Profiler webserver
[102] (version: r1488_e83_eg30, build date: December
2015). We analyzed the following annotations: Biological
Process and Cellular Component from the Gene Ontology
[103]; biological pathways from KEGG [59], and Reactome
[60]. Functional categories containing less than 5 and
more than 500 genes were discarded.
We used two different reference backgrounds for these

statistical analyses. The first background consists of the
protein-coding genes in the human genome (i.e., 20′254
genes, UniprotKB, February 2013), whereas the second
includes 11′284 protein-coding genes for which we
could infer an interaction based on the available do-
main–domain and motif–domain interaction templates.
In both cases, P values were corrected for multiple test-
ing with the Benjamini–Hochberg procedure applying a
significance threshold equal to 0.025.

Human interactome building, network module detection
and annotation
We use the human interactome that we assembled
and used in [62, 66]. Briefly, protein interaction data
were gathered from several databases (e.g., BioGRID,
InnateDB, Intact, MatrixDB, MINT, Reactome)
through the PSICQUIC query interface [104] and
from large-scale interaction mapping experiments
(e.g., [105]). We kept only likely direct (i.e., binary)
interactions according to the experimental detection
method [106] and mapped protein identifiers to UniprotKB
IDs. Given the redundancy among SwissProt and TrEMBL
entries, protein sequences were clustered using the CD-
HIT algorithm [107]. SwissProt/TrEMBL pairs at 95%
identity were considered as the same protein: interactions
of TrEMBL protein were assigned to the SwissProt protein.
As a result, we obtained a human binary interactome
containing 74,388 interactions between 12,865 proteins
(February 2013).
We detected 855 network modules detected using the

Overlapping Cluster Generator algorithm [63]. Modules
were functionally annotated by assessing the enrichment of
Gene Ontology (GO) biological process and cellular com-
ponent terms [103], and cellular pathways from KEGG [59]
and Reactome [60]. Enrichment P values were computed
using the R package gProfileR [102] and corrected for mul-
tiple testing with the Benjamini–Hochberg procedure
(significance threshold = 0.025) and annotated proteins in
the human interactome were used as statistical background.
Similarly, the over-representation of inferred human inter-
actors and gut disease gene sets in network modules of the
human interactome was assessed using a one-sided Fisher’s
exact test followed by Benjamini–Hochberg multiple test-
ing correction (significance threshold = 0.025).
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Network module perturbation Z score
We devised a score to quantify the contribution of F.
nucleatum secreted proteins to the perturbation of a
network module through their inferred interactions. We
defined the perturbation Z score for each F. nucleatum
protein f interacting with at least one protein in module
m as follows:

Zf ;m ¼ xf ;m−μm
σm

Where xf ,m is the number of inferred interactions of
the protein f with module m, Zf,m is the perturbation Z
score of the protein f in the module m, μm, and σm are
the mean of the inferred interaction values and their
standard deviation in the module m, respectively.

Network modules significantly dysregulated during CRC
progression
The 77 network modules showing a significant dysregu-
lation during CRC progression were taken from our pre-
vious work [66], in which we devised a computational
method that combines quantitative proteomic profiling
of TCGA CRC samples, protein interaction network,
and statistical analysis to identify significantly dysregu-
lated cellular functions during cancer progression.
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