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Abstract

Electrochemical studies of hydrogenases, the biological catalysts of H2 oxi-
dation and production, have proven wrong the old saying that enzymes do
not easily transfer electrons to electrodes in the absence of mediators. Many
distinct hydrogenases have actually been directly connected to electrodes or
particles, for studying their catalytic mechanism or for designing solar fuels
catalysts. In this review, we list the electrodes that have proved successful for
direct electron transfer to hydrogenases, and we discuss recent results which
illustrate new directions in this research field: the study of the biosynthesis
of FeFe hydrogenase, the electrochemical characterization of non-standard
NiFe- or FeFe hydrogenases, the general discussion of what makes a catalyst
better in one particular direction of the reaction, and the elucidation of the
molecular mechanism of hydrogenase catalysis by combining electrochemistry
and theoretical chemistry, spectroscopy or photochemistry. The electrochem-
ical methods described herein will probably prove useful for studying or using
other redox enzymes.

Introduction1

Hydrogenases are the enzymes that oxidize and produce H2. They are2

classified as NiFe- and FeFe-hydrogenases based on the metal content of their3

active site. The NiFe active site (fig. 1A) consists of pair of metal ions bridged4

by the sulfur atoms of two cysteine residues; the Ni ion is also attached to5

the protein by either two cysteines or one cysteine and one selenocysteine.6
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Figure 1: The X-ray structures of two hydrogenases. Panel A shows the active site of NiFe
hydrogenases. Panel B shows the backbones of the heterodimeric enzyme from D. fruc-
tosovorans (pdb 1YQW). Panel C shows the H cluster of FeFe hydrogenases (a star marks
the H2 binding site), and panel D shows the backbone of the enzyme from Chlamydomonas
reinhardtii (pdf 3LX4).

The Fe ion binds carbonyl and cyanide ligands which also occur at the active7

site of FeFe hydrogenases, the “H cluster”, shown in fig 1C.8

The NiFe hydrogenases that have been crystallized so far all look like the9

heterodimeric enzyme from D. fructosovorans, whose structure is shown in fig10

1B. A chain of three FeS clusters (whose exact nature varies) wires the active11

site to the soluble redox partner or the electrode. The FeFe hydrogenase from12

C. reinhardtii whose structure is shown in fig 1D has no other cofactor than13

the surface-exposed H cluster, but other FeFe hydrogenases embed accessory14

FeS clusters for long range electron transfer (ET).15

Evidence for direct electron transfer between electrodes and hydrogenases16

goes all the way back to the 1980’s [10, 35, 71], and the research in this field17

has expanded enormously over the last ten years, driven by the objective of18

using hydrogenases in solar-fuels devices. When direct electrochemistry is19
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used in the context of enzyme kinetics, it provides unequalled redox control,20

time resolution and accuracy of the activity measurement, together with21

flexibility in terms of transient exposures to inhibitors and/or substrate. If22

such kinetic information is combined with that obtained from other methods,23

the potential for gaining original information becomes enormous.24

Electrodes for direct electron transfer25

Hydrogenases are easily wired to electrodes because they all have at least26

one surface-exposed redox center, either the active site (e.g. fig 1D) or the27

final redox relay (e.g. fig 1B), which allows fast electron entry/exit. (This28

is unlike other redox enzymes such as glucose oxidase where the active site29

is buried and isolated in the protein matrix.) Many hydrogenases oxidize30

and produce hydrogen at very high rates (in excess of thousands per second,31

table 4 in ref [75]), and therefore a catalytic current may be detected even32

if the amount of enzyme that is attached to the electrode is very low. This33

explains the diversity of electrode materials that have proven useful in this34

context, listed in table 1 (see also refs [76–78] for reviews). Finely designed35

architectures for embedding membrane-bound hydrogenases have also been36

developed [79–81].37

Heterogeneous reconstitution38

In the natural biosynthetic pathway of FeFe hydrogenase, a 2Fe frag-39

ment of the H cluster is delivered to the “apo” form of the enzyme. The40

recent discovery that a synthetic 2Fe fragment can be incorporated into apo-41

hydrogenase has revolutionized hydrogenase research [82, 83]. The use of42

direct electrochemistry to probe the kinetics of such artificial maturation of43

the enzyme is one of the most recent and exciting developments: the apo-44

enzyme can be adsorbed onto an electrode and can incorporate the 2Fe syn-45

thetic subcluster when the latter is added to the solution. The reconstitution46

of a holo-active enzyme results in an increase in H2-oxidation current which47

reports on the rate of reconstitution [84]. (This is reminiscent of the recent48

evidence by Limoges and coworkers that the PQQ cofactor of glucose dehy-49

drogenase can bind the apo-enzyme anchored on an electrode surface [85].)50

Armstrong and coworkers could design potential-steps PFV experiments to51

detect the formation of an intermediate that is probably relevant to the final52

stage of biological H cluster maturation.53
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Electrochemical studies of exotic hydrogenases54

The electrochemical literature does not accurately reflect the biodiversity55

of hydrogenases. Indeed, most of the hydrogenases that have been studied56

in electrochemistry are very similar to each other. They are relatively small57

(60–100 kDa), and consist of a small number of proteins subunits, most58

often one or two. In contrast, some hydrogenases are part of very large59

enzymatic systems (e.g. 18 subunits and 600 kDa in the formate hydrogene60

lyase complex of Thermococcus). These complex hydrogenases use the same61

active sites as those shown in fig 1, but their protein sequences, quaternary62

structure and cofactor content make them unique.63

Recent electrochemical studies of hydrogenases whose structures are out64

of the ordinary [19, 22, 23, 73] have revealed unprecedented properties. For65

example, the NiFe hydrogenase of the hyperthermophilic bacterium P. furio-66

sus remains active upon exposure to O2 at 80◦C, and its mechanism of O267

tolerance is uncommon [23]. The FeFe hydrogenase of A. woodii is part of a68

large complex which reduces CO2 to formate; it has high affinity for H2 and69

is reversibly inhibited by CO under all redox conditions [73], unlike other70

FeFe hydrogenases, for which the inhibition is only partly reversible under71

reducing conditions [70].72

Together with site-directed mutagenesis studies, the characterization of73

these non-standard hydrogenases demonstrates that the catalytic properties74

depend on the environment of the active site, but also on structural elements75

that are remote from the conserved active site.76

The catalytic bias77

Studies of hydrogenases have recently encouraged discussions on an im-78

portant and often neglected aspect of enzyme catalysis: the question of what79

makes a particular enzyme a better catalyst in one direction of the reaction80

than in the other [91]. Answering this question is very important in the con-81

text of solar fuels research, for the rational design of either synthetic catalysts82

[92] or bacterial strains [93] that either produce or oxidize H2.83

One defines the catalytic bias of a hydrogenase as the ratio of the H284

oxidation and H2 production rates, which have to be measured under two85

different sets of experimental conditions. In PFV experiments, sweeping the86

potential makes it possible to probe the enzymatic response on either side of87

the equilibrium potential (OCP) in a single experiment. Any predisposition88
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Figure 2: Cyclic voltammograms obtained with hydrogenases undergoing direct ET with
a rotating electrode, recorded under an atmosphere of either N2 (gray lines) or H2 (black
lines). The oxydation current is counted as positive. Arrows mark the directions of the
potential sweeps. The dotted lines are blanks. A: H2 oxidation by A. vinosum NiFe
hydrogenase (the fast scan rate used here prevents oxidative inactivation) [86]. B: H2
oxidation and evolution by C. acetobutilicum FeFe hydrogenase [53]. C: high potential
inactivation of A. aeolicus NiFe hydrogenase [25]. D: high potential inactivation of a site-
directed mutant of C. reinhardtii FeFe hydrogenase [56]. E: H2 oxidation and evolution
by D. fructosovorans NiFe hydrogenase at pH 4 or 6 (signals at higher or lower potential,
respectively), all other things being equal [87]. F: low potential reversible inactivation of
C. reinhardtii FeFe hydrogenase at pH 7 [88]. In all cases here, the absence of current
plateau results from the distribution of interfacial ET rate constants [86, 89, 90].5



for oxidizing or producing H2 is thus qualitatively observed as a larger current89

in one particular direction (fig 2) [94]. (Of course, the rate of H2 evolution90

is likely to be larger under more acidic conditions because the proton is91

the substrate [87, 95], and H2 production is also faster when H2 is removed92

[95, 96]; see fig 2E.)93

A standardized method for measuring the bias (either in solution assays94

or on an electrode) is lacking, but the comparison between various results95

such as those in fig. 2 suggested that NiFeSe [43, 44, 100] and FeFe hy-96

drogenases are better H2-production catalysts than their NiFe counterparts97

(see however ref [22]). The O2-resistant NiFe hydrogenases are essentially98

unidirectional H2-oxidation enzymes whereas the standard (O2-sensitive) en-99

zymes are bidirectional catalysts [101], and certain mutations that strongly100

increase the O2-tolerance of standard NiFe hydrogenase also selectively slow101

H2-evolution [12, 102–104]. Other mutations of amino acids that are remote102

from the active site also alter the bias of NiFe hydrogenases [105–107].103

There is much interest in understanding the bias in relation to the shape104

of the catalytic signal and the properties of the catalytic intermediates. The105

ratio of oxidative and reductive currents is inevitably related to the difference106

between the two-electron “catalytic potential” Ecat and the OCP by eq. 1 in107

box 1, but various models give distinct answers to the question of what defines108

Ecat. Emphasis was often on the role of the redox relays [89, 97, 107] (Box109

1), but there is one clear example from our group where the bias is defined110

by the H2 diffusion rates along the gas channel [104].111

The observed rate of catalysis in either direction is also affected by any112

redox-driven inactivation of the enzyme, unmistakably detected as a hystere-113

sis in cyclic voltammetry at a rotating disc electrode (RDE) [90]. NiFe hy-114

drogenases reversibly inactivate under oxidative conditions [12, 25, 43, 108],115

whereas FeFe hydrogenases inactivate in a complex manner both at high116

[56, 68, 73] and low potential [84, 88] (see e.g. figs 2C, D and F, respec-117

tively).118

Combining electrochemistry and theoretical chemistry119

(Electro)kinetic measurements alone most often cannot give the molec-120

ular mechanism of a reaction whose rate is being measured. An approach121

that has recently gained popularity is to combine electrochemistry and the-122

oretical chemistry [109]. In this context, a seminal PFV paper addressed123

the mechanism of electron/proton transfer to a buried FeS cluster in a small124
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protein [110]: electrochemical experiments identified the “kinetic mechanism”125

(sequential, rather than concerted), and the results of molecular dynamics126

(MD) simulations and site-directed mutagenesis (SDM) experiments could127

be used to describe the molecular details of the reaction.128

More recently, the approach that combines PFV and theoretical calcu-129

lations (DFT and/or MD) proved powerful to decipher the mechanism of130

inhibition of FeFe hydrogenases by formaldehyde [111–113], CO [57, 70], O2131

[57], or under anaerobic oxidative conditions [56]. These studies concern the132

active site mechanism, but also the diffusion along gas channels and binding133

at the active site of small molecules: the rates of these reactions can be mea-134

sured using electrochemistry and sometimes calculated — this was achieved135

with both NiFe [55, 109, 114, 115] and FeFe hydrogenases [54, 57].136

Direct spectroelectrochemistry137

The vibrations of the carbonyl and cyanide ligands at the active sites138

of hydrogenases result from IR absorptions in the 1800-2100 cm−1 region,139

which is devoid of other absorption bands, allowing selective detection of the140

active site. Spectroelectrochemical titrations followed by FTIR spectroscopy141

have identified various states of the active sites, some of which are probably142

catalytic intermediates. The caveat of this approach is that a system that143

reduces protons can only reach equilibrium under a certain pressure of hy-144

drogen that becomes much too large at potentials below E0′ = −0.06×pH.145

For instance, equilibration at −450 mV at pH 7 requires a H2 pressure of146

10 bars, much too high for a spectroelectrochemical cell to withstand. Re-147

cently, various groups have gone beyond equilibrium titrations by combining148

standard catalytic protein film voltammetry with the simultaneous detection149

of the active site spectroscopic signatures of NiFe hydrogenases; this made it150

possible to correlate the features of the catalytic response and specific states151

of the active site, as illustrated below.152

Surface-enhanced infra-red absorption spectroscopy, with NiFe hydroge-153

nases adsorbed onto modified gold electrodes, has been used to relate the154

appearance of the NiB active site signature to the disappearance of activity155

at high potentials [116, 117].156

A significant breakthrough came from the Vincent group in Oxford, who157

combined an attenuated total reflection cell with a volumic carbon black elec-158

trode [118], giving electrochemical signals strongly resembling those obtained159

with a “flat” PGE electrode, with enough sensitivity to characterize species160
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that had previously escaped detection. Vincent and coworkers showed that161

the Ni-L state, long thought to be an artifact of illumination at cryogenic162

temperatures, is one of the possible intermediates of the oxidation of Ni-C163

[32], with which it is in acid-base equilibrium [119]. They could also detect164

for the first time the presence of Ni-R, the most reduced state in the catalytic165

cycle, in R. eutropha regulatory hydrogenase [120].166

Direct photoelectrochemistry167

The active sites of hydrogenases bearing Fe-carbonyl bonds, it is no sur-168

prise that these enzymes are sensitive to light in the UV-vis range. It has169

long been know that exposure to white light reactivates the FeFe hydrogenase170

bound to extrinsic CO, but until recently the photochemistry of hydrogenases171

was much less studied than that of hydrogenase synthetic mimics.172

In spectroscopic investigations, information on the electronic structure173

of the active site is obtained from the knowledge of which wavelengths are174

absorbed by the cluster; in contrast, with the enzyme wired to an electrode,175

one can detect light absorption by monitoring wavelength-dependent light-176

induced changes in turnover rate. This is possible even when the protein or177

chromophores hide the weak absorption that triggers the change in activity.178

By monitoring changes in turnover rate, one is certain to focus on light179

absorption events that impact the catalytic intermediates.180

Regarding FeFe hydrogenases, the first direct photoelectrochemistry ex-181

periments focused on the inhibited form of the active site and the enhance-182

ment of the rate of release of extrinsic CO by white light [68]. More recently,183

we could observe that this enhancement only occurs in the blue part of the184

visible spectrum, and it is proportional to light power; the effect is small185

because the H cluster has very low absorption in the visible range, but the186

quantitative analysis of the electrochemical data demonstrates that every187

photon that is absorbed by the inhibited H cluster induces CO release [72].188

It had also been reported that day-light destroys the H cluster of D.189

desulfuricans FeFe hydrogenase [121], which certainly raises questions as to190

whether FeFe hydrogenases can be coupled to photosensitizers for solar H2191

production. White light photo-electrochemistry experiments with D. desul-192

furicans FeFe hydrogenase gave a less dramatic picture [122]. In the case of193

the enzymes from C. acetobutylicum and C. reinhardtii, recent results demon-194

strate that photoinhibition only occurs upon UV irradiation, which triggers195
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the release of an intrinsic CO ligand followed by irreversible isomerisation of196

the H cluster [123].197

Lojou and coworkers also discovered that irradiation at 405 nm activates198

the O2-tolerant NiFe hydrogenase from A. aeolicus under turnover condi-199

tions [124]. The mechanism and action spectrum of this unprecedented reac-200

tion and the implications regarding the nature of the inactive states of NiFe201

hydrogenases must be explored.202

Conclusion203

The abundant literature in the field of hydrogenase electrochemistry re-204

flects the ease with which catalytic currents are obtained, the variety of the205

mechanistic questions that these studies can answer, the large number of206

applications which rely on wiring hydrogenases to electrodes, nanoparticles207

or photosensitizers [77, 125–128] and, of course, the creativity and combined208

talent of many biochemists and electrochemists. The implications of these209

results are wide, from the understanding of fundamental concepts in electro-210

catalysis to implications for the design of solar-fuel catalysts. We hope that211

they will also prove inspirational in other, related fields of research.212
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Type Source Attachement methods
NiFe A. vinosum PGE/polymyxin [1, 2], Au/polymyxin [3, 4], PGP [5]

D. gigas Au/SAM/CDC [6], GC [7], PGE/CDC [8],
CNT/CDC [9]

D. vulgaris Hildenborough PGE/polylysine [10], basal PGE [11]
D. fructosovorans PGE [12], PGE/CDC [13], CNT[14]
E. coli (Hyd-1) PGE [15], pyrenyl carbon nanostructures [16]
E. coli (Hyd-2) PGE [17], PGP [18]
E. coli (Hyd-3) PGE/CNT/polymixin [19]
E. coli membrane fractions TiO2 [20]
Citrobacter sp. S-77 CC/CB [21]
Synechocystis sp. PCC 6803 PGE [22]
P. furiosus (hydrogenase I) PGE [23]
A. aeolicus PGB [24], PGE [25], Au/SAM [26], CNT [27],

CNF [28], SWCNT/CDC[29]
R. eutropha (MbH) PGE(FAA), AU/SAM [30, 31]
R. eutropha (RH) CB [32]
R. metallidurans CH34 (Rm) PGE [33]
R. eutropha (SH) PGE [34]
T. roseopersicina CB [35], CNT [36], CNF [37], CNF/MPDB [38]
H. marinus Au/CDC [39], GC & Gc/KB [40]

NiFeSe D. vulgaris Hildenborough Au/SAM/CDC [6, 41, 42], PGE [43]
D. baculatum PGE [44], TiO2 NP [45], mesoporous TiO2 [46], SiTiO2 [47]

FeFe C. acetobutylicum TiO2 [48], CF [49], Au/SAM [50], CNT [51, 52], PGE [53–57],
PGE/CDC [58–60], CdS [61–63],
CdTe NC [64], CdTe QD [65], bSi [66]

C. perfringens TiO2 [67]
D. desulfuricans PGE [54, 55, 68], PGE/CDC [59]
C. reinhardtii Au/SAM [69], PGE [54, 59, 70], PGE/CDC [58]
M. elsdenii GC [71], PGE[72]
A. woodii PGE [73]

Table 1: The hydrogenases that have been directly connected to electrodes, and the natures
of the electrodes used in these studies. bSi: nanoporous black silicon CC/CB: carbon
black on carbon cloth, CDC: carbodiimide coupling, CF: carbon felt, NC: nanocrystals,
NP: nano-particles, GC: glassy carbon, GC/KB: Ketjen black-modified GC, CNT: carbon
nanotubes, CNF: carbon nanofibers, MPDB: electropolymerized pyrrol, PGE: pyrolytic
graphite edge [74], PGB: basal plane of PG, PGP: PG particles, QD: quantum dots,
SAM: self assembled monolayers,
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If the steady-state catalytic wave shape is sigmoidal, as observed in the case of
hydrogenases, a simple equation relates the two-electron “catalytic potential”
Ecat, the open circuit potential (Nernst potential of the H+/H2 couple), and
the catalytic bias:

iox
ired

= exp

[
2F

RT
(Ecat − EOCP)

]
(1)

The value n = 2 comes from the stoichiometry of the redox reaction, and
eq. 1 results from the condition that i = 0 at the OCP.

➤
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For a two-electron redox reaction, if the catalytic signal is a two-electron
sigmoid (left panel), Ecat in eq. 1 is the mid-wave potential; if the wave
consists of two one-electron waves (right panel), Ecat is the average value
of the two mid-wave potentials. In intermediate cases or if the signal is
broadened by slow interfacial ET, Ecat must be determined by fitting [90].
Verifying eq 1 in a particular case does not give an explanation for the bias.
What matters is the reason Ecat takes a particular value. According to models
that only take into account one relay (no active site, no redox chain, no
kinetics of intramolecular ET), Ecat can only equate the potential of the
unique redox center in the model, the relay [97]; this was taken as evidence
that the difference between the potential of the entry/exit relay and the OCP
defines the catalytic bias [98]. In contrast, according to models that take
into account reversible catalysis, one-electron mediation, and two-electron
active-site chemistry, the two-electron potential Ecat cannot strictly equate
the one-electron potential of any of the redox relays [89]; Ecat tends to the
potential of the active site if intramolecular ET is very fast, but its value is
influenced by the kinetics and thermodynamics of intramolecular ET, and
the kinetics of all steps in the catalytic cycle that are coupled to active site
redox chemistry [89, 90, 99].
Box 1: The relation between catalytic overpotential and the catalytic bias,
when the catalytic signal is sigmoidal.
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