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Abstract: Coral reef lagoons of New Caledonia form the second longest barrier reef in the world.
The island of New Caledonia is also one of the main producers of nickel (Ni) worldwide. Therefore,
understanding the fate of metals in its lagoon waters generated from mining production is essential to
improving the management of the mining activities and to preserve the ecosystems. In this paper, the
vertical fluxes of suspended particulate matter (SPM) and metals were quantified in three bays during
a dry season. The vertical particulate flux (on average 37.70 ± 14.60 g·m2·d−1) showed fractions
rich in fine particles. In Boulari Bay (moderately impacted by the mining activities), fluxes were
mostly influenced by winds and SPM loads. In the highly impacted bay of St Vincent and in the
weakly impacted bay of Dumbéa, tide cycles clearly constrained the SPM and metal dynamics. Metals
were associated with clay and iron minerals transported by rivers and lagoonal minerals, such as
carbonates, and possibly neoformed clay as suggested by an unusually Ni-rich serpentine. Particle
aggregation phenomena led to a reduction in the metal concentrations in the SPM, as identified by
the decline in the metal distribution constants (Kd).

Keywords: suspended sediment; sediment transport; lagoon; geochemistry; Ni mining; sediment
trap; hydrodynamics; New Caledonia; dry season

1. Introduction

The mining industry in New Caledonia is one of the most important environmental concerns for
the tropical island lagoonal ecosystem [1–9].

With about 85% endemism among terrestrial plants, 24 different species of mangroves among the
70 listed throughout the world, about 2800 species of molluscs and the second longest barrier reef in
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the world [10–15], New Caledonia’s ecosystems and biodiversity are highly sensitive to anthropogenic
activities (e.g., [16–23] for its lagoons). Since the beginning of mining in New Caledonia, more
than 160 × 106 tonnes of ore have been extracted. This has led to the mobilization and transport of
approximately 300 million m3 of soil material (laterites). Opencast Ni mines have enhanced soil erosion
and transportation of sediments and metals into the lagoon [19,24–27] with several consequences on
the lagoonal ecosystems, including increased sedimentation rates; decreased light penetration and
dissolved oxygen levels; and an increased metal contamination in the food web which may affect
humans [23,28,29]. The Ni mining industry has flourished for over 25 years, and New Caledonia will
remain one of the major worldwide Ni producers for the foreseeable future, with global Ni reserves
estimated at around 20–25% [30]. As a consequence, environmental studies are required in order
to mitigate the effects of 400–500 km2 of deforestation specifically related to the mining industry in
New Caledonia.

Numerous studies of the south-western lagoon of New Caledonia have been conducted
investigating hydrodynamics, sediment transport, sedimentation dynamics, metal fluxes, accumulation
zones, and particle sources [23,27,31–37]. In complement to these works, this paper aims at
characterizing the suspended sediment mineralogy and geochemistry (including metals) in three
bays; analysing the relationships between their composition and the mining activities; determining
how hydrodynamics forced by wind regimes affect the transportation of particulate metals bounded to
the lateritic Suspended Particulate Matter (SPM) into the lagoon. Three contrasting bays in the south
west lagoon, where hydrodynamics modelling has been carried out [38–40] were selected: Boulari Bay,
Dumbéa Bay and Saint Vincent Bay. Samples were collected during a dry season in order to limit the
influence of riverine inputs which could affect the understanding of hydrodynamic regimes, during
distinct wind regimes (trade wind and west-breezes) and two neap/spring tide cycles.

2. Study Area

New Caledonia is located at the southern end of the Melanesian Arc, near the Tropic of
Capricorn. In New Caledonia, mining activities are almost exclusively conducted on the main island
(16,642 km2, [41]). In its south-western part, host rocks are composed of peridotites and harzburgites
incorporating metals like Ni, Co, Cr, Fe and Mn [42,43] in Mg and Fe-minerals. Elements like Pb and Zn
are only present in significant quantities in rocks from the northernmost part of the island [44–49]. The
weathering of peridotites results in the accumulation of transition metals in the saprolite (also called
“garnierite”) and the yellow lateritic layers which are subjected to mining extraction. On the top of the
series, the red lateritic layer corresponds to a more advanced weathering state of the peridotites where
the structure of the bedrock is no longer visible [50]. Mg and Si are very low and the main constituents
are ferric hydroxides more or less widely crystallized in goethite. In the upper part of the profile, the
ultimate term of the weathering process is represented by a ferricrete composed mostly of goethite
and, in lower proportions, hematite.

The climate of New-Caledonia is dry-tropical [51] with alternating dry and wet seasons.
South-East trade winds blow from October to May with a mean speed of 8 m·s–1 and from April to
September a variable northern wind blows. The temperatures vary moderately between dry and
wet seasons.

In the south-west lagoon of New Caledonia, the tide is mixed and mainly semi diurnal [38].
Due to the interaction between the different components, spring tide and neap tide periods alternate
during a lunar month. The maximum tidal amplitude is 1.5 m during a spring tide.

Similar to most of the New Caledonian Rivers, the Coulée, Dumbéa and Tontouta Rivers have
steep upper courses and much flatter lower courses where deposits of weathered bedrock products
accumulate (Figure 1). Due to the tropical climate conditions in New Caledonia, the hydrological
regime is of torrential type. During the dry season, sediment loads carried by the rivers are low because
of the low energy for erosion and the weak transport capacity [52,53]. Rain events reaching 700 mm
and more over a 24-h period lead to intense weathering of the slopes and flushing of large quantities
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of suspended matter to the lagoon. Baltzer and Trescases [52] reported that during cyclone Brenda
in 1968, over 20,000 t of particles were discharged in a single day through the Dumbéa River estuary.
The present study focuses on the three above-mentioned estuaries located on the south-west coast of
New Caledonia influenced by their respective watersheds (Figure 1).Water 2017, 9, 338 3 of 24 
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mudflats are being formed. 
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Figure 1. Map location of the study area in the west coast of New-Caledonia: Boulari Bay, influenced
by a medium-scale mine activities until 1981; Dumbéa Bay, halted mining activity in order to maintain
the water supply of Nouméa (the peninsula between Dumbéa Bay and Boulari Bay); St Vincent Bay,
affected by intense opencast mining activities.

2.1. Boulari Bay

The Coulée River catchment (92 km2) is located almost entirely in the ultrabasic Grand Massif of
the South New-Caledonia. An intermediate-scale mining operation was active in the area until 1981,
but erosion from the initial prospecting and extraction sites has continued. The present terrigenous
inputs delivered to Boulari Bay by the Coulée River result from combined natural and anthropogenic
influences [19,25]. The river is extending its delta into the southern part of Boulari Bay where tidal
mudflats are being formed.

2.2. Dumbéa Bay

The catchment area of Dumbéa River covers about 233 km2 and only a few small-scale localized
garnierite extractions have occurred in the headwater regions. Similar to other drainage basins near
the main city, Nouméa, any mining activities in the area have been forbidden since 1927 to maintain a
quality water supply for the city. The sediment load yielded at the river mouth—where a mangrove
extends—and delivered to Dumbéa Bay consists of clay, silts and sand, and the effects of mining
activities have been limited [25,26].
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2.3. St Vincent Bay

The Tontouta River and its tributaries form the largest of the three river catchments (476 km2) and
drain a peridotic hinterland where opencast mining is still intense today. These activities extend to the
mountain crests, and on hillslopes, only a few kilometres from the coast. The Tontouta River carries
substantial amounts of fine terrigenous material that has resulted in a shallowing of the Saint Vincent
Bay, particularly nearshore. The impact of mining activities appears to be stronger than in the Coulée
catchment because of the lack of conservation work along the river and tributaries between 1960s and
1980s. This has led to a drastic increase in the sediment load at the river mouth.

3. Materials and Methods

During the dry season between 21 November and 14 December, 2005, SPM was sampled in the
three bays every two days, and currents were measured continuously (Figure 1, Table 1). Rainfall
rates, and wind direction and velocity were obtained from Météo-France’s meteorological stations
at Magenta airport, Mont Coffin and Tontouta airport close to Boulari Bay, Dumbéa Bay and Saint
Vincent Bay, respectively.

Table 1. Sampling sites, depth and localisation.

Site Longitude Latitude Depth (m)

Boulari Bay E 166◦32.126 S 22◦15.355 13.2
Dumbéa Bay E 166◦23.243 S 22◦12.291 13.0

St Vincent Bay E 166◦06.635 S 22◦00.561 12.8

3.1. SPM Sampling

Three sequential sediment traps (model PPS 4/3; section of 0.05 m2, Technicap, La Turbie, France)
were used for suspended particulate matter (SPM) sampling. They were moored at sites of ~13 m
depth downstream of the mouth of the Coulée, Dumbéa and Tontouta Rivers (Figure 1, Table 1).
Samples were collected at a frequency of 48 h, 3 m above the seabed. The sediment traps were
equipped with twelve 250 mL polypropylene vials filled with 5% formaldehyde-filtered seawater
solution before mooring in order to preserve the particles from microbiological activity [54]. After
sampling, the samples were placed in a refrigerator at 2–4 ◦C before analysis. Particles fluxes were
calculated using the formula:

Flux (g·m–2·d–1) = sample load (g)/(Section area (m2) * Collecting time (d) per flask) (1)

3.2. Current Measurement

Currents were measured using an Acoustic Doppler Current Profilers (RDI Workhorse Monitor
ADCP, Teledyne RD Instruments, Poway, USA 300 kHz, 12 cells, 1-m resolution) placed on the seabed
in Dumbéa and St Vincent Bays (Figure 1). In Boulari Bay, local currents were measured using an
Acoustic Doppler Velocimeter (Sontek) located 3 m above the seabed. Moored in the vicinity of
the 3 sediment traps, the three current meters simultaneously recorded measurements during the
SPM sampling period (one month). Unfortunately, due to technical problems, measurements are not
available for Dumbéa Bay during the last ten days of the field campaign.

3.3. In Situ Laser Grain Size and CTD Profiling

Turbidity was measured regularly at each station by the use of a Seapoint Optical Backscattering
Sensor (Seapoint Sensors, Inc., Brentwood, NH, USA) (λ = 880 nm) connected to a Seabird SBE19 CTD
profiler. The Seapoint sensor was factory-adjusted for a consistent response to Formazin Turbidity
Standard measured in Formazin Turbidity Units (FTU). A former calibration showed that, in the



Water 2017, 9, 338 5 of 24

south-west lagoon of New Caledonia, turbidity is related to the mass concentration (C) of SPM
following [55]:

Turbidity (FTU) = 1.85 C (mg·L–1) (2)

An in situ Laser Scattering and Transmissometry device (LISST-100X; Sequoia Scientific Inc.,
Bellevue, WA, USA) was used in situ to quantify the SPM and the Particle Size Distribution
(PSD). The LISST-100X provides the distribution of particle volume concentrations in 32 size classes
logarithmically spaced within the range 1.25–250 µm (e.g., [56]). Jouon et al. [55] gave an extended
presentation of its first application in the lagoon of New Caledonia.

Synthetic parameters were defined to characterize the particle distribution: (1) the median
diameter (D50) as the diameter of a particle for which the cumulative volumetric distribution reaches
50% of the SPM volume concentration; (2) the Junge parameter (s) characterizing the slope of the
particle size distribution (PSD) (e.g., [57,58]): high values correspond to SPM dominated by fine
particles or aggregates, while low values correspond to macro-flocs; (3) the percentage of particles
with diameter > 60 µm that was shown to be an indicator of the state of aggregation [55].

3.4. Geochemistry

All apparatus was acid soaked (10% nitric acid) for a minimum of five days and rinsed with
ultrapure water (Milli-Q), and then stored in acid cleaned plastic bags until needed. While analytical
acid grades were used for all cleaning steps, high purity reagents were used for all parts of the
analytical procedure.

Seawater samples: Seawater was collected from the three bays using 5L teflon lined Go-Flo™ water
samplers (General Oceanics Inc., Miami, FL, USA). The Go-Flo™ water samplers were primed to
be open at the site and lowered into the water, rinsed thoroughly and closed using a teflon-coated
messenger. Once at the surface, samples were transferred in situ into acid cleaned HDPE bottles and
sealed in clean plastic bags. After an on-line filtration at 0.45 µm (Millipore acetate filters, Merck
Millipore, Billerica, MA, USA), samples were then preconcentrated and analysed using ICP-OES
following the procedure described by Moreton et al. [35]. Only the results for Fe, Mn and Ni, which
represent the main elements used to trace watershed lixiviation, are presented in this article.

The accuracy and precision of the analytical results was controlled by assaying a SLEW-3 certified
water sample (National Research Council, Canada), to check the preconcentration method. The stability
of the ICP-OES was controlled inserting independent standards in the sample series: in our case, one at
the beginning and one at the end. The quantification limits (LQ) of the method for the 3 metals,
obtained after deduction of blanks, are given in Table 2.

Table 2. Results of the analysis of the reference material SLEW-3 and LQ of the method.

Metal
Reference Material SLEW-3 (µg·L–1)

LQ (µg·L–1)
Analysed (n = 1) Certified

Fe 0.32 0.57 ± 0.06 0.068
Mn 1.92 1.61 ± 0.22 0.028
Ni 1.17 1.23 ± 0.07 0.022

Particulate samples: Swimmers were removed from SPM collected at each site with sediment traps
by sieving at 40 µm. The formaldehyde solution and salt were removed by rinsing several times and
centrifuging. Organic matter and faecal pellets were destroyed using a solution of 30% hydrogen
peroxide. The purified sediments were then oven dried at 60 ◦C for a period of 72 h.

Particulate metals were then dissolved by an alkaline fusion digestion performed using 0.5 g of
lithium tetraborate mixed with 100 mg of SPM and heated in a muffle furnace (1100 ◦C) for 15 min.
The resulting amalgam was dissolved into 0.5M HCl, and the metals analysed.
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Analysis of 9 elements (Al, Ca, Co, Cr, Fe, Mg, Mn, Ni and Si) in SPM was performed using an
inductively coupled plasma optical emission spectrometer (Vista, Varian, Inc., Palo Alto, CA, USA).

The validity of the analysis was verified by assaying a MESS-3 certified sediment sample (National
Research Council, Canada). The quantification limits (LQ) of the method for the 9 metals, obtained
after deduction of blanks, are given in Table 3.

Table 3. Results of the analysis of the reference material MESS-3. The Quantification Limits of the
method were not estimated because of the high levels of concentrations measured in SPM.

Reference Material MESS-3 (mg·kg−1·dw)

Metal Analyzed Certified

Al 90,053 85,900 ± 2300
Ca 13,746 14,700 ± 600
Co 15.2 14.4 ± 2.0
Cr 97 105 ± 4
Fe 37,815 32,400 ± 1200

Mg 16,905 16
Mn 308 324 ± 12
Ni 40.6 46.9 ± 2.2
Si 232,765 270,000 *

Note: * Information value only.

3.5. Kd Calculation

Trace metal mobility in the lagoon water column was quantified through its distribution coefficient
(Kd, in mL·g−1), given by the following general formula:

Kd =
Cp

Cw
(3)

with Cp = metal concentration in SPM, Cw = dissolved metal concentration in sea water.

3.6. Mineralogy

The mineralogical composition of the suspended sediments was determined using X-ray
diffractometry (XRD), and Transmission Electron Microscopy (TEM). XRD analyses were done on
slightly ground samples using Philips (PW1050/81) equipment (Philips, Eindhoven, The Netherlands)
with a Cu anticathode. TEM observations were carried out on a JEOL-2000 FX microscope (JEOL USA,
Inc., Peabody, MA, USA), operating with a beam intensity of 126 mA and an accelerating voltage of
200 kV. Microanalyses were acquired with a Si(Li) detector filled with a UTW and a Brucker Esprit
EDS System. Quantitative data were obtained by the method developed by Cliff and Lorimer [59] after
calibration of the kx,Si factors (x = Al, Mg . . . ) against natural and synthetic layer silicates of known
and homogeneous composition.

4. Results

4.1. Rainfall

During the study period (21 November to 14 December 2005), rainfall was low, scarce and
irregular over all 3 sites. Only one day of significant rainfall (12 December) was recorded at the
meteorological stations at Magenta airport (18 mm) and Mont Coffin (10 mm). At the Tontouta airport
station, the maximum rainfall was 6 mm on 9 December. Besides this, only 2 mm were recorded at the
3 stations on the 20 and 21 November and on 26 November. Generally, rainfall at the Tontouta station
was systematically lower than at the two other stations.
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4.2. Wind

The meteorological stations at Magenta airport (near Boulari Bay) and Mont Coffin
(between Dumbéa Bay and Boulari Bay, but representative of Dumbéa Bay conditions) recorded
mainly two distinct regimes (Figure 2):

• A typical dominant trade wind regime during the study period, with the direction changing from
NE during the night to SE in the day, increasing in strength until the beginning of the afternoon
and reaching a maximum of 10 m·s–1 (periods B, D);

• A regime characterized by variable and weaker winds (below 5 m·s–1) (periods A, C and E).

The meteorological station at Tontouta airport (St Vincent Bay) recorded winds that were
systematically weaker than those recorded at Magenta airport (Boulari Bay) and Mont Coffin
(Dumbéa Bay). In the Saint Vincent Bay, wind speeds were lower than 6 m·s–1 and wind direction was
irregular. In this area, trade winds are weakened by relief and coastal thermal breezes.
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study period (21 November to 14 December 2005).

4.3. Hydrodynamics

During the study period, the amplitudes of the semi-diurnal tides changed from 0.6 to 1.2 m.
Neap tide periods are identified in Figures 2 and 3.



Water 2017, 9, 338 8 of 24

Water 2017, 9, 338 8 of 24 

 

 

Figure 3. Median diameter (D50), Junge parameter (s), flux and turbidity for Boulari, Dumbéa and St 
Vincent bays over the study period (21 November to 14 December 2005), 3 m above the seabed. 

In Boulari Bay, the neap/spring tide cycles had a non-significant influence on the currents 
measured 3 m above the seabed (Figure 2). In the absence of trade winds (periods C and E), a strong 
westward flow was observed during several days and may indicate the development of a cyclonic 
gyre circulation along the isobaths from Mont-Dore (SW of Boulari Bay) towards Nouméa (as 
described by Fernandez et al. [27]). This gyre results from the conjunction of the propagation of the 
tide along the coastline of the bay. During trade winds (periods B and D), which blew from an E-NE 
direction in the Coulée River valley in the morning and from the SE in the afternoon, an anticyclonic 
gyre generated flows toward the East (as described by Douillet et al. [39]). However, during short 
periods (28 and 30 November and 2 December), flows in the opposite direction were observed. The 
present data suggest the strong impact of winds on currents in Boulari Bay, and the formation of a 

Figure 3. Median diameter (D50), Junge parameter (s), flux and turbidity for Boulari, Dumbéa and St
Vincent bays over the study period (21 November to 14 December 2005), 3 m above the seabed.

In Boulari Bay, the neap/spring tide cycles had a non-significant influence on the currents
measured 3 m above the seabed (Figure 2). In the absence of trade winds (periods C and E), a strong
westward flow was observed during several days and may indicate the development of a cyclonic gyre
circulation along the isobaths from Mont-Dore (SW of Boulari Bay) towards Nouméa (as described
by Fernandez et al. [27]). This gyre results from the conjunction of the propagation of the tide along
the coastline of the bay. During trade winds (periods B and D), which blew from an E-NE direction
in the Coulée River valley in the morning and from the SE in the afternoon, an anticyclonic gyre
generated flows toward the East (as described by Douillet et al. [39]). However, during short periods
(28 and 30 November and 2 December), flows in the opposite direction were observed. The present
data suggest the strong impact of winds on currents in Boulari Bay, and the formation of a drive out
phenomena of waters which were accumulated at the bottom of the bay only when trade winds blow.
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In Dumbéa Bay, the strong tidal influence and the weak effects of the wind on the direction and the
strength of the currents 3 m above seabed were noticed: flows were the highest during spring tides and
lowest during neap tides (Figure 2). Furthermore, currents were similar at the same periods of the tide
but with different wind forcings, for example, during a neap tide, with low wind (20 and 21 November)
and with a trade wind (3 and 4 December). This suggests that the wind has little influence on the water
circulation in an area that is partly protected from the trade winds by the topography.

In St Vincent Bay, the strength of the currents 3 m above the seabed strongly depended on tide
cycles (Figure 2); currents rotated 180 degrees during a neap-spring tide cycle, the currents being
stronger during spring tides and lower during neap tides. The weakest flows were measured between
24 to 27 November and 24 to 27 December during neap tides. The strongest currents were recorded
during spring tides around 3 December. Tides are thus the major factor influencing hydrodynamics in
St Vincent Bay. A residual drift of the current to the S-W was observed; however, its value was low.

4.4. SPM Collection

In Boulari Bay, the SPM load collected over 48-h periods ranged between 1.72 and 3.16 g,
corresponding to downward fluxes in the range 17.23 to 31.63 g·m–2·d–1 (Table 4), with an average
value of 24.14 g·m–2·d–1 (σ = 4.50 g·m–2·d–1). The maximum fluxes were recorded over the period of
4 days from 25 to 28 November (F > 30 g·m–2·d–1) and the minimum on 23 to 24 November and 29 to
30 November (F ≈ 17 g m–2·d–1).

Table 4. Mass (g) of suspended particulate matter collected over 48 h in sediment traps in the three
sampling bays during the study period (21 November to 14 December 2005).

Date Boulari Bay Dumbéa Bay St Vincent Bay

21–22 November 2.21 1.29 4.83
23–24 November 1.72 2.16 2.53
25–26 November 3.16 2.84 3.07
27–28 November 3.03 3.19 1.96
29–30 November 1.74 2.26 1.51

1–2 December 2.12 2.78 2.52
3–4 December 2.79 1.95 5.15
5–6 December 2.27 2.09 3.32
7–8 December 2.64 2.20 5.17
9–10 December 2.35 1.90 5.50

11–12 December 2.51 2.30 5.55
13–14 December 2.40 1.71 4.12

In Dumbéa Bay, the SPM load was similar to that of Boulari Bay with fluxes between 12.92 and
31.93 g·m–2·d–1, and a mean value of 22.24 g·m–2·d–1 (σ = 5.20 g·m–2·d–1). The maximum fluxes were
recorded over the period of 4 days from 25 to 28 November (F ≈ 32 g·m–2·d–1) and the minimum on
22 November (F ≈ 13 g·m–2·d–1).

The values in St Vincent Bay were clearly different with a higher average value of 37.70 g·m–2·d–1

(σ = 14.60 g·m–2·d–1). Variations around the average value were large with frequent loads higher than
50 g·m–2·d–1. Except on 21 and 22 November, the first half of the sampling period was characterised
by low fluxes (15 < F < 31 g·m–2·d–1) and from 4 December onwards, the values were much higher
(33 < F < 56 g·m–2·d–1).

For each bay, variations in the fluxes, turbidity, D50 (mean diameter of SPM from measurements
in the range 1.25–250 µm) and Junge parameter (s) during the study period are presented in Figure 3.

4.5. Turbidity, Water Column Structure, and Particle Dynamics

Turbidity was systematically higher in the bay of St Vincent with an average value of 2.8 FTU,
compared with average values around 2.0 FTU in the other two bays (Table 5).
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In Boulari Bay between 21 and 24 November, the median diameter (D50) increased from 45 to
64 µm while the Junge parameter (s) decreased from 3.75 to 3.48 (Figure 3). While fine particles
dominated initially, coarser and medium sizes suddenly increased (24 and 25 November) two days
after the beginning of the trade-winds. After 25 November, the decrease of D50 was fairly constant
up to the end of the study period, when the value reached 42 µm. Conversely, the Junge parameter
increased until December 2 (s = 3.63), then decreased gradually up to 12 December and then increased
sharply until December 14. The downward flux of particles increased just after the peak of coarser
particles (26 November) and slightly decreased afterwards (Figure 3). Although generally ranging
between 1 and 3 FTU, turbidity showed values around 7.5 FTU in the bottom first four metres above
seabed, at the beginning of the study period. Another nepheloid layer, of weaker intensity (4.5 FTU),
was also observed around 7 December. The particle grain size distribution was fairly homogeneous
throughout the water column during the study period except on the 12 and 14 December when the
concentration of fine particles (<7.75 µm) increasing towards the seabed was observed.

Table 5. Main characteristics (mean temperature, salinity and turbidity) recorded in the three sites
during the study period (21 November to 14 December, 2005).

Site Statistics Temperature (◦C) Salinity (‰) Turbidity (FTU)

Boulari Bay Mean ± Std Dev.
Min.–Max.

26.0 ± 0.6
25.3–27.5

35.9 ± 0.3
35.4–36.9

2.1 ± 1.1
0.5–7.6

Dumbéa Bay Mean ± Std Dev.
Min.–Max.

26.5 ± 0.5
24.8–27.6

36.1 ± 0.1
35.3–36.6

2.0 ± 0.9
0.5–5.5

St Vincent Bay Mean ± Std Dev.
Min.–Max.

26.9 ± 1.0
25.3–28.8

36.1 ± 0.1
35.2–36.5

2.8 ± 0.8
1.4–7.8

In Dumbéa Bay, the evolution of the median diameter and the Junge parameter were almost
inversely related (Figure 3): for example, the two maximum values of D50 measured on 25 November
(82 µm) and 6 December (79 µm) corresponded with the minimal values of s (3.32 and 3.28), respectively.
Turbidity stayed fairly homogeneous throughout the water column, but decreased with time from
3.2 FTU to 0.8 FTU. Only two profiles (11 November and 12 December) showed a clear increase in
turbidity towards the bottom. A general decrease in the volumetric concentration, detected between
24 November (10 µL·L–1) and 14 December (5 µL·L–1), combined with a decrease in turbidity, was
caused by a reduction in the largest particle-size ranges (∅ > 40.6 µm). After 9 December, the reduction
in the volumetric concentration was due to a decrease in both the smallest (∅ < 7.75 µm) and largest
particle-size (∅ > 40.6 µm) populations. At the very end of the measurement period, an increase in
the amount of fine particles (∅ < 7.75 µm) was observed at depth, with large particles (∅ > 40.6 µm)
towards the surface.

In St Vincent Bay, the minimum median diameter (42 µm) was measured at the beginning of the
study period (24 November) (Figure 3). D50 increased gradually until 7 December (85 µm) with an
intermediate maximum value observed on 30 November (76 µm). From the 9 to the 12 December,
the median diameter increased from 62 to 70 µm. The Junge parameter followed an exact opposite
evolution. The maximum value was 3.70 on 24 November and the minimal value was 3.25 on
7 December. From the 9 to the 12 December, the parameter s decreased from 3.46 to 3.38. Turbidity
ranged between 1.5 and 3.0 FTU in the first few metres below the surface. From 2 December until the
end of the study period, turbidity systematically increased towards the seabed with a consistently
higher total volumetric concentration. A significant population of particles above 40 µm and high
downward fluxes of particles were observed throughout the study period (Figure 3). High downward
fluxes varied similar to turbidity after a short delay.

The values of the median diameter and the Junge parameter strongly differed from one bay to
another (Figure 3). D50 values ranged between 42 and 65 µm in Boulari Bay (median D50 = 48.9 µm),
between 55 and 82 in Dumbéa Bay (median D50 = 66.8 µm) and between 42 and 84 µm in St Vincent
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Bay (median D50 = 63.4 µm). The Junge parameter s values ranged between 3.45 and 3.73 in Boulari
Bay (median s = 3.58), 3.28 and 3.48 in Dumbéa Bay (median s = 3.38) and 3.25 and 3.70 in St Vincent
Bay (median s = 3.45). The s parameter variation was minimal in Dumbéa Bay and maximal in
St Vincent Bay, the variation of D50 was minimal in Boulari Bay and maximal in St Vincent Bay.

4.6. Geochemistry

The chemical composition of the seawaters in the 3 bays (Table 6) differed in their dissolved Fe,
Mn and Ni concentration. The respective highest and the lowest concentrations were measured in
St Vincent Bay and in Boulari Bay. Fe and especially Mn were found at much lower concentration
than Ni.

These values are high but reflect the influence of the geology of New Caledonia on the
concentrations in dissolved metals. The values show a typical “coast-to-offshore” gradient, with
maximum concentrations in bays influenced by rivers and minimum near the coral reef-barrier
(Table 7). This evolution is similar to that of the lateritic metals analysed in the sedimentary cover [27].

During the study, Mn concentrations were similar for the 3 bays, with limited variation between
0.33 to 1.24 µg·L–1. The respective Fe and Ni ranges were larger, i.e., 0.23–2.65 µg·L–1 and 0.95 to
7.10 µg·L–1 in the 3 bays. Indeed, in Boulari Bay, the maximum Fe values were measured on 24 and
30 November, and were slightly higher on 8 December, and seemed to coincide with those of Ni. For
the other two bays, the concentrations of theses metals changed differently over time. For example,
for Ni, maximum concentrations were measured on 24 November, 2 December and 22 November, for
Boulari, Dumbéa and St Vincent bays, respectively.

Table 6. Concentration of the dissolved Fe, Mn and Ni in seawater during the study period from
22 November to 14 December 2005 in the 3 bays.

Sampling Date
Boulari Bay Dumbea Bay StVincent Bay

Fe
(µg·L−1)

Mn
(µg·L−1)

Ni
(µg·L−1)

Fe
(µg·L−1)

Mn
(µg·L−1)

Ni
(µg·L−1)

Fe
(µg·L−1)

Mn
(µg·L−1)

Ni
(µg·L−1)

22 November 2005 0.58 0.66 2.00 0.73 0.56 2.87 1.09 0.73 7.10
24 November 2005 1.19 0.40 3.92 0.74 0.59 1.30 1.33 0.80 5.49
26 November 2005 0.70 0.48 2.11 1.41 0.46 2.87 1.43 1.07 4.86
28 November 2005 0.24 0.45 1.17 0.64 0.49 3.84 1.59 1.24 5.11
30 November 2005 1.38 0.35 1.60 1.07 0.57 4.52 2.51 0.96 1.95
2 December 2005 0.69 0.33 1.06 1.07 0.55 4.04 1.87 0.96 2.45
6 December 2005 0.32 0.45 1.31 0.77 0.55 3.65 1.43 0.67 3.23
8 December 2005 0.55 0.60 1.70 1.30 0.58 3.35 2.65 1.06 4.92
10 December 2005 0.40 0.53 1.18 0.91 0.57 2.77 1.99 0.88 4.71
12 December 2005 0.30 0.46 0.95 0.23 0.73 1.99 0.71 0.40 6.50
14 December 2005 0.28 0.69 1.24 0.30 0.57 1.78 0.95 0.61 4.87

Min 0.24 0.33 0.95 0.23 0.46 1.30 0.71 0.40 1.95
Max 1.38 0.69 3.92 1.41 0.73 4.52 2.65 1.24 7.10

The analytical results showed that the SPM collected in St Vincent Bay had a distinctly different
chemical composition to that of the other two bays (Table 8 and Figure 4). Indeed, in St Vincent Bay’s
SPM, 7 of the 9 analysed metals (Co, Cr, Fe, Mg, Mn, Ni, Si) were highly enriched, up to one order of
magnitude (e.g., Co, Ni or Mn) compared with the two others sites. Only the behaviour of Ca differed,
being slightly more concentrated in the SPM collected in Dumbéa Bay, particularly during the second
half of the sampling period (Figure 4).

In terms of intra–site variability, the metal and Ca concentrations remained relatively constant in
St Vincent Bay’s SPM, while they evolved in Dumbéa Bay and particularly in Boulari Bay (Figure 4).
This time-variation started with high metal concentrations at the beginning of the study period
(21 and 22 November) followed by a strong decrease over a 4-day period (23 to 27 November) before
increasing to the highest values at the end of the sampling period. This increasing trend was irregular
in Dumbéa Bay, where the highest concentrations were observed from 4 December, while in Boulari
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Bay, the increase was slight but continuous to reach the maximum values for all the metals and Ca on
14 December. The mean concentrations increased about 2, 3 and 5 times, in St Vincent, Dumbéa and
Boulari bays, respectively.

Table 7. Concentrations of dissolved Fe, Mn and Ni in bays and coral reef barrier (n = 965). Analysis
carried out between November 2013 and August 2016 in the frame of marine environmental monitoring
along the west coast of New Caledonia (unpublished environmental monitoring data of the surrounding
area of the KNS plant). Observed especially in the shallow bays, the extreme Std Deviations demonstrate
the high variability of the metal concentration levels generated by the lixiviation of the exploited basins.

Location Fe (µg·L−1) Mn (µg·L−1) Ni (µg·L−1)

Bays (n = 288) 0.241 ± 0.444 4.565 ± 9.802 2.904 ± 4.700
Intermediate (n = 315) 0.123 ± 0.095 0.422 ± 0.659 0.322 ± 0.423

Reef (n = 362) 0.058 ± 0.061 0.103 ± 0.095 0.115 ± 0.100
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Figure 4. Time variation of the Ca and the 8 metals analysed in SPM trapped during study period
from 21 November to 14 December, 2005 in each sampling site: (a) Boulari Bay; (b) Dumbéa Bay and
(c) St Vincent Bay.

Table 8. Minimum and maximum concentrations for the analysed elements in SPM trapped during
study period from 21 November to 14 December 2005 in each sampling site.

Concentration (mg kg–1) Al Ca Co Cr Fe Mg Mn Ni Si

Boulari bay Min 1930 12,990 13 208 690 15,874 87 195 4750
Max 11,520 53,710 76 1209 51,820 29,169 568 1157 31,850

Dumbéa bay Min 6740 33,060 24 306 17,420 17,672 183 473 25,830
Max 22,740 119,600 78 1025 58,190 32,064 765 1332 86,590

StVincent bay Min 11,220 38,360 105 1204 64,670 43,684 844 2033 63,780
Max 18,440 73,950 164 1856 97,900 51,051 1459 3012 102,940

For each bay, variations in elements concentrations were remarkably correlated (R2 > 0.850) except
for (Table 9): (i) Mg, where concentrations showed poor correlations with other SPM metals in Dumbéa
Bay (mean R2 ≈ 0.480) and no correlation in Boulari Bay (mean R2 ≈ 0.223); (ii) Ca and all the other
metals in St Vincent Bay (mean R2 ≈ 0.534), and, to a lesser extent, in Dumbéa Bay (mean R2 ≈ 0.710),
and with Mg in Boulari Bay (R2 = 0.236).

Table 9. Correlation coefficients (R2) for Ca, Mg, Fe, Co, Cr, Mn, Ni, Al and Si concentrations in the
suspended matter trapped from 21 November to 14 December in each sampling site: (a) Boulari Bay,
(b) Dumbéa Bay and (c) St Vincent Bay.

Boulari Bay

Ca Mg Fe Co Cr Mn Ni Al Si

Ca 1 0.236 0.994 0.989 0.987 0.988 0.988 0.995 0.993
Mg 1 0.221 0.223 0.217 0.248 0.209 0.233 0.212
Fe 1 0.998 0.994 0.995 0.993 0.999 0.993
Co 1 0.996 0.998 0.994 0.995 0.986
Cr 1 0.992 0.992 0.993 0.983

Mn 1 0.991 0.994 0.984
Ni 1 0.991 0.982
Al 1 0.996
Si 1

(a)



Water 2017, 9, 338 14 of 24

Table 9. Cont.

Dumbéa Bay

Ca Mg Fe Co Cr Mn Ni Al Si

Ca 1 0.688 0.702 0.701 0.604 0.826 0.655 0.772 0.734
Mg 1 0.484 0.468 0.419 0.497 0.461 0.514 0.516
Fe 1 0.998 0.985 0.946 0.988 0.992 0.997
Co 1 0.986 0.948 0.990 0.989 0.994
Cr 1 0.888 0.986 0.962 0.977

Mn 1 0.912 0.962 0.945
Ni 1 0.971 0.988
Al 1 0.995
Si 1

(b)

St Vincent Bay

Ca Mg Fe Co Cr Mn Ni Al Si

Ca 1 0.438 0.542 0.448 0.483 0.450 0.634 0.725 0.552
Mg 1 0.953 0.958 0.961 0.808 0.813 0.878 0.920
Fe 1 0.986 0.963 0.869 0.905 0.954 0.963
Co 1 0.941 0.903 0.866 0.904 0.949
Cr 1 0.754 0.853 0.922 0.932

Mn 1 0.833 0.796 0.806
Ni 1 0.908 0.803
Al 1 0.948
Si 1

(c)

The geochemical compositions of SPM (Figure 4, Table 8, which differed substantially between
the 3 bays, contrast strongly with the average composition of red laterites (Table 10). Comparatively,
red laterite showed much lower levels of Ca, Mg and Si (Table 10), being composed principally of Fe
with a high proportion of Cr. The concentrations of the other elements in the red laterites were the
same order of magnitude as those observed in the SPMs collected in the bays.

Table 10. Mean concentrations (n = 22) of the main elements analysed in the red laterite of the south
and west coastal ore sites of New Caledonia.

Concentration (mg·kg–1) Al Ca Co Cr Fe Mg Mn Ni Si

Mean 26,566 117 437 19,677 586,760 2560 3887 5760 6920
StDev 3170 69 21 1309 46,928 381 221 939 1803

4.7. Mineralogy

The minerals detected in both fractions ∅ < 40 µm and ∅ > 40 µm were not significantly different
between each sampled site; the main difference being that clay minerals were enhanced in the finer
fraction. The main minerals detected in the suspended sediments of the 3 bays analysed were:
carbonates (calcite, Mg-calcite and aragonite), goethite, talc, serpentine and quartz (Figure 5). Smectite
was detected in St Vincent and Boulari Bays, but was not significant in Dumbéa Bay. The peaks of
talc and serpentine were less intense in Dumbéa Bay than in the two other bays. In the 3 sites, other
detected, but less abundant, minerals were: kaolinite, feldspar, pyroxene, and olivine.

TEM observations were mainly focused on the Ni-bearing minerals found in the bays. Carbonates,
quartz, feldspar, biogenic silica (diatom tests) detected by TEM did not contain Ni, according to EDS
spectra. Ni was detected in goethite and clay minerals (Figure 6 and Table 11).
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Table 11. Chemical formulas of particles (from Figure 6) collected with sequential sediment traps
compared to minerals reported in the literature: B7(A5) from St Vincent Bay collected on 12 December
2005; B8(A1) and B8(A5) collected from St Vincent Bay on 6 December, 2005 and C6(A17) collected from
Dumbéa Bay on 2 December 2005.

Sample SiO2 (%) Al2O3 Fe2O3 MgO Cr2O3 TiO2 CaO Na2O K2O NiO

B7(A5) 42.22 7.11 6.93 4.82 0.21 0.00 1.77 0.17 0.44 36.33
B8(A1) 5.77 1.95 86.84 0.58 0.98 0.00 1.75 0.00 0.00 2.14
B8(A5) 51.58 0.12 4.95 39.31 0.29 0.00 2.33 0.42 0.25 0.7

C6(A17) 48.57 7.4 16.11 25.49 0.49 0.00 0.84 0.13 0.26 0.72
Goethite * 4.86 3.62 88.53 1.69 0.47 0.00 0.00 0.00 0.00 0.83

Lizardite ** 42.20 0.15 2.57 35.00 0.00 0.00 0.00 0.00 0.00 4.50
Antigorite * 49.84 0.26 2.04 46.65 0.64 0.00 0.13 0.00 0.00 0.45

Talc * 66.39 0.00 0.00 32.98 0.00 0.00 0.63 0.00 0.00 0.00
CryptoNont * 51.58 8.42 24.21 12.63 0.00 0.00 0.00 0.00 0.00 3.16
CryptoSapo * 50.53 10.53 13.68 25.26 0.00 0.00 0.00 0.00 0.00 0.00
Nontronite * 55.67 4.26 33.02 3.65 0.23 0.00 0.26 0.00 0.00 2.91

Smectite * 55.59 3.87 33.96 6.58 0.00 0.00 0.00 0.00 0.00 0.00

Notes: * Trescases [50]; ** Manceau et Calas [60]; 0.00 = below detection limit or undetermined.

5. Discussion

5.1. Impact of Mining Activities on the Suspended Sediment Composition

The high proportions in Mg and Si content measured in SPM correspond to the geochemical
signature of the exploited saprolitic layers, with Mg and Si concentrations being strongly correlated
(R2 = 0.920). These enrichments result from weathering phenomena occuring in the upper layers,
which lead to the formation of laterites [49,50]. Moreover, the Mg concentrations measured in SPM
cannot have a predominantly marine origin (aragonite) since the correlation coefficients between Ca
and Mg are not significant, except for Dumbéa Bay where biological activity seems more important
than in the other two bays. Studies of sedimentary records [19,26] demonstrate the effects of the
weathering mechanisms on the marine environment in terms of SPM composition.

The highest Mg and Si concentrations were measured in St Vincent Bay, which is supplied with
SPM from the active mining of the La Tontouta basin. There are few differences between Dumbéa and
Boulari bays.

5.1.1. Boulari Bay

The strong correlation obtained between all the major and metal elements (R2 > 0.982), except for
Mg, is probably the consequence of the erosion of former mining sites, which have been abandoned
for more than 30 years. Indeed, all the correlated elements are present in both the metals-bearing
garnierite and the exploitable laterites as the result of the weathering of the ultra-mafic rocks. As for
Mg (with Si and Ca), this element is subject to a preferential leaching [50,61], and consequently, the
concentration of Mg decreases in the upper lateritic non exploitable layers that are washed away by
surface runoff into the lagoon.

Concerning Mg, XRD analysis showed that Mg-bearing minerals may be carbonates or clay
minerals. The lack of Ca/Mg correlation and the relatively similar concentrations of these two minerals
suggested that Mg is mainly bound to an Mg clay mineral devoid of metals such as talc (Table 9).
The good correlation between Ca and metal may be surprising because these elements are not the main
metal-bearing minerals transported from the soils (Table 6). Two reasons may explain this correlation:
(i) co-precipitation of dissolved metals with coral reef CaCO3 [26,62], suggesting these could have
been formed from inputs of SPM from former mines from the beginning of the 20th century until the
late 1970s; (ii) Ca is also present in the metal-bearing iron hydroxides and clay minerals (Table 11 and
Figure 6).
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The high content of metals in SPM collected at the beginning of the sampling period (21 to
22 November) can be correlated with the presence of a large amount of fine particles as suggested by
both the Junge parameter (s = 3.7) and the high turbidity (4.7 FTU) (Figure 3). In the days that followed,
the increase in the mean diameter (D50) and the decrease in the Junge parameter s demonstrated
that a fast physical and chemical aggregation occurred from 24 to 26 November. This aggregation,
probably with organic matter, was accompanied by a significant solid dilution in the terrigenous
metal concentrations in the SPM (Figure 4). This reduction in the metal concentration was highlighted
by the sharp decrease in the distribution coefficients (Kd) of the lateritic metal nickel (Figure 7).
Later, aggregates became finer (Figure 3) with a higher specific surface area, and relatively stable
concentrations in metals (28 November to 7 December, Figure 7). From 8 December onwards, the flux
of trapped SPM was fairly constant; however, a drastic increase in metal concentrations was observed.
These results suggest that sedimentation resulted mostly from settling of small particles (∅ < 10 µm).
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5.1.2. Dumbéa Bay

A strong correlation was observed between the metals and the major elements Si and Fe. For Mg,
no correlation was found with the other analysed elements (Table 9). Mg concentrations were similar
to those measured in Boulari Bay’s SPM but two times lower than the ones observed in St Vincent
Bay. This can be interpreted as a low contribution of smectite as shown by the XRD determinations
(Figure 5). Regarding Ca, its concentrations in Dumbéa Bay were much higher than in Boulari Bay and
is likely to be generated by strong resuspension of carbonated debris from numerous coral reef colonies,
by trade winds upstream of the sampling area (Table 8). Indeed, Dumbéa Bay shelters fringing reefs
and corals both, alive and dead, on its sea bottom which constitute an important source of carbonates
compared to the Coulée River mouth [36]. The metals were only slightly correlated to Ca and this
probably reflects the low residence time of seawaters in this bay [63].

The concentrations of metals determined in the SPM were averaged at the beginning of the study
period (22 November), and correlated well with the presence of fine particles (s = 3.45); in spite of
this, the turbidity remained low (1.3 FTU) (Figures 3 and 4). From the 24 of November onwards, the
strong increase in median diameter (D50 > 75 µm) and reduction in the Junge parameter (s < 3.36)
preceded a strong sedimentation (Figure 3); this increase in particle size led to a reduction in the metal
concentrations in the SPM, a phenomenon identified by the decline in the metal distribution constants
(Kd), for example Nickel (Figure 7).

The concentrations of particulate metals progressively increased with the reduction in turbidity
and median diameter of SPM until the end of the study period. This phenomenon was probably
due to the increase in the specific surface area of the particles. The turbidity and especially the SPM
flux was correlated with the strength and direction of the wind while the bottom currents were quite
low. Hence, the increase in the mass of SPM probably corresponded to the resuspension of carbonate
particles originating from the fringing coral patches of shallow depth found south-east of the bay and
subjected to trade winds, as shown by the significant increase in Ca concentrations observed (Figure 4).
Until 11 December, the trade winds may have been the cause of occasional deposition of aeolian nickel
dust generating the high metal concentration increase observed in the SPM; this dust is generated by
the nickel processing SLN plant (Figure 1) located on the south-east coast of Dumbéa Bay. After that
date, the westerly winds that blew until the end of the study period were probably responsible for the
decrease in the concentration of metals (Figures 2 and 4).

5.1.3. St Vincent Bay

Except for Ca, a strong correlation was also observed between the metals and the major elements
(Si, Fe and Mg) but the values of R2 were slightly lower than in Boulari Bay (Table 9). The correlation
is well explained by the present-day mining extraction of less weathered lateritic layers enriched
with metals. The main difference with Boulari Bay is that a high correlation was observed between
Mg and the metals and a lower correlation between Ca and the metals. XRD from St Vincent Bay
samples showed the presence of smectite (Figure 5) not observed in Boulari Bay’s SPM, which might
explain the difference. SPM in St Vincent Bay was also enriched in Fe and Si (and Al, not presented
in this paper) compared to the other bays, which might be explained by the higher proportion of
clays. The high concentrations of Ca suggested a sizeable contribution of resuspended carbonates as
a result of the regular effect of the winds in this shallow bay. Besides this, a significant proportion
of former resuspended coral reef debris could explain the lower correlation of Ca with the metals in
St Vincent Bay.

Over the study period, some variations were observed in the metal concentrations present in the
SPM with no major trends evident and of smaller amplitude than in the 2 other bays. However, a clear
correlation between Kd values and the tide was detected, with smaller Kd at neap tides than at spring
tides (Figure 7). During spring tides, the resuspension of fine particles and subsequent adsorption of
metals (Kd values) increased. Nevertheless, resuspension was not only caused by tides, but also by
the wind regimes. Indeed, on the 24 November, an increase in turbidity and in the Junge parameter



Water 2017, 9, 338 19 of 24

and a decrease in D50 highlighted a resuspension event at the end of a spring tide period, due to
the re-establishment of trade winds (Figures 2, 3 and 7). Aggregation of suspended particles and
subsequent deposition followed, but was interrupted by a short resuspension event on the 2 December,
likely due to the combined effect of spring tides and waves generated by the wind. This resuspension
likely induced the high amount of SPM collected on 4 December. Immediately after a short period of
trade winds, aggregation and deposition were observed from 8 December during weak westerly and
variable winds, hence promoting the deposition of aggregates.

5.2. Origin of the Minerals

All of the detrital minerals detected were previously described [50] from the weathering profiles of
the plateaus. The predominance of clay minerals in St Vincent Bay and Boulari Bay may be attributed
to the presence of, respectively, actual and former open cast mines in their watershed which erode the
deeper lateritic horizons where clay minerals are for the most part located.

In all the lagoon sediments, carbonates minerals (calcite, aragonite, Mg carbonate), absent in the
riverine sediments, provide evidence of sediment resuspension [26]. Other authors [64] also showed
that in the different typical bottoms of the lagoon, more than 80% of total sedimentation was linked to
deposition of resuspended benthic material. Suspended sediments present in St Vincent Bay contain
the same main terrestrial minerals as those detected in the Tontouta River: quartz, goethite, talc,
serpentine and smectite. However, smectite and serpentinite may also result from neoformation in
the delta area or in the bay itself [26,50,65]; the presence of smectite was higher in St Vincent Bay than
in the connected Tontouta River. In tBoulari Bay under trade wind conditions, SPM contained the
same minerals as those found in St Vincent Bay except that goethite was more present than clays.
During a west wind regime, no clay minerals were detected, and goethite and quartz were the only
terrestrial minerals found. During the same period, SPM collected in Dumbéa Bay were characterized
by the same minerals as in St Vincent Bay, but clays and goethite contents were lower and samples
were dominated by lagoonal material (calcites and aragonite). These results therefore show that
the mineralogical composition of suspended sediments in the 3 bays was not strictly related to the
composition of sediments transported by their connected rivers. These findings may be due to the
presence of authigenic minerals in the bay [26,36] besides detrital particles.

A chemical analysis of a goethite particle referenced as B8A1 (Table 11 and Figure 6) yields similar
results to the one given by [50]. Chrysotile (a mineral from the serpentine family) particles forming long
acicular tubes were also detected (referenced as C6A17 in Table 11 and Figure 6. This mineral is formed
in fractures of the ultrabasites and results from an episode of serpentinisation which concentrates
Ni [50]. Compared to other serpentinites analysed previously [50,60], the analysed chrysotile particle
had a comparable chemical composition (Table 11). A particle with a different composition (less Al
and Mg and more Fe) was also detected (referenced as B8A5 in Table 6 and Figure 6. The composition
of this particle is comparable to a poorly crystallized smectite named crypto nontronite [50], which is
found in sediments of the deltaic plain and probably originates from diagenesis.

The composition of the particle referenced B7A5 (Table 11 and Figure 6) is more intriguing
because of its high Ni content. It could be comparable to a clay mineral like that of a serpentine
phase with a high degree of Ni substitution, but such a composition has not yet been reported in
New Caledonia. Neoformed serpentine has been identified [26] in the lagoonal sediments of Dumbéa
Bay but was not quantified. In addition, the serpentinite was of the Fe (III) type and comparable to
the authigenic green phyllosilicates described by Odin et al. [66] in the lagoonal sediments of New
Caledonia. Authigenic clay minerals in the Amazon delta have also been described by Michalopoulos
and Aller [67], who demonstrated that clay minerals may form rapidly in the sediment pores after
liberation of Si from the diatoms and Al and Fe from the oxy-hydroxides derived from the drainage
basin. The amount of diatoms or other biogenic silica sources is not known in New Caledonia but their
presence has been detected here by TEM. Besides this, goethite is abundant. We therefore support
the idea that the high amount of Ni in the clay particle B7A5 resulted from Ni incorporation in the
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structure of the clay during diagenesis. This statement implies that part of the dissolved Ni in the
lagoon may be fixed by minerals, which limit its dissemination.

6. Conclusions

Our approach combining mineralogy, geochemistry and hydrodynamics allowed us to determine
how driving factors are affecting the dynamics of particulate matter in lagoonal ecosystems influenced
by the mining industry (Table 12). During the dry season, the concentrations of metal present in the
water of the 3 bays were principally governed by the alternating south-easterly (trade winds) and
westerly winds. The spring and neap tides do not appear to play a major role in the conditions observed
during the study period, except in St Vincent Bay. The driving forces behind the resuspension of
particles were similar in Boulari and Dumbéa bays, but clearly differed in St Vincent Bay. This difference
can be attributed to the shallow depths present in the bay, the intense mixing and the resulting
aggregation mechanisms. This resuspension phenomenon was responsible for the distribution of
dissolved and particulate metals in the water column (Kd).

In St Vincent Bay, during periods of intense resuspension, the adsorption of Ni onto many particles
was promoted and reversely, the concentration of dissolved nickel increased during the sedimentation
phase as a result of calm meteorological conditions. In Boulari Bay, the sedimentation stages and
constant Ni concentrations coincided with west weak wind periods allowing the coastal waters blocked
along the coast-line by the long trade winds periods to flow off-shore. This phenomenon was reversed
in Dumbéa Bay where the redissolution of Ni seemed to be higher during the period of resuspension
of the particles richer in carbonates. Table 12 summarizes the effects of the different wind regimes in
these 3 bays during the dry season.

Table 12. Effects of wind regimes on the dynamics of the particulate matter in lagoonal ecosystems
influenced by the mining industry in New-Caledonia.

Bay Trade Wind Regime
(5–10 Knots)

Light West Wind
Regime (<5 Knots) Coastal Breeze Regime (<5 Knots)

Boulari Bay

Off-shore water inputs,
resuspension of SPM
transported eastwards and
blocked, settling in-shore

Drainage of blocked
coastal waters toward
off-shore (westward),
SPM aggregation and
sedimentation

Settling of a benthic turbid layer
and westwards transport of SPM:
increase in metal fluxes (dissolved
and particulate)

Dumbéa Bay
Resuspension of SPM rich in
carbonates debris, followed
by sedimentation

Off-shore water inputs
low both in SPM and
metal content

Sedimentation of SPM and
reduction in metal fluxes
(dissolved and particulate)

St Vincent Bay

Intense resuspension of SPM
by the tide and winds over
shallow water, then settling
and high particulate metal flux

Sedimentation of a small
fraction of SPM,
reduction in metal fluxes

Important persistence of
resuspension of SPM: high metal
fluxes (dissolved and particulate)

In terms of environmental impact, the amounts of lateritic particles that have accumulated over
time can modify the geochemical equilibriums in the water column, particularly in shallow and
sheltered bays. Reducing the concentration of SPM injected into the lagoon seems essential to limit
the effects of the bio-accumulation in exposed marine organisms, for example, dissolved Ni, up to
7 µg·L–1 in St Vincent Bay (vs. 2 µg·L−1 in Boulari Bay) correspond to the higher particulate Ni fluxes
of 170 mg·m–2·d–1 observed in the bay.
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