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1Département d’Oncologie Moléculaire, 2Département d’Oncologie Médicale, 3Département de Biopathologie, and 4Département de Chirurgie, Institut Paoli-Calmettes and 
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France; 6Laboratoire TAGC, ERM206 INSERM, Marseille, France; 7Ipsogen SA, Marseille, France; and 8Centre d’Investigation Clinique de Marseille Sainte-Marguerite, 
Marseille, France

ABSTRACT

Inflammatory breast cancer (IBC) is a rare but aggressive form of
breast cancer with a 5-year survival limited to �40%. Diagnosis, based on
clinical and/or pathological criteria, may be difficult. Optimal systemic
neoadjuvant therapy and accurate predictors of pathological response
have yet to be defined for increasing response rate and survival. Using
DNA microarrrays containing �8,000 genes, we profiled breast cancer
samples from 81 patients, including 37 with IBC and 44 with noninflam-
matory breast cancer (NIBC). Global unsupervised hierarchical clustering
was able to some extent to distinguish IBC and NIBC cases and revealed
subclasses of IBC. Supervised analysis identified a 109-gene set the ex-
pression of which discriminated IBC from NIBC samples. This molecular
signature was validated in an independent series of 26 samples, with an
overall performance accuracy of 85%. Discriminator genes were associ-
ated with various cellular processes possibly related to the aggressiveness
of IBC, including signal transduction, cell motility, adhesion, and angio-
genesis. A similar approach, with leave-one-out cross-validation, identi-
fied an 85-gene set that divided IBC patients with significantly different
pathological complete response rate (70% in one group and 0% in the
other group). These results show the potential of gene expression profiling
to contribute to a better understanding of IBC, and to provide new
diagnostic and predictive factors for IBC, as well as for potential thera-
peutic targets.

INTRODUCTION

Inflammatory breast cancer (IBC) is a rare (�5% of cases) but
aggressive form of breast cancer. At diagnosis, a majority of patients
show axillary lymph node involvement and �35% have distant me-
tastases. Although survival has been improved by the introduction of
primary chemotherapy in the multimodality treatment, prognosis re-
mains poor with 5-year survival ranging from 30 to 50% (1). Diag-
nosis is based on clinical and/or pathologic criteria. Clinical inflam-
matory symptoms arise quickly and involve more than one third of the
breast. The disease is classified as T4d according to the tumor-node-
metastasis (TNM)-Union International Contre Cancer (UICC) classi-
fication (5th edition). The tumor is often of ductal type, with high
histologic grade, negative for hormone receptors, and highly angio-
genic and invasive (1). The presence of tumor emboli in dermal
lymphatic vessels constitutes the pathologic hallmark of the disease.
In some cases non-IBC (NIBC) may be difficult to distinguish, and yet

this distinction is crucial for treatment. Prognostic features (2) remain
contested. Response to primary chemotherapy is a strong, although
imperfect, indicator of survival (3). Accurate treatment response pre-
dictors as well as optimal systemic therapy have to be defined to
increase response rate and survival.

Because of its relative infrequency and the small size of diagnostic
samples, IBC has rarely been investigated at the biological level, and
little is known about the underlying molecular alterations such as
those that could explain its poor prognosis (4). Most studies have
focused on a single marker or a few markers such as hormone
receptors [ estrogen receptors (ERs), progesterone receptors (PRs)],
growth factors (ERBB2, epidermal growth factor receptor) and tumor
suppressors (P53; ref. 5). Experimental models have recently led to
the identification of genes involved in IBC, such as ARHC, coding for
the RhoC GTPase, and WISP3, coding for a S-(2-chloro-1,1,2-triflu-
oroethyl)glutathione (CTGF)-related protein (5).

New genomic approaches such as DNA microarrays (6) and serial
analysis of gene expression (SAGE; ref. 7) provide unprecedented
tools to tackle the complexity of cancers. Comprehensive gene ex-
pression profiles of NIBC defined with the use of DNA microarrays
have revealed tumor subtypes (8, 9) and expression signatures that
could improve prognostic classification (9–16). DNA microarrays
have recently been used in IBC to identify genes deregulated by RhoC
overexpression in cell lines (17) but have thus far not been applied to
clinical specimens.

We used DNA microarrays for monitoring the RNA expression of
�8.000 genes in breast cancer samples from 81 patients, including 37
with IBC. Our objective was to investigate the transcriptional profiles
of IBC and to search for molecular signatures that correlate with the
IBC type and the pathological complete response to primary chemo-
therapy.

MATERIALS AND METHODS

Patients and Samples. Eighty-one cancer samples were profiled by using
DNA microarrays. They were obtained from 81 patients with breast adeno-
carcinoma who had undergone initial surgery in Institut Paoli-Calmettes. Each
patient gave written informed consent. Samples were macrodissected and were
frozen in liquid nitrogen within 30 minutes of removal. All of the medical
records and tumor sections were de novo reviewed before analysis. Profiled
specimens contained more than 60% tumor cells as assessed before RNA
extraction. The 81 samples included 37 pretreatment samples from 37 patients
with IBC, selected by using the following criteria: T4d tumor (TNM-UICC
classification) and/or presence of superficial dermal lymphatic invasion. The
44 other samples represented histoclinical forms of NIBC: locally advanced
(T3, T4a, T4b, T4c of the TNM-UICC classification, 14 cases), and localized
with (18 cases) or without (12 cases) pathological axillary lymph node in-
volvement. For each of these four clinical forms, samples were consecutive
and selected on the above-cited criteria and on the availability of good quality
RNA. Main histoclinical characteristics of patients are listed in Table 1.
Immunohistochemical data collected included ER, PR, and P53 status (posi-
tivity cutoff values of 1%), and ERBB2 status (0 to 3� score as illustrated by
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the HercepTest kit (DakoCytomation, Glostrup, Denmark) scoring guidelines:
0 to 1�, negative; 2 to 3�, positive). Our series of IBCs displayed charac-
teristics similar to those in other series in the literature (1). Seventy-one percent
of our patients had clinically palpable axillary lymph nodes. Most tumors were
ductal carcinoma, with relatively frequent high Scarff-Bloom-Richardson
grade, negative hormone receptor status, and positive ERBB2 and P53 status.
After diagnostic biopsy, IBC patients were treated by using a multimodality
approach, including anthracycline-based chemotherapy followed by mastec-
tomy (for clinically nonprogressive and consenting patients) then radiotherapy.
Mastectomy specimens were examined to determine the pathological response
to chemotherapy. Analysis concerned several tissue sections (a minimum of 20
per specimen) taken from each quadrant, from the nipple areolar complex, and
from suspected areas of tumor involvement. Response was scored in four
grades as described previously (18). Grades 1 and 2 were considered as
pathological complete response-positive, and grades 3 and 4 as failures (path-
ological complete response-negative). Axillary lymph nodes, when available
postchemotherapy (for some patients, lymph node dissection was made at
diagnosis before any chemotherapy), were examined to determine the presence
or absence of tumor residue. Response was classified as failure in case of grade
1 or 2 response with positive lymph node.

In addition, two RNA samples from normal breast (NB) tissue (Clontech,
Palo Alto, CA), representing pools of six (NB1) or four (NB2) whole normal
breasts, were profiled, as well as RNA from 14 cell lines that provided models
for cell types of mammary tissues—IBC epithelial (SUM-149), NIBC luminal
epithelial (BT-474, MCF-7, MDA-MB-134, SK-BR-3, T47D), NIBC stromal-
like epithelial (MDA-MB-231, BT-549), and basal-like epithelial (HME-1)
cell lines—and for cell types of nonmammary tissues—endothelial (human
umbilical vein endothelial-cell), fibroblastic (HFFB), lymphocytic B and T
(Daudi and T-act, respectively) and macrophage (THP1) cell lines. All of the
cell lines were obtained from American Type Culture Collection (Manassas,

VA),9 except for SUM-149 (a kind gift of S. P. Ethier, Department of Radi-
ation Oncology, University of Michigan Comprehensive Cancer Center, Ann
Arbor, MI), and were grown as recommended by the supplier.

RNA Isolation. Total RNA was extracted from frozen samples by using
guanidium isothiocyanate and cesium chloride gradient, as described previ-
ously (19). RNA integrity was controlled by denaturing formaldehyde agarose
gel electrophoresis and by microanalysis (Agilent Bioanalyzer, Palo Alto, CA).

DNA Microarray Production and Hybridization. Gene expression anal-
yses were done with home-made cDNA-spotted nylon microarrays and radio-
active detection. Microarrays were produced as described previously (20).
Briefly, cDNA clones were polymerase-chain-reaction–amplified in microtiter
plates, then spotted onto Hybond-n � 2 � 7 cm2 membranes (Amersham) with
a 64-pin print head on a MicroGrid II microarrayer (Apogent Discoveries,
Cambridge, England). They contained 8,016 spotted cDNA clones, represent-
ing 7,874 IMAGE clones and 142 control clones. The IMAGE clones included
6,664 named genes (155 Unigene release), �2,500 selected specifically to be
related to oncogenesis, and 1,210 expressed sequence tags. All of the mem-
branes belonged to the same printing batch. Before RNA hybridization, the
quality of spotting, including the determination of target DNA amount acces-
sible for each spot, was controlled by hybridization with a 33P-oligonucleotide
sequence common to all polymerase chain reaction products. After stripping,
microarrays were hybridized with 33P-probes made from total RNA (21, 22).
To verify the reproducibility of the experiments, six samples (one cell line, two
IBCs, three NIBCs) were hybridized twice on different microarrays, resulting
in a total of 103 hybridizations. Probe preparations, hybridizations, and washes
were done as described previously (20). Briefly, 2 �g of total RNA were
retrostranscribed (oligo-dT priming) in the presence of [�-33P]dCTP (Amer-
sham Pharmacia Biotech, Little Chalfont, United Kingdom). Hybridizations
were carried out during 48 hours at 68°C in a volume of 500 �L of buffer.
After washes, arrays were exposed for 24 to 72 hours to phosphorimaging
plates. Signal detection was done with a FUJI BAS 5000 machine at 25-�m
resolution (Raytest, Paris, France) and quantification with the ArrayGauge
software (Fuji Ltd, Tokyo, Japan). The full list of clones and more details on
the preparation of the microarrays and probes and hybridizations are available
on the web.10

Data Analysis. Before analysis, a filter procedure eliminated noninforma-
tive genes; 2,300 genes were retained on the basis of being measured (expres-
sion level �2 � background signal) in at least 50% of the samples in at least
one of the three classes (IBC, NIBC, NB). Signal intensities were normalized
for the amount of spotted DNA (21), then the variability of experimental
conditions were normalized by using a local weighted scatter plot smoother
analysis (LOWESS) for each print-tip group (23). Data were then log2-
transformed and were analyzed by unsupervised and supervised methods.
Expression data and histoclinical variables of tumor samples, in a format
conforming to the MIAME guidelines11 are available on the Worldwide
Web.10 Unsupervised hierarchical clustering [Cluster program (24)] investi-
gated the relationships between the genes and between the samples by using
data that were median-centered on genes, Pearson correlation, and centroid
linkage clustering. Results were displayed by using the TreeView program
(R.D.M. Page, University of Glasgow, Glasgow, United Kingdom) (24). To
identify the gene clusters that were most responsible for the resulting subdi-
vision of samples, we used the method of quality-threshold clustering (25). We
first selected the gene clusters with minimal size and minimal correlation of 10
and 0.6, respectively. Their average expression profile was then computed and
submitted to supervised analysis (see below), to identify the most discriminat-
ing profile between the two predominant sample clusters. Supervised analysis
was applied to identify and rank genes that discriminate between two relevant
subgroups of samples. A discriminating score (DS) was calculated for each
gene (26) as DS � (M1 � M2)/(S1 � S2), where M1 and S1, respectively,
represent mean and SD of expression levels of the gene in subgroup 1, and M2
and S2 represent those levels in subgroup 2. Because of multiple hypotheses
testing, confidence levels were estimated by 200 iterative random permutations
of samples as described previously (27) and by computing the proportion of
permutations in which the number of genes selected exceeds the observed
number of genes. Once identified, the classification power of the discriminator

9 Internet address: http://www.atcc.org/.
10 Internet address: http://tagc.univ-mrs.fr/pub/.
11 Internet address: http://www.mged.org/miame.

Table 1 Tumor characteristics

Characteristics *
Total

(N � 81)
NIBC

(n � 44)
IBC

(n � 37) P value †

Age, median (range), years 58 (24–86) 62 (39–86) 55 (24–81) 0.12

Pev status (81) �0.01
Pev 0–1 53 (65%) 44 (100%) 9 (24%)
Pev 2 14 (17.5%) 0 (0%) 14 (38%)
Pev 3 14 (17.5%) 0 (0%) 14 (38%)

Clinical axillary node status (78) 0.07
N0 31 (40%) 21 (48%) 10 (29%)
N1, N2, N3 47 (60%) 23 (52%) 24 (71%)

Histological type (81) 0.19
ductal 67 (83%) 34 (77%) 33 (89%)
lobular 11 (14%) 7 (16%) 4 (11%)
other 3 (3%) 3 (7%) 0 (0%)

SBR grade (81) 0.07
1–2 38 (47%) 25 (57%) 13 (35%)
3 43 (53%) 19 (43%) 24 (65%)

Dermal lymphatic emboli (81) �0.01
Present 26 (32%) 0 (0%) 26 (70%)
Absent 55 (68%) 44 (100%) 11 (30%)

Angioinvasion (79) �0.01
Present 42 (53%) 16 (36%) 26 (74%)
Absent 37 (47%) 28 (64%) 9 (26%)

ER status (81) 0.36
Negative 32 (39%) 15 (34%) 17 (46%)
Positive 49 (61%) 29 (66%) 20 (54%)

PR status (81) 0.06
Negative 30 (37%) 12 (27%) 18 (49%)
Positive 51 (63%) 32 (73%) 19 (51%)

ERBB2 status (81) 0.79
Negative 0–1� 61 (75%) 34 (77%) 27 (73%)
Positive 2–3� 20 (25%) 10 (23%) 10 (27%)

P53 status (81) 0.35
Negative 51 (63%) 29 (66%) 22 (59%)
Positive 30 (37%) 15 (34%) 15 (41%)

Note. For all characteristics except age, the values are number of patients with
percentage of evaluated cases in parentheses.

Abbreviations: Pev 0–1, no inflammatory sign; Pev 2 and Pev 3, localized and
extensive inflammatory signs, respectively; SBR, Scarff-Bloom-Richardson.

* In this column in parentheses, the number of evaluated cases among 81 patients.
† Not significant when P � 0.05.



signature was illustrated by classifying samples according to the correlation
coefficient of their expression profile with the median profile of the IBC
samples (“IBC signature”) or of the pathological complete response–positive
IBC samples (“PCR signature”). The “IBC signature” was validated on an
independent sample set. A “leave-one-out” procedure (26) estimated the ac-
curacy of prediction of the “PCR signature.” Statistical analyses were done by
using the SPSS software (version 10.0.5, SPSS Inc., Chicago, IL). Correlations
between sample groups and histoclinical parameters were calculated with the
Fisher exact test or �2 test when appropriate. A P value � 0.05 was considered
significant.

RESULTS

A total of 103 samples representing 97 different cases (81 cancer
tissue samples including 37 IBC and 44 NIBC, 2 NB samples, and 14
cell lines) were profiled by using DNA microarrays.

Unsupervised Hierarchical Clustering Based on Global Gene
Expression Profiles. Before clustering, a filter procedure eliminated
genes with uniformly low expression or with low expression variation
across the experiments, retaining 2,300 genes/expressed sequence
tags. Results of hierarchical clustering are shown in Fig. 1. The cancer
tissue samples displayed heterogeneous expression profiles (Fig. 1A
and B). Overall, they fell in two groups that significantly differed with
respect to the IBC or NIBC type. In the left group, which included the
two NB samples, 25 of the 42 cancer samples (60%) were IBC,
whereas in the right group, 14 of the 44 samples (31%) were IBC
(P � 0.008, Fisher exact test). Correlations existed between the two
groups and the IHC status of tumors for ER (P � 0.001), ERBB2
(P � 0.003), P53 (P � 0.001), and angioinvasion (P � 0.051). As
expected, all of the cell lines represented separate branches of the
dendrogram.

Gene clustering revealed groups of coordinately expressed genes.
Some of these represented signatures of biological processes or cell
types (see colored bars on the right of Fig. 1A and zooms in Fig. 1C).
A cluster with a prominent role in the classification of samples
included ESR1, which codes for ER-�, several transcription factor
genes (GATA3, XBP1, ILF1, GLI3, PBX1), and genes associated with
ER-positive status (KRT19, CCND1, EMS1, MUC1). This cluster,
overexpressed in luminal ER-positive NIBC cell lines as compared
with the basal-like cell line and the IBC cell line, was designated
“luminal/ER� cluster.” Variation in expression of ESR1 mRNA cor-
related well with IHC ER status. The “ERBB2-related cluster,” over-
expressed in cell lines with amplification of ERBB2, included ERBB2,
GRB7, and PPARBP, identified as part of an ERBB2 gene expression
signature (28). As reported elsewhere (8, 10), the “early response
cluster” included immediate-early genes (JUNB, FOS, ATF3, EGR1,
NR4A1, DUSP1) and was overexpressed in normal samples overall as
compared with cancer samples. A “proliferation cluster” was globally
overexpressed in cell lines as compared with tissues. It included
PCNA, which codes for a proliferation marker used in clinical prac-
tice, and genes involved in glycolysis (GAPD, LDHA, ENO1), me-
tabolism (ALDH3A1, cytochrome c oxidase and ATP synthase sub-
units), cell cycle and mitosis (tubulin genes, CDK4, BUB3, CCNB2),
and protein synthesis (ribosomal proteins; not shown). The “immune
cluster” was rich in genes expressed in B- or T-cells and macrophages
(immunoglobulin genes, HLA class I and II, CD69, IL16, CD14,
CSF1, CSF1R, and genes regulated by interferon such as STAT1,
B2M, IFI27). It was globally negatively correlated with the “luminal/
ER� cluster,” reflecting the strong lymphoid infiltrate of ER-negative
tumors. The “stromal cluster” was rich in genes related to extracellular
matrix remodeling (collagen genes, MMP2, PRSS3, SPARC, EDN1)
and strongly expressed in the fibroblastic cell line. The “vascular
cluster,” strongly expressed in the human umbilical vein endothelial-
cell cell line, contained genes related to endothelial cells (ENG, VWF,

CD31, CDH5, HSPG2, FN1). Another cluster, designated “basal
cluster,” included cytokeratins (KRT5, 6, 7, 13, 14, 15, 16), integrins
(ITGA2, ITGA6, ITGB4), and other genes (COL17A1, EGFR, laminin,
TRIM29, CRYAB, SLPI) and was overexpressed in the basal-like cell
line. This cluster was also overexpressed in the IBC cell line as
compared with the NIBC cell lines.

To identify objectively the gene clusters most responsible for the
subdivision of samples into two main groups (Fig. 1B), we applied
supervised analysis to the 24 gene clusters identified by quality-
threshold clustering analysis. Two subclusters from the “luminal
cluster” were significantly overexpressed in the right group (rich in
NIBC). Two subclusters from the “basal cluster,” one subcluster from
the “immune cluster” and another from the “vascular cluster” were
significantly overexpressed in the left group (rich in IBC). The two
most discriminating subclusters came from the “luminal” and the
“basal cluster.”

Gene Expression Signature for Inflammatory Breast Cancer
Identified by Supervised Analyses. To identify a gene expression
signature that discriminated IBC from NIBC samples, we applied
supervised analysis by using two independent (learning and valida-
tion) tumor sets. The assignment of samples to each set was random,
but preserved the IBC/NIBC ratio. The learning set (55 samples: 25
IBCs, 30 NIBCs) was used to define the gene expression signature.
Using a discriminating score combined with permutation tests, we
identified 109 cDNA clones differentially expressed between IBCs
and NIBCs. The significance threshold used produced fewer than five
false positives and ensured that the number of genes selected by
chance, given 200 iterative random permutations, never exceeded 109.
Sixty-four clones were overexpressed and 45 were underexpressed in
IBC samples. They represented 90 characterized genes and 19 other
sequences or expressed sequence tags (Supplementary Table 1).12 The
classification of 55 samples based on these 109 genes is shown in Fig.
2A. A threshold of 0 (solid line in Fig. 2A) sorted the samples into two
classes (“predicted IBC class,” positive scores; “predicted NIBC
class,” negative scores) that strongly correlated with the observed
histoclinical type: 79% of the 28 “predicted IBC class” samples were
IBC, whereas 89% of the 27 “predicted NIBC class” samples were
NIBC [odds ratio (OR) � 26.78; 95% confidence interval (CI),
5.59–187.9; P � 4.10�7, Fisher exact test]. A more stringent thresh-
old improved the accuracy of discrimination: for example, with a
cutoff of 0.2 and �0.2 (dashed lines in Fig. 2A), 85% of the “pre-
dicted IBC class” samples were IBC and 90% of the “predicted NIBC
class” samples were NIBC, leaving some samples unclassifiable.

To estimate its robustness, we tested this gene expression signature
on a set of 26 independent samples (12 IBC, 14 NIBC). None of these
samples had been included in the learning set, which allowed for the
estimation of the true predictive accuracy. Samples were classified by
using the same procedure (Fig. 2B). The two predicted classes
strongly correlated with the distinction between IBC and NIBC ratio.
There were 10 IBCs (83%) of the 12 samples in the “predicted IBC
class” and 12 NIBCs (86%) of the 14 samples in the “predicted NIBC
class” (OR � 24.43; 95% CI , 2.71–414.2; P � 0.001, Fisher exact
test), with a prediction accuracy of 85%. The IBC cell line was within
the “predicted IBC class.” These results suggest the robustness of our
model for discriminating IBCs and NIBCs.

Gene Expression Signature for Pathological Complete Re-
sponse in Inflammatory Breast Cancer. Among the 37 IBC sam-
ples, 26 mastectomy specimens were available for assessment of
pathological complete response: 9 were defined as pathological com-
plete response-positive and 17 as pathological complete response-

12 Supplementary data for this article can be found at Cancer Research Online (http://
cancerres.aacrjournals.org).



Fig. 1. Global gene expression profiles in inflammatory and noninflammatory breast cancer. A, hierarchical clustering of 103 samples and 2,300 cDNA clones based on mRNA
expression levels. Each row, a clone; each column, a sample. Color scale across the bottom, the expression level of each gene in a single sample relative to its median abundance across
all samples; red, expression level above the median; green, expression level below the median; color saturation, the magnitude of deviation from the median; gray, missing data. Above
matrix, dendrogram of samples, overall similarities in gene expression profiles (zoomed in B). Colored bars to the right, the locations of eight gene clusters of interest. [These clusters,
except the “proliferation cluster” (brown bar), are zoomed in C.] B, top, dendrogram of samples (from dendrogram in A): red branches, IBC samples (n � 39); blue branches, NIBC
samples (n � 47); brown branches, NB samples (n � 2); black branches, cell lines (n � 15); numbers below the dendrogram, tissue samples; five small gray horizontal bars, five
pairs of duplicate samples clustered together. Black and white chart below the numbers, some relevant features of numbered samples (

�
�, unavailable): Type (white, NIBC; black, IBC);

ER, ER immunohistochemical (IHC) status (white, negative; black, positive); ERBB2, ERBB2 IHC status (white, negative; black, positive); P53, P53 IHC status (white, negative; black,
positive); Angioinvasion (white, negative; black, positive). C, expanded view of selected gene clusters. On right side, names of genes; some genes included in these clusters are
referenced by their Human Genome Organization (HUGO) abbreviation as used in “Entrez Gene” (http://www.ncbi.nih.gov/entrez). On left side, from top to bottom: light blue bar,
early response; dark pink bar, basal; dark blue bar, ERBB2-related; green bar, luminal/ER�; light pink bar, immune; orange bar, vascular; gray bar, stromal.



negative. No significant correlation existed between the pathological
complete response rate and Scarff-Bloom-Richardson grade, dermal
lymphatic emboli, angioinvasion, immunohistochemical data (Supple-
mentary Table 2). Using a supervised analysis, we identified 85
genes/expressed sequence tags (Supplementary Table 3) that discrim-
inated between pathological complete response-positive and patho-
logical complete response-negative tumors (probability that this num-
ber of genes would be selected by chance, 0.09). Forty-three of them
were overexpressed in pathological complete response-positive sam-
ples and 42 were underexpressed. The resulting classification of
samples is shown in Fig. 3. The cutoff value of 0 defined two classes
strongly correlated with the rate of pathological complete response.
Nine of 13 “predicted pathological complete response-positive class”
samples (70%; positive scores) experienced pathological complete
response, as compared with 0 of 13 of the “predicted pathological
complete response-negative class” (negative scores; P � 0.0004,
Fisher exact test), leading to a classification accuracy of 85%.

We estimated the validity of our procedure by the “leave-one-out”
cross-validation method (26). Iteratively, one of the 26 samples was
removed, and a multigene predictor was generated from the remaining
samples. The “leave-one-out” sample was then classified by using this
predictor and the procedure described above. The process was re-
peated for each of the samples, and the rate of correct classification

was calculated. Sixty-two percent of samples were correctly assigned,
with a rate of 67% for pathological complete response-positive and
59% for pathological complete response-negative samples, and posi-
tive and negative predictive values for PCR of 46 and 77%, respec-
tively. Although the predictive gene set generated at each cross-
validation loop was slightly different, on average, 85% of the genes of
the gene expression signature were conserved.

DISCUSSION

Unsupervised Hierarchical Clustering Identifies Subclasses of
Breast Cancer. Both NIBC and IBC samples showed great transcrip-
tional heterogeneity, indicating the existence of molecular subclasses
among each of them. Yet despite this diversity, the unsupervised
global approach produced two large groups, one with 2-fold more IBC
samples than the other, suggesting a global expression difference
between IBC and NIBC in most cases. Despite the differences in
microarray platforms, all of the identified gene clusters were similar
to those previously reported (8–10, 13), suggesting the validity of the
data and reliability of the technology.

As compared with the group rich in NIBC, the group rich in IBC
exhibited overexpression of the basal, the immune, and the vascular
gene clusters and underexpression of the luminal cluster. These ex-

Fig. 2. Supervised classification of 81 samples
based on the molecular signature IBC/NIBC. A,
left, classification of 55 samples from the learning
set with the 109-gene expression signature. Top
panel, each row of the data matrix, a gene; each
column, a sample. Expression levels are depicted
according to the color scale used in Fig. 1. Genes
from top to bottom, ordered by their decreasing
discriminating score. Tumor samples are numbered
from 1 to 55 and are ordered from left to right
according to the correlation coefficient of their
expression profile with the median profile of the
IBC samples (bottom panel). Solid orange line, the
threshold 0 that separates the two classes of sam-
ples: IBC class (left of the line) and NIBC class
(right of the line). Dashed orange line, optimized
threshold. Middle panels, the histoclinical type of
tumors (f, IBC; �, NIBC) and their histoclinical
subtype (f, IBC; dark gray square, locally ad-
vanced NIBC; light gray square, node-positive lo-
calized NIBC; �, node-negative localized NIBC).
Right, correlation between the molecular grouping
based on the combined expression of the 109 genes
and the histoclinical type of samples. B, left and
right, see legend for A, but applied to the 26 inde-
pendent samples from the validation set.



pression changes were in agreement with the phenotypical character-
istics of IBC and NIBC, and suggest that IBC is related to the basal
lineage more frequently than is NIBC. In fact, none of the differential
expressions revealed by this approach appeared completely specific to
IBC or NIBC but, rather, reflected the luminal or basal-like pheno-
types.

Identification of a Gene Expression Signature for Inflamma-
tory Phenotype in Breast Cancer. By supervised analysis, we iden-
tified a 109-gene signature that discriminated IBC and NIBC. This
classifier had comparable prediction accuracy (85%) in an independ-
ent set of samples, providing evidence of its robustness. The molec-
ular distinction was not strict for all samples, with a large range of
intermediate profiles between the respective “typical profiles” for IBC
and NIBC. Among all these profiles, there was no particular organi-
zation of samples with respect to clinically or pathologically defined
IBC or according to the histoclinical form of NIBC (Fig. 2). The
correction for testing multiple hypotheses may have caused the elim-
ination of potentially interesting genes. For example, ARHC (29) did
not pass our stringent threshold, although it was up-regulated in our
series of IBC (P � 0.002 and 0.03 for the two corresponding clones,
Mann–Whitney test without correction for multiple comparisons).
Similarly, CTGF, which codes for a protein with 57% similarity to
WISP3 (29), was also underexpressed (P � 0.004, Mann–Whitney test
without correction), but not included in our signature.

This gene expression signature represents a bar code signature of
the IBC phenotype. Whether the discriminator genes are causative or
even predictive of the phenotype in a biological sense or whether they
reflect another associated phenomenon remain to be explored. Several
genes are related to signal transduction, cell motility, invasion, and
angiogenesis. Genes overexpressed in IBC included ARHQ, a member
of the Rho GTPase family involved in cytoskeletal organization and
cell motility (30); RAB1A, a small GTPase; tyrosine kinase SYK; and
FNTA. FNTA encodes the farnesyltransferase � subunit; van Golen et
al. (31) reported that treatment of the SUM149 cell line and HME-
RhoC transfectants with a farnesyl transferase inhibitor reversed the
RhoC-induced phenotype, with a significant decrease in motility and
invasion. The same authors suggested the involvement of the mitogen-
activated protein kinase (MAPK) pathway in RhoC-induced motility,

invasion, and angiogenesis in IBC (32). Here, we identified genes
encoding MAPK1 and STK24, a serine/threonine kinase that func-
tions upstream of the MAPK cascade, as overexpressed in IBC.
Overexpressed genes also included genes from the “basal cluster,”
CDC37, involved in cell cycle regulation, and ITGB4, which promotes
carcinoma invasion (33). Some of the proteins encoded by other
overexpressed genes also stimulate cell motility: VASP plays a role in
integrin-mediated cell adhesion (34), and CACNB1 (calcium channel,
voltage-dependent, � 1 subunit), AKAP1, and AKAP7 (A kinase
(PRKA) anchor protein 1 and 7) are involved in calcium signaling
(35). Other genes found overexpressed are involved in local inflam-
matory processes (CXCL2, BMP4, SCGB1A1, FPRL1, VCAM1), cell
cycle (CCNG2, CDC37, CCT2), apoptosis (DAD1, ALS2CR2), trans-
port (CRABP1, SLC18A2, SLC22A4, SLC2A12), and transcription
(ARNT, DTR, NPAS2, SIX3). ARNT encodes the � subunit of hypoxia-
inducible factor 1 (HIF1), involved in angiogenesis and tumor pro-
gression (36). Increased expression of several genes involved in
carbohydrate metabolism (PDPK1, FUCA1, GAPD, RPN2) and pro-
tein synthesis (RPL13A, RPS2, RPS6KA4, MBNL1) was associated
with the IBC phenotype, possibly related to increased metabolism and
cell proliferation in IBC. Genes found underexpressed in IBC, such as
BRE (37), GPC4 (38), THBS4 (39), and PTPRA also encoded proteins
involved in negative regulation of cell motility, invasion, or angio-
genesis. Finally, the analysis pointed to some interesting chromo-
somal regions. Five genes down-regulated in IBC (NDUFS4, THBS4,
BTF3, COX7C, RIOK2) were located at 5q11–14. This result, com-
bined with the higher frequency of basal-like tumors among IBCs,
may be related to a significantly higher rate of loss of heterozygosity
at 5q in basal-like breast cancers (40). Two genes down-regulated in
IBC (PSMB8, CSNK2B) are found on 6p21, which harbors loss of
heterozygosity more frequently in IBC than in NIBC (41). Con-
versely, three genes up-regulated in IBC (CXCL2, CCNG2, MASA/
E-1) were located at 4q21.1, in a 10-Mb-long region that contains
many genes encoding pro-inflammatory cytokines and growth factors.
A 2-Mb-long region at 22q11.21 contains three genes (RTN4R,
PIK4CA, MAPK1) up-regulated in IBC. These regions of co-up-
regulated or -down-regulated genes may correspond to genome alter-
ations specific to IBC.

Fig. 3. Supervised classification of 26 IBC sam-
ples based on the molecular signature for the path-
ological complete response (PCR). A, classification
of 26 samples by using the 85-gene expression
signature. Top panel, expression levels according
to the color scale used in Fig. 1. Genes are ordered
from top to bottom by their decreasing discriminat-
ing score. Tumor samples are numbered from 1 to
26 and are ordered from left to right according to
the correlation coefficient of their expression pro-
file with the median profile of the PCR� samples
(bottom panel). Solid orange line (threshold � 0),
separates the two classes of samples, “PCR� class”
(at the left of the line) and “PCR� class” (right of
the line). The middle panels indicate the patholog-
ical response to primary chemotherapy (f, PCR�;
�, PCR�). B, correlation between the molecular
grouping based on the combined expression of the
85 genes and the pathologic response.



Identification of a Gene Expression Signature for Pathological
Complete Response in Inflammatory Breast Cancer. IBC is
mostly treated with anthracycline-based primary chemotherapy. Re-
sults are disappointing, with 5-year survival ranging from 30 to 50%
(1). No clinical or molecular marker has been found that reliably
predicts pathological complete response to such chemotherapy (42,
43). As a consequence, chemotherapy is delivered empirically to all
patients. Current efforts are, therefore, aimed at discovering molecular
markers that would help clinicians to select an alternative chemother-
apy or another systemic treatment that would improve response rate.

In our series, pathological complete response after anthracycline-
based chemotherapy was observed in 35% of mastectomy specimens.
No correlation was found between response and any tested histoclini-
cal condition. Global unsupervised hierarchical clustering showed no
separation between pathological complete response-positive and path-
ological complete response-negative samples, which suggests that the
response to chemotherapy is governed by a smaller set of genes.
Supervised analysis identified a set of 85 genes the expression of
which divided patients in two groups with, respectively, 70% and 0%
of pathological complete response. Because of the small number of
cases, estimation of the classifier performance was not done in an
independent series, but by the use of leave-one-out cross-validation, a
classical alternative method. Because this method may overestimate
accuracy, it will be necessary to validate this signature with a larger
independent sample series. Regardless of the small sample size, the
respective positive and negative predictive values for pathological
complete response of �50 and �80% are highly encouraging in the
current clinical context, in which the expectation of any unselected
IBC patient to achieve pathological complete response is less than 15
to 25% (1). This classifier is a first step in achieving a criterion on
which to negatively or positively select for the most efficient therapy
for patients.

Additional experiments are required to investigate the role of some
of the discriminator genes in response to therapy. It was interesting to
find genes already reported as associated with drug sensitivity. For
example, a high expression of CDKN1B (p27) was associated with
pathological complete response, as previously reported in acute my-
eloid leukemia (44). Two recent reports identified gene expression
signature associated with response to primary chemotherapy in locally
advanced breast cancer (15, 16). Comparison of the discriminator
genes with ours revealed several genes (AK3, ATP6V1F, EIF3S9,
MRPL4, APOD, PPP5C) that belong to the same families. CCL3
encoding the MIP1A chemokine is overexpressed in sensitive B-cell
chronic lymphocytic leukemia cell samples (45). The up-regulation in
pathological complete response-positive samples of genes encoding
other chemokines, cytokines, and cytokine receptors (CSF1R, CCL2,
CCL3, MMP9) is consistent with a role of the host immune system in
tumor eradication after chemotherapy.

Our study is the first example of high-throughput gene profiling
applied to clinical specimens of IBC. Although obtained on a small
series of samples (IBC is a rare disease), our results are encouraging.
They show the potential for a better understanding of this particular
and aggressive form of breast cancer and for the identification of new
diagnostic and predictive factors and potential therapeutic targets.
Further validation on a larger and multicentric series of samples is
warranted, as well as additional investigations of our discriminator
genes to determine their relevance in the aggressiveness of IBC and
possible therapeutic utility.
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